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While the time dependence of the friction on a tagged particle in a dense liquid has been
investigated in great detail, a similar analysis for the viscosity of the medium and the
interrelationship between the two has not been carried out. This is despite the close relation always
assumed, both in theoretical and experimental studies, between friction and viscosity. In this article
a detailed study of the time and frequency dependencies of the viscosity has been carried out and
compared with those of the friction. The analysis is fully microscopic and is based on the mode
coupling theory~MCT!. It is found that for an argonlike liquid near its triple point, the initial decay
of the viscosity occurs with a time constant of the order of 100 fs, which is close to that of the
friction. The frequency dependent viscosity shows a pronounced bimodality with a sharp peak at the
low frequency and a broad peak at the high frequency; the usually employed Maxwell’s relation
fails to describe the peak at the high frequency. A surprising result of the present study is that both
the bare and the MCT values of viscosity and friction individually sustain a ratio which is close to
the value predicted by the Stokes relation, even when Navier–Stokes hydrodynamics itself seems to
have little validity.
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I. INTRODUCTION

The well-known Stokes relation is often used to conn
the friction ~z! on a spherical molecule with the viscosity~h!
of the medium. This connection goes beyond the ordin
Stokes relation; even the generalized hydrodynamics
scribes the frequency~v! dependent friction in terms of fre
quency dependent viscosity.1 While the hydrodynamic
theory always predicts this near equivalence of the frict
and the viscosity, microscopic theories seem to provid
drastically different picture.2 In the mode coupling theory
the friction on a tagged molecule is expressed in terms
contributions from the density and the transverse curr
modes. The latter is expressed in terms of viscosity. Prev
studies have shown that although for solutes with size m
larger than the solvent it is this current mode which primar
determines the friction, in a neat liquid the friction coef
cient is determined not by the transverse current mode
rather by the collision and the density fluctuation term2

Thus for neat liquids there is noa priori reason for such an
intimate relation between friction and viscosity to hold.

Mode coupling theory provides the following rationa
for the known validity of the Stokes relation between t
zero frequency friction and the viscosity. According to MC
both these quantities are primarily determined by the st
and dynamic structure factors of the solvent. Hence b
vary similarly with density and temperature. This calls in
question the justification of the use of the generalized hyd
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dynamics for molecular processes. The question gathers
ther relevance from the fact that the time~t! correlation func-
tion determining friction ~the force–force! and that
determining viscosity~the stress–stress! are microscopically
different.

In this article we are concerned with the problems th
can be articulated in terms of the following questions. Wh
is the relation betweenh(t) and z(t) at short times? Does
the ratio between the two retain a Stokes-like value at
times? And how does the relation behave as a function
frequency?

A further motivation of the present article comes fro
the the following observations. Many chemical dynamic
processes, such as nonpolar solvation dynamics,3 can be de-
scribed in terms of the frequency dependent viscosity. V
coelastic responses are required to understand the proc
involving the rate of change in shape or size of molecules
liquids.4 Note that it is the frequency dependent viscos
which is readily accessible experimentally, whereas the
quency dependent friction is a purely theoretical entity. A
other place where a knowledge of this interrelationship
tween z~v! and h~v! is required is in understanding th
viscosity dependence of activated processes in viscous
uids; this is a subject of much current interest.5 In the elegant
Zwanzig–Bixon calculation1 of the frequency dependen
friction, the frequency dependence of the viscosity was
sumed to be given by the following Maxwell relation,

h~v!5
h

11 ivts
, ~1!
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where ts is the viscoelastic relaxation time, given byts

5h/G` , whereG` is the infinite frequency shear modulu
andh5h(v50). From the above expression it is clear th
this model assumes only one time scale. On the other h
recent experimental studies6,7 have amply demonstrated th
the solvent response is bimodal with at least two wid
different time scales describing the response.8

In this paper a comparative study is done between
time/frequency dependence of the friction and the viscos
It is found that if one includes only the binary interaction
the calculation of the time scale of the short-time dynam
both viscosity and friction exhibit nearly the same time sca
When the triplet dynamics is included, both the respon
become slower, with the viscosity being affected more th
the friction. The time scale of both the responses are of
order of 100 fs. It is shown that the frequency depend
viscosity exhibits a clear bimodal dynamics, similar to th
of the friction.8

We have also investigated the validity of the Stokes
lation from the microscopic point of view and found th
following surprising result. Individually and separately, t
ratio of both the bare~binary dominated! and the mode cou
pling contributions to the friction and the viscosity follows
Stokes-like relation. Contrary to the hydrodynamic pictu
we find that in the case of neat liquids in high density, it
more appropriate to think of the viscosity as being control
by the diffusion or the friction. This is because in this regim
the viscosity is primarily determined by the structural rela
ation of the surrounding liquid, which in turn is determine
by the diffusion.

