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Abstract. Continuous observation of a time independent projection operator is known to prevent
change of state (the quantum Zeno paradox). We discuss the recent result that generic continuous
measurement of time dependent projection operators will in fact ensure change of state: an anti-Zeno
paradox.
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1. Introduction

Quantum predictions for instantaneous changes of state vectors due to measurements are
responsible for several paradoxes such as the Schr¨odinger Cat paradox, the Einstein-
Podolsky–Rosen paradox, the quantum Zeno paradox and the recently discovered quantum
anti-Zeno paradox. Here we discuss the quantum Zeno and anti-Zeno paradoxes which
arise due to infinitely frequent measurements of time independent and time dependent pro-
jection operators respectively.

The early formulations of infinitely frequent or continuous observation are due to Von
Neumann [1] and Feynman [2], who used the operator approach and the path integral
approach respectively. Feynman’s path integral approach was elaborated by Mensky [3]
who also showed its equivalence to the phenomenological master equation approach for
open quantum systems using models of system-environment coupling developed by Joos
and Zeh and others [4].

Von Neumann [1] derived the remarkable result that by suitably designed continuous
measurements, any pure state could be steered into any other pure state if we ignore the
Hamiltonian evolution between measurements (or equivalently, for Hamiltonian equal to
zero). On the other hand taking an arbitrary self-adjoint Hamiltonian into account, Misra
and Sudarshan [5] asked: what is the rigorous quantum description of ideal continuous
measurement of a projectorE (time independent in the Schr¨odinger representation) over
a time interval[0; T ]? Their work led them to rigorous confirmation of a seemingly para-
doxical conclusion noted earlier [6]. The conclusion ‘that an unstable particle which is
continuously observed to see whether it decays will never be found to decay’ or that a
‘watched pot never boils’ [7] was christened ‘Zeno’s paradox in quantum theory’ by Misra
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and Sudarshan [5]. The paradox has been theoretically scrutinized questioning the con-
sistency of infinitely frequent measurements with time-energy and position-momentum
uncertainty principles [8]. Experimental tests [9] and their different interpretations have
been vigorously discussed.

In our recent letter [10] we showed that in contrast to the continuous measurement of
a time independent projection operator which prevents the quantum state from changing
(the quantum Zeno paradox), the generic continuous measurement of a time dependent
projection operatorEs(t) forces the quantum state to change with time (the quantum anti-
Zeno paradox). We have emphasized that though the two effects (one inhibiting change
of state and the other ensuring change of state) are physically opposite, they are mutually
consistent as they refer to different experimental arrangements. We derived the anti-Zeno
paradox in a very broad framework with arbitrary Hamiltonian, arbitrary density matrix
states, and measurement of arbitrary but smooth time dependent projection operators. Fur-
ther, Facchiet al [10] have discussed a special case of the quantum anti-Zeno paradox
which they called ‘dynamic quantum Zeno effect’ for a spin 1/2 system guided through
a closed loop in Hilbert space with a specific assumption on the time dependence of the
projection operators. Kofman and Kurizki [10] noted that even for time independent mea-
surements, when the frequency of measurements is smaller than a characteristic difference
of eigenfrequencies of the system, an anti-Zeno effect results. Of course our method would
yield the appropriate generalisation of their results to time dependent measurements.

Here I shall begin with a review of the quantum Zeno paradox and its intimate historical
connection to the phenomenon of non-exponential decay. I then review the recent results
of Balachandran and Roy [10] on continuous measurements of time dependent projection
operators which lead to the much more generic quantum anti-Zeno paradox. The quantum
Zeno paradox and the quantum anti-Zeno paradox demonstrate that the effect of contin-
uous measurements on quantum states discovered by Von Neumann in the case of zero
Hamiltonian, in fact hold also in the presence of arbitrary self-adjoint Hamiltonian.

