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Considering two systems S5; and S; which may have interacted in the past but
are now spatlally separated, Einstein asserted [l] "on one supposition we should,
in my opinion, absolutely hold fast: the real factual situation of the system S, is
independent of what is dome with the system $;", Building on this principle
Einstein, Podclsky and Rosen argued [2] that quantum mechanics cannot be a complete
description of physical reality. Much later, the celebrated work of Bell [3]
provided a mathematically precise formulation of Einstein's principle of local
realism or local causality and showed that quantum mechanics was inconsistent with
this principle. In spite of the philosophical attractiveness of this principle
leading to Bell's inequalities [3], there 1s now mounting experimental evidence [4]
which agree with quantum mechanlcs and disagree with Bell's inequalities. Therefore
one may be allowed to examine the possibility that the physical world obeys a
principle of local causality weaker than Einstein-Bell locality.

In this paper we redefine local causality to mean the absence of faster than
light signals, and proceed to formulate 1t precisely in a hidden variable
framework. It 1s worthwhile to note that Bell himself called such a possible
redefinition of local causality the "human version” and granted that it was
sensible [5]. Among our motivations to adopt it 1is the fact that relativistic
quantum field theory violates Einstein-Bell locality but does not allow faster than
light signalling [5,6].

Consider the Bohm—Aharonov version [7] of the EPR situation. A system of two
particles (spin-} particles, photons, etc.) is prepared so as to wove In different
directions (say left and right) towards two measuring devices with orientations or
other parameters (of Stern-Gerlach magnets, photon analyzers, etc.) collectively
denoted by a and b respectively., The devices measure variables A and B which, by
their definition, can only take values |A] < 1, |B|gs 1 (e.g., for a Stern-Gerlach
apparatus the particle hittiang one of the two detectors ou the left may correspond
to A = +1 and hitting the other may correspond to A = -1; for a photon—analyzer
transmission may correspond to A = +1 and non~transmission to A = -=1). Quantum
mechanically, for a pair of spin-} particles A may correspond to measuring ;1-; and
B to Ez-g where ;1 and 32 are Pauli spin matrices. In a hidden variable framework,
let us assume that A and B are specified if the hidden variables of the system, of
the left apparatus and of the right apparatus, and the orientations or other
parameters a and b of the two apparatus are known, i.e., A = A(h,a,b), B = B(h,a,b)
where each argument may consist of many parameters discrete or continuous. The

expectation values of A,B and AB are then

<A> = SLL)\ P()\,a,b) A{/\:a’b) , -



&> = [dx P0r,a,b) B(aa,b),

(2)

CABY = JaA 96,0, 8) Al BOwas b))

(3)

where A denotes collectively all the hidden wvariables, p(k,a,b) being the
normalized non=-negative probability distribution function for the hidden‘}ariables.
Thus,

pirab) %0, JdafMab) =1

(4)

Further, by definition

Ao B <L |[B(rva )| <1

(5)

At this point, Einstein-Bell locality would require A(Xk,a,b) to be independent of
the hidden wvariables and orientations b of the spatlally separated apparatus
measuring B, and similarly require B{\,a,b) to be independent of a and hidden

variables of the apparatus measuring A, and p(A,a,b) to be independent of a and b.

Denoting the average of A over hidden variables of the apparatus measuring it

by E, and a similar average of B by E, Bell would obtain
<AB%¢12 - jd’\o £ (/\°>E(’\°)a) B (%, b > (6)

where Ay anow denote the hidden variables of the system only, and 13l < 1, IB] < 1.
From this follow the Bell inequalities [3] and the generalized Bell inequalities
[8] which constitute experimental tests of Einstein=Bell locality.

Here we do not require Einstein-Bell locality. Recall Bohr's position [9]: "Of
course, there is in a case like that just considered no question of a mechanical
disturbance of the system under investigation during the last critical stage of the
measuring procedure, But even at this stage there is essentially the question of an
influence on the very conditions which define the possible types of predictions
regarding the future behaviour of the system”. Accordingly, we allow A(A,a,b),
B(h,a,b) and p(i,a,b) to depend on variables of the distant apparatus. We make,
however, the following hypothesis of local causality (= absence of faster than
light signals): "the expectation value <A> of a quantity A cannot depend on whether
or not a quantity B referring to a space~like separated reglon is measured; in
particular <A> cannot depend on variables of the apparatus measuring B". Clearly,
the violation of this hypothesis would imply faster than light signals. We thus

assume that



<A> = A(e), <B) =B(b). )

This result would of course follow from Einstein-Bell locality but counstitutes a

much weaker hypothesis,

Experimental tests

We have defined the class of hidden variable theories without mnon-local
signalling. We show now that predictions of this class of theories can easily be
tested experimentally if the expectation values <A>, <B>, and the polarization
correlations <AB>» = P(a,b) are measured. From

Pla,b) tA@) =[drP () Anab[BAAb) £1],

(8)

using p > 0, [A(A,a,b)I< 1, B{Ah,a,b) + 1 » 0 and B{A,a,b)=l < O, we obtain

|P(a,b) tA (]| < [dA PrA0,b) [4 £ B(Aa,b) ]
- 1= B(6)

(9)

In the 1last step we used the normalization condition for p(A,a,b) and the
hypothesis <B> = B(b). Since the right-hand sides of the above pair of inequalities
are independent of a, we obtain

max | P b)tA@] < 1 £B(b)
@)

(10)

Analogously, we obtain

max| P+ BB < 1+ A
(b)

(11)

We propose that the above two pairs of inequalities (10) and (11) be directly
tested by experiments which are simllar to those already used to test Bell's
inequalities [4]. We shall thea be testing hidden wvariable theories without

non-local signalling.