The organization of the rest of the paper is as follow
Section II deals with the theoretical formulation and conta
the mode coupling theory expressions for both the visco
and the friction. Section III contains the numerical resu
The validity of the Stokes relation is discussed in Sec.
and finally Sec. V concludes with a brief discussion on
results.

II. THEORETICAL FORMULATION

Let us consider a single tagged solute particle of
same size as the solvent molecules in a dense liquid.
v(r ) denote the Lennard-Jones~LJ! interaction pair poten-
tial. Let s be the radius of the solute and the solvent m
ecules. The liquid is characterized by its number densitr
and absolute temperatureT. We shall use the reduced densi
r* 5rs3 as a measure of the density of the liquid and
reduced temperatureT* 5kBT/e as the measure of the tem
perature. HerekB is the Boltzmann constant ande the well
depth of the LJ potential.

A. Calculation of viscosity

The time dependent shear viscosity is expressed in te
of the stress autocorrelation function and is given by

h~ t !5~VkBT!21^Jxy~0!Jxy~ t !&, ~2!

where Jxy is the off-diagonal element of the stress tens
and is given by

Jxy5S j 51
N @~pj

xpj
y/m!1F j

xyj #. ~3!
t
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Here F j
x is the x-component of the force acting on thej th

molecule,pj
x is thex-component of the momentum of thej th

molecule, and the corresponding position isxj . m is the
mass of the same molecule.

The high-frequency shear modulus is given by

G`5~VkBT!21^~Jxy~0!!2&. ~4!

After a few steps of algebra, Eq.~4! can be reduced to the
following exact expression:9

G`5rkBT1
2p

15
r2E

0

`

dr g~r !
d

dr F r 4
dv~r !

dr G , ~5!

whereg(r ) is the radial distribution function of the liquid.
By invoking the separation of time scales between

initial fast and the later slow decay, the time dependent v
cosity of a liquid can be written as the sum of two differe
terms. The initial fast part arises due to the dynamics wit
the cage formed by the surrounding molecules and is
pressed in terms of the static correlations. The fast par
followed by a slow long-time part which arises from th
dynamical correlations and basically describes the relaxa
of the cage due to the presence of the hydrodynamic mo
like the density and the current. As discussed at length
Geszti, in dense liquids it is the density mode which prim
rily contributes to the long-time viscosity.10 The time depen-
dent viscosity can thus be written as

h~ t !5hB~ t !1hrr~ t !. ~6!

In the above expression,hB(t) is the short-time part which
arises from the static correlations andhrr(t) is the long-time
part which arises from the density mode contribution.

We first describe the calculation ofhB(t). As only even
powers of t appear inh(t), hB(t) is approximated to be
expressed in terms of a Gaussian function and written a

hB~ t !5G` exp~2t2/th
2 !. ~7!

In the above equation,th is determined from the secon
derivative ofh(t).

th5A 22G`

ḧ~ t50!
. ~8!

In the liquid range,h(t) is dominated purely by its potentia
part and thus the expression of viscosity reduces to

h~ t !5~VkBT!21^S iFi
xyiS jF j

x~ t !yj~ t !&. ~9!

Next, one expresses the force in terms of derivative
the pair potential. One needs to include all the two- a
three-particle contributions to obtain the proper short-ti
relaxation. The final expression forḧ(t50) is given by11

ḧ~ t50!52
4pr2

15m E
0

`

dr r 2@r 2~v9!212rv8v9

17~v8!2#g~r !2
8r2

75m E
0

`

dq q2@S~q!21#

3@2A2~q!13B2~q!#. ~10!

The functionsA(q) and B(q) are defined by the following
integrals:
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A~q!5E
0

`

dr r 2@rv914v8# j 1~qr !g~r !, ~11!