2. Ideal measurements in quantum theory

For a quantum system with a self-adjoint HamiltonianH , an initial state vectorj (0)i
evolves to a state vectorj (t)i,

j (t)i = exp(�iHt)j (0)i: (1)

More generally, an initial state with density operator�(0) has the Schr¨odinger time evolu-
tion

�(t) = exp(�iHt)�(0) exp(iHt); (2)

which preserves the normalization conditionTr �(t) = 1. In an ideal instantaneous mea-
surement of a self-adjoint projection operatorE, the probability of findingE = 1 is
Tr(E�E) and on finding the value1 for E the state collapses according to

�! �0 = E�E=Tr(E�E): (3)

If projectors E1; E2; : : : ; En are measured at timest1; t2; : : : ; tn respectively, with
Schrödinger evolution in between measurements, the probabilityp(h) for the sequence
of eventsh,

170 Pramana – J. Phys.,Vol. 56, Nos 2 & 3, Feb. & Mar. 2001



Quantum Zeno and anti-Zeno paradoxes

h : E1 = 1 at t = t1; E2 = 1 at t = t2; � � � ; En = 1 at t = tn (4)

is [1],

p(h) = jj h(t
0
)jj2;  h(t

0
) = Kh(t

0
) (0); t0 > tn: (5)

HereKh(t
0
) is the Feynman propagator modified by the eventsh,

Kh(t
0
) = exp(�iHt0)Ah(tn; t1); (6)

where

Ah(tn; t1) = EH (tn)EH (tn�1) � � �EH(t1) = T

nY
i=1

EH(ti); (7)

with T denoting ‘time-ordering’ and the Heisenberg operatorsEH (ti) are related to the
Schrödinger operators by the usual relation

EH(ti) = exp(iHti)Es(ti) exp(�iHti); Es(ti) � Ei: (8)

The state vector of the system at a timet0 after the eventsh is

 h(t
0
)=jj h(t

0
)jj:

Correspondingly, if the initial state is a density operator�(0), the probabilityp(h) for the
eventsh is given by

p(h) = TrKh(t
0
)�(0)Ky

h(t
0
) = Tr Ah(tn; t1) �(0)A

y

h(tn; t1); (9)

and the state att0 > tn is

Kh(t
0
)�(0)K

y

h(t
0
)=Tr (Kh(t

0
)�(0)K

y

h(t
0
)):

3. Non-exponential decay

In spite of the apparent ubiquitousness of the exponential decay law, it can be shown that
the basic principles of quantum mechanics imply that the exponential law of decay of an
unstable particle must break down both at very short and at very long times. I shall closely
follow a presentation due to Martin [11].

Consider an unstable particleB decaying into particlesC +D, : : : etc.

B ! C +D; : : : : (10)

Suppose that the total HamiltonianH has a lower boundM ,

H �M; (11)

and the initial state is denoted byjBi,
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j (t = 0)i = jBi: (12)

Then, at timet,

j (t)i = e
�iHtjBi: (13)

The probability amplitude of finding the undecayed statejBi at timet is

A(t) = hBje�iHtjBi; (14)

and the probability of findingjBi at timet is,

jA(t)j2 = h (t)jEj (t)i; (15)

whereE denotes the projector

E = jBihBj: (16)

Let fj�; rig denote a complete set of eigenvectors ofH ,

H j�; ri = (M + �)j�; ri; � � 0; (17)

wherer is a degeneracy index and the eigenvalues(M +�) ofH are�M by assumption.
We have

1 =

Z 1

0

d�E�; E� �
X
r

j�; rih�; rj: (18)

Using this resolution of the identity we have

A(t) = hBje�iHt

Z 1

0

d�E�jBi

= e
�iMthBj

Z 1

0

d�e�i�tE�jBi

= e
�iMta(t); (19)

where

a(t) =

Z 1

�1

d�e�i�t!(�); (20)

with

!(�) =
X
r

jhBj�; rij2 � 0; for � � 0; (21)

and

!(�) = 0 for � < 0: (22)
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We shall now prove the impossibility of exponential decay fort!1.
Consider the analytic continuation ofRe a(t) to complext-plane,

r(t) =
a(t) + a?(t?)