Embedding quantum mechanics

Congider the BohmwAharoumov example [7] of a palr of spin-} particles with

quantum wave function

Y= (14 -1/ az
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which yields the quantum mechanical answers for <A>, <B> and <AB>:

Ala) = {oy-8 > =0,

B(¥) = L& ¥> =0,
P@b)= —a B . "

Substituting these quantum mechanlcal values in the inequalities (10) and (11)
above we see that the inequalities are obeyed (in fact saturated) by quantum

mechanics.

We may thus hope that quantum mechanics can be embedded in the class of hidden
variable theories considered here. We proceed to show that this is indeed the case
by explicitly exhibiting a model of hidden variables. We choose the hidden
variables A to be represented by a unit vector K from the origin which specifies
the points on the surface of a unit sphere. We further require the probability
measure for the hidden variables to be uniform over the surface of the unit sphere,
l.e.,

PN dA = df25 /@D
With such a choice of hidden wvariables, Bell [3] already demonstrated that the
quantum mechanical results can be reproduced if A is allowed to depend on % also,
e.g., A = sgni-;', B = -sgni-%, where ;' is a unit vector obtained from E by
rotation towards % until (1-3-3) = (2/n)c05'1;'-g. In order to show that the above
unsyanmetrical dependence of A and B on their arguments is not an essential feature

we give here ancother example,

Draw the unit vectors & and ‘D from the origin of the unit sphere and also the
unlt vector E = (54%)/154B|. let the two cones with 3 and —Z as axes, and origin as
apex be drawa such that the solid angle subtended by each of them at the origin is
n(1+§43). This can be done by choosing the half-opening angle 93 of the cones to be

given by 2(1l-cosf;) = 1+4-B. We choose

A(R,8.b) = +1, B(A,8.b)=-1

Y
provided K lies inside the upper cone with axis C, and

A 3 N Ei i;,) = 4'1
AR, 8, 5)= -1, B(E,B)=
when K lies inside the lower cone with axis —E.

The remaining region on the unit sphere outside the above two cones is divided
into two equal regions such that each of them subtends a solid angle n(l-a:ﬁ) at

the origin. We choose

A(%8,5)= B(A,a.B) = Sign (X. (6xB))
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when A lies outside the two cones. It can be easily verified that in this explicit

model we do reproduce the quantum mechanical results given by (13).

General proof

We give now a general proof that quantum mechanical predictions will obey our
requirements (1) to (5) amd (7) for a hidden variable theory without non~-local
signalling.

Let the two observables referring to measurements iIn spacelike separated
regions be represented by the operators A and B which satisfy the operator
inequalities ~1 < A < 1, =1 < B < 1. In relativistic quantum theory we must have
[A,B] = 0. Let the quantum mechanical state, coherent or inmcoherent, be represented

by the density matrix p. In a basis {|n>} in which both A and B are diagonal, we

obtain </:\> - Tr f)A :Zﬂ _PnnAnn
<B7 = V7 ?B:Zn ?nﬂBﬂn
(B = T §AB =3 fuu Amn Bon

p o yo0, Z =t
Aml €15 1Banl ST

which are clearly of the form (1) to {5). In general Pon? Ann and Brm may depend on
a and b since the basis |an> may depend on these orientations. Finally, the locality
condition (7) follows from the arguments of Ghirardi, Rimini and Weber [&]
asserting that <A> cannot depend on whether or not B is previously measured.
Briefly, on measurement of B, p + L PBpP s where PB are projectors to different

pP_)A = TrpA, since [A,PB] =0

3
eigenvalues B of B; but we see easily that Tc(Z_ P

Bp B

and ngé = zﬁpﬁ =1,

Generalizations

We formulated theories with mno faster than light signalling in the hidden
variable framework in which Bell had formulated Einstein-Bell locality. However,
Bell's hidden variable framework was substantially generalized later [10] and still
led to Bell's inequalities. We feel that the imequalities (10) and (11) here
derived from no non-local signalling in the hidden variable framework could
actually be derived also in a larger framework. Their experimental failure would
imply a failure not only of quantum mechanics but also of a larger class of

theories which have no non-local signalling. The experimental tests should take
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appropriate account of analyzer and detector efficlencies [11] as 1n tests of
Bell's inequalities. Notice the striking feature of the inequalities {10) and (11)
proposed here: they predict constraints on polarization correlations P(a,b) in
terms of A(a) which can be measured by the left apparatus alone and B(b) which can

be measured by the right apparatus alone,
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