B~q!5E
0

`

dr r 2@rv92v8# j 3~qr !g~r !, ~12!

where j l(x) are the spherical Bessel functions.v8
5dv(r )/dr andv95d2v(r )/dr2. S(q) is the static structure
factor.

Note that the only approximation made in the derivati
of Eq. ~10! is the use of the Kirkwood superposition approx
mation for the triplet distribution function of the liquid.12 In
a dense liquid at low temperature~near its triple point!, this
is not a bad approximation.12 But it does introduce an erro
in the short time which may even be as large as 50%, for
dense liquids. Fortunately, this translates only to about
error of 10% maximum for the total viscosity. Actually, w
find that at the triple point of argon the calculated value~in
the usual scaled unit, see Table I! of viscosity is equal to 3.2
while the simulated values lie between 2.9 and 3.85 and
experimental value is 3.0.13

Next, we describe the calculation of the collective part
the viscosity,hrr(t), which, as mentioned earlier, arise
from the density mode contribution. This is the long-tim
part of the viscosity and has the following mode coupli
expression:10,11

hrr~ t !5kBT/60p2E
0

`

dq q4@S8~q!/S~q!#2

3@~F~q,t !/S~q!!22~FB~q,t !/S~q!!2#, ~13!

whereS8(q) is the first derivative of the static structure fa
tor. FB(q,t) is the inertial part of the intermediate scatteri
function and is given by,FB(q,t)5exp(2kBTq2t2/2mS(q)).
F(q,t) is the intermediate scattering factor of the solvent
is obtained through the Laplace transformation of the
namic structure factor,F(q,z), whereF(q,z) is expressed in
terms of the well-known Mori continued-fraction expansi
with its truncation at the second order. ThusF(q,t) is given
by8,14,15

F~q,t !5L21
S~q!

z1
^vq

2&

z1
Dq

z1tq
21

. ~14!

TABLE I. The calculated values of the friction~z! and the viscosity~h! for
four different thermodynamic states which are characterized by the red
density,r* (5Ns3/V, s is molecular diameter! and reduced temperature
T* (5kBT/e, e is the Lennard-Jones energy parameter!. The scaling of
friction and viscosity are indicated on the table. The values of the ratio
the friction to viscosity are given in the last column of the table.

r* T* z/Ae/ms2 hs2/Ame mz/hR

0.6 2.0 8.61 0.63 27.29
0.7 1.5 11.88 1.081 21.97
0.844 0.728 29.44 3.20 18.37
0.95 0.8 67.233 7.213 18.64
ss
n

e

f

t
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The Fourier frequency dependent viscosity is obtain
by taking a Fourier transform of Eq.~6!, and is given by

h~v!5hB~v!1hrr~v!. ~15!

The calculated values of the viscosity are found to be in go
agreement with the simulated values for Lennard-Jones fl
The agreement for the state points studied is within 5%.

B. Calculation of friction

Just as in the case of viscosity, the separation of ti
scales between the binary collision and the repeated rec
sions are invoked to decompose the friction on a tagged
ticle into a short-time and a long-time part.2,16 The resulting
expression is given by

z~z!5zB~z!1zR~z!, ~16!

wherezB(z) is the binary part of the friction andzR(z) is the
long-time part which arises due to the correlated recollis
of the solute particle with the solvent particles. The cor
lated recollision part is obtained by expanding the total fr
tion in the basis set of the eigenfunctions of the Liouvi
operator. For a solute of size that is different from the solv
molecules, this contribution to the friction can be shown
be given by the following expression:2,16

zR~z!5Rrr~z!2@zB~z!1Rrr~z!#RTT~z!z~z!. ~17!

In the above expression,Rrr(z) gives the coupling of the
solute motion to the density modes of the solvent through
two-particle direct correlation function.RTT(z) gives the
coupling to the transverse current through the transverse
tex function. Rrr(z) and RTT(z) are obtained through
Laplace transformation ofRrr(t) and RTT(t), respectively.
The expressions forRrr(t) andRTT(t) are given by2

Rrr~ t !5
rkBT

m E @dq8/~2p!3#~ q̂•q̂8!2q82

3@c12~q8!#2@Fs~q8,t !2Fo~q8,t !#F~q8,t !,

~18!

RTT~ t !5
1

r E @dq8/~2p!3#@12~ q̂•q̂8!2#

3@g t
d12~q8!#2vo12

24@Fs~q8,t !