2
=

Z 1

0

d� cos(�t)!(�) (23)

which implies

!(�) =
1

2�

Z
1

0

dt cos(�t)r(t): (24)

Exponential decay would imply thatjA(t)j and consequentlyr(t) must decay exponen-
tially for t!1,

jr(t)j � C exp(�
t): (25)

This implies that the cosine Fourier representation of!(�) given above can be continued
analytically into the stripjIm �j < 
. This is impossible since we know that!(�) = 0 for
� < 0. Hence the hypothesis of exponential decay at long times must be false. What we
have used is essentially the Paley–Wiener theorem.

Khalfin [6] noted that exponential decay cannot hold for short times either. Denoting

hBjH jBi = �H; (26)

we have

A(t) = e
�i �HthBje�i(H�

�H)tjBi

= e
�i �Ht

�
1�

t2

2!
hBj(H � �H)

2jBi+ � � �

�
: (27)

Assuming that the series on the right-hand side has a finite radius of convergence we have

jA(t)j2 = 1 +Ojt2); for t! 0; (28)

instead of what exponential decay requires,

e
��t ! 1� �t for t! 0: (29)

The nonexponential behaviour (28) is intimately connected to the quantum-Zeno paradox.

4. Quantum Zeno paradox

Infinitely frequent (or continuous) observation of the same observable prevents change of
state [5]. This elementary consequence of the quantum measurement postulates has been
variously described: ‘watched unstable particle does not decay’, ‘watched clock does not
move’, ‘watched kettle does not boil’ etc. Its paradoxical nature is sometimes thought
of as an ‘example of taking quantum measurement postulates seriously and not liking the
results’. Its experimental tests [9] have not yet settled questions of interpretation.
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Let us give here an elementary proof of the quantum Zeno paradox. Apply the Khalfin
argument repeatedly. Starting with an initial statejBi, and measuring the projectorE =

jBihBj repeatedly, at timesT=n, 2T=n, : : : , T , the probability of findingE = 1 in each
of these measurements is

jhBje�iHT=njBij2n =

����e�i �HT=n

�
1�

T 2

2n2
hBj(H � �H)

2jBi+ � � �

�����
2n

= 1�
T 2

n
hBj(H � �H)

2jBi+ � � �

n!1
�! 1; (30)

provided thathBje�iH� jBi is analytic at� = 0 (see Chiuet al [5]).

5. Quantum anti-Zeno paradox

We now discuss the results of Balachandran and Roy [10] on continuous measurements
of time dependent projectors. Consider infinitely frequent measurements of the projec-
tion operatorsEs(ti) which are values at timesti of a projection valued functionEs(t).
We make the technical assumption that the corresponding Heisenberg operatorEH(t) is
weakly analytic. We seek to calculate the modified Feynman propagator

Kh(t
0
) = exp(�iHt0)Ah(t; t1); (31)

where

Ah(t; t1) = lim
n!1

T

nY
i=1

EH(t1 + (t� t1)(i� 1)=(n� 1)) (32)

which is then ! 1 limit of eq. (7) with a specific choice of thet i. Let us also introduce
the projectors�Ei = 1 � Ei which are the orthogonal complements of the projectorsE i,
and a sequence of events�h complementary to the sequenceh,

�h : �E1 = 1 at t = t1; �E2 = 1 at t = t2; : : : ; �En = 1 at t = tn: (33)

Corresponding to eqs (6), (7), (31), (32), we have equations withE ! �E, h ! �h. The
special interest inK�h(t

0
) is that it is closely related to the propagator

Kh0(t
0
) � exp(�iHt0)�K�h(t

0
) = exp(�iHt0)[1�A�h(t; t1)]; h

0 � U
i
Ei;

(34)

which represents the modified Feynman propagator corresponding to the union of the
eventsEi, i.e. to at least one of the eventsEs(ti) = 1 occurring, withti lying betweent1
andt. Our object is to obtain exact operator expressions for the propagatorsK h,K�h which
have been defined above by formal infinite products.

We see from eq. (31) thatAh(t; t1)(A�h(t; t1)) represents the modification of the Feyn-
man propagator due to the continuous measurement corresponding to the sequence of
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eventsh(�h). Consider first the operatorsAh(ti; t1); A�h(ti; t1) before taking then ! 1

limit, and note that

Ah(ti; t1) = EH(ti)Ah(ti�1; t1); A�h(ti; t1) =
�EH(ti)A�h(ti�1; t1): (35)

The relation�E2
H = �EH impliesA�h(ti�1; t1) =

�EH(ti�1)A�h(ti�1; t1). We thus have

A�h(ti; t1)�A�h(ti�1; t1) = ( �EH(ti)� �EH(ti�1))A�h(ti�1; t1); (36)

and a similar relation forAh. Dividing by ti � ti�1 = Æt, taking the limitn ! 1 (i.e.,
Æt ! 0) and assuming thatEH(t) is weakly analytic att = 0 we obtain the differential
equations,

dA�h(t; t1)

dt
=

d �EH (t)

dt
A�h(t�; t1);

dAh(t; t1)

dt
=

dEH (t)

dt
Ah(t�; t1); (37)

where the argumentst� on the right-hand sides indicate that in case of any ambiguity in
defining the operator products the arguments have to be taken ast � � with � ! 0 from
positive values and

dEH (t)

dt
= i[H;EH(t)] + exp(iHt)

dEs(t)

dt
exp(�iHt): (38)

FurtherA�h(t; t1); Ah(t; t1) must obey the initial conditions

A�h(t1; t1) =
�EH (t1); Ah(t1; t1) = EH(t1): (39)

The measurement differential equations (37) are reminiscent of Schr¨odinger equation for
the time evolution operator except for the fact that the operatorsd �EH=dt, dEH=dt are her-
mitian whereas in Schr¨odinger theory the antihermitian operatorH=i would occur. Using
the initial conditions we obtain the explicit solutions,

Ah(t; t1) = T exp

�Z t

t1

dt0
dEH (t0)

dt0

�
EH (t1); (40)

and a similar equation withh ! �h, Eh ! �Eh, where the time ordered exponentials have
the series expansion

T exp

�Z t

t1

dt0
dEH(t0)

dt0

�
= 1 +

1X
n=1

Z t

t1

dt01

Z t0
1

t1

dt02 � � �

Z t0
n�1

t1

dt0nT

nY
i=1

dEH (t0i)

dt0i
: (41)

In general the time-ordered operator products appearing on the right-hand side are distribu-
tions and the series on the right-hand side must be taken as the definition of the exponential
on the left-hand side; we may not do the integral ofdEH(t0)=dt0 on the left-hand side.
Multiplying the expressions forA�h(t; t1) andAh(t; t1) on the left byexp(�iHt0) then
completes the evaluation of the modified Feynman propagatorsK �h(t

0
) andKh(t). These

equations will enable us to derive both the Zeno paradox and the anti-Zeno paradox.
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The Zeno paradox: Let the initial state bej 0i and let the projection operatorj 0ih 0j be
measured at timest1; t2; : : : ; tn with tj � tj�1 = (tn � t1)=(n � 1) andtn = t, and let
n!1. Then, the definition (7) yields

Ah(t; t1) = lim
n!1

e
iHtj 0ih 0j exp(�iH(t� t1)=(n� 1))j 0i

n�1h 0je
�iHt1

= exp(i(H � �H)t)j 0ih 0j exp(�i(H � �H)t1); (42)

where �H denotesh 0jH j 0i and we assume thath 0j exp(�iH�)j 0i is analytic at� = 0.
Our differential equation also yields exactly this solution forAh(t; t1). Takingt1 = 0, we
deduce that the probabilityp(h) of finding the system in the initial state at all times up tot
is given by

p(h) = jjKh(t)j 0ijj
2
= jj�ei

�Htj 0ijj
2
= 1; (43)

which is the Zeno paradox. (The result can also be generalized to the case of an initial state
described by a density operator, and the measured projection operator being of arbitrary
rank but leaving the initial state unaltered, see below.)

The anti-Zeno paradox: The above result may suggest that continuous observation inhibits
change of state. Now we prove a far more general result which shows that a generic
continuous observation actually ensures change of state. Suppose that the initial state is
described by a density operator�(0), and we measure the projection operator

Es(t
0
) = U(t0)EUy(t0) (44)

continuously fort0�[0; t]. HereE is an arbitrary projection operator (which need not even
be of finite rank) which leaves the initial state unaltered,

E�(0)E = �(0); (45)

andU(t0) is a unitary operator which coincides with the identity operator att 0 = 0,

Uy(t0)U(t0) = U(t0)Uy(t0) = 11; U(0) = 11: (46)

The Heisenberg operatorEH(t0) is then

EH(t0) = V (t0)EV y(t0); V (t0) = e
iHt0U(t0): (47)

ClearlyV (t0) is also a unitary operator. The definition (7) yields, fort 1 � 0,

Ah(tn; t1) = V (tn)

 
T

n�1Y
i=1

X(ti)

!
V y(ti); n � 2 (48)

where

X(ti) � EV y(ti+1)V (ti)E; (49)

andAh(t1; t1) = V (t1)EV
y
(t1). Denoting
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Y (tj) = T

j�1Y
i=1

X(ti); j � 2; (50)

Y (t1) = E and noting thatEY (tj�1) = Y (tj�1), we have

Y (tj)� Y (tj�1) = E(V y(tj)V (tj�1)� 1)EY (tj�1): (51)

Takingtj�1 = t0; tj = t0 + Æt; n!1, we haveÆt = 0(1=n), and

E(V y(t0 + Æt)V (t0)� 1)E = ÆtE
dV y(t0)

dt0
V (t0)E + 0(Æt)2: (52)

To derive that the last term on the right-hand side is0(Æt)2 in the weak sense (i.e., for
matrix elements between any two arbitrary state vectors in the Hilbert space), we make the
smoothness assumption thatE(V y(t0+�)V (t0)�1)E is analytic in� at� = 0 in the weak
sense. (It may be seen that this reduces to analyticity ofh 0j exp(�iH�)j 0i in the usual
Zeno case). Hence then!1 limit yields

Ah(t; t1) = V (t)Y (t)V y(t1); (53)

where

dY (t0)

dt0
= E

dV y(t0)

dt0
V (t0)EY (t0): (54)

Solving the differential equation we obtain,

Ah(t; t1) = V (t)T exp

�Z t

t1

dt0E
dV y(t0)

dt0
V (t0)E

�
EV y(t1): (55)

It is satisfying to note that this expression indeed solves our basic differential equation (37)
as can be verified very easily by direct substitution.

The most crucial point for deriving the anti-Zeno paradox is that the operator

T exp

�Z t

t1

dt0E
dV y(t0)

dt0
V (t0)E

�
�W (t; t1)

is unitary, because(dV y(t0)=dt0)V (t0) is anti-hermitian as a simple consequence of the
unitarity ofV (t0). Takingt1 = 0, eq. (9) gives the probability of findingEs(t

0
) = 1 for

all t0 from t0 = 0 to t as

p(h) = Tr
�
V (t)W (t; 0)EV y(0)�(0)V (0)EW y

(t; 0)V y(t)
�
= Tr�(0) = 1;

(56)

where we have usedV (0) = 1, E�(0)E = �(0), the unitarity ofV (t) and the unitarity of
W (t; 0). This completes the demonstration of the anti-Zeno paradox: continuous observa-
tion ofEs(t) = U(t)EUy(t) with U(t) 6= 11 ensures that the initial state must change with
time such that the probability of findingEs(t) = 1 at all times during the duration of the
measurement is unity.
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