2Fo~q8,t !#Ctt~q8,t !. ~19!

The input parameters required to calculateRrr(t) are the
two-particle direct correlation function between the solu
and the solvent,c12(q), the dynamic structure factor of th
solute, Fs(q,t), the inertial part of the dynamic structur
factor of the solute,Fo(q,t), and the dynamic structure fac
tor of the solvent,F(q,t). Note here that the produc
c12(q)F(q,t) in Eq. ~8! represents the modified dynam
structure factor of the solvent around the solute. Hence
fact that the structure of the solvent is different around
solute from that in the bulk has been included in Eq.~18!.
The input parameter necessary for the calculation ofRTT(t)
is the vertex function of the solute–solvent mixture,gd12

t (q),
which actually takes care of the interaction of the solute m
tion with the current mode of the solvent. The other para

ed
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eters required are the Einstein frequency of the solute
presence of the solvent molecules,vo12, the dynamic struc-
ture factor of the solute, and the transverse current auto
relation function of the solvent,Ctt(q,t).

Next we describe the calculation of the binary p
zB(t), which is controlled by the short-time dynamics. For
continuous potential, the calculation ofzB(t) is nontrivial.
The steps involved in the calculation are outlined below.
only the even powers oft appear inzB(t), it can be written
as

zB~ t !5vo12
2 exp~2t2/tz

2!. ~20!

vo12 is the Einstein frequency of the solute in the presence
the solvent,2

vo12
2 5

r

3m E dr g12~r !¹2v~r !, ~21!

whereg12(r ) is the radial distribution function of the solute
solvent mixture. In Eq.~20!, the relaxation timetz is deter-
mined from the second derivative ofzB(t) at t50 and is
given exactly by16

vo12
2 /tz

25~r/3m2!E dr ~¹a¹bv~r !!g~r !~¹a¹bv~r !!

1~1/6r!E @dq/~2p!3#gd
ab~q!

3~S~q!21!gd
ab~q!, ~22!

where summation over repeated indices is implied. H
S(q) is the static structure factor. The expression forgd

ab(q)
is written as a combination of the distinct parts of the seco
moments of the longitudinal and transverse current corr
tion functionsgd

l (q) and gd
t (q), respectively. Note that the

use of the Kirkwood superposition approximation for t
triplet correlation function has been used in deriving the s
ond term of Eq.~22!. For the friction, unlike for viscosity,
the effects of the triplet term are small.

In order to solve all the above equations one thus ne
to calculate a large number of dynamical variables. The
pressions of these variables and the method of calculat
are available elsewhere.2

Finally, note that the expression for the recollision fri
tion given by Eq.~17! involves the full friction itself on the
right-hand side. Thus the equations are to be solved s
consistently. This is achieved by substituting the express
of zR(z) in Eq. ~16!. The final expression for the total fric
tion is now given by

1

z~z!
5

1

zB~z!1Rrr~z!
1RTT~z!. ~23!

As discussed before,2 this expression goes over to the e
pression derived earlier by many,17–19 only if the contribu-
tion of the density mode is neglected and the hydrodyna
approximation of the current mode is employed. Equat
~23! is a generalized expression where the microscopic t
is renormalized by the density mode.

We shall need friction also as a function of the Four
frequency~v!. In the notation followed,~v! is related to the
in
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Laplace frequency via (v5 iz). From the above expression
we have calculatedz(z50) self-consistently. Using this
value of friction in Eqs.~18! and~19! we have calculated the
Fourier frequency dependent total friction

z~v!5zB~v!1Rrr~v!. ~24!

III. NUMERICAL RESULTS

The numerical calculation of the time dependent visc
ity and friction requires a detailed knowledge of the rad
distribution function and the wave number dependent tw
particle direct correlation function of the liquid. The radi
distribution function can be calculated accurately by us
the Zerrah–Hansen scheme.20 Although the Zerrah–Hanse
scheme20 is quite accurate in the real space, it is known
provide a less accurate description in the wave num
space. Therefore, the wave number dependent direct cor
tion function is obtained by the following method. First, th
effective hard-sphere diameter and density of the Lenna
Jones system is obtained by using the well-kno
Weeks–Chandler–Anderson21 perturbation scheme. In th
next step, the two-particle direct correlation function for t
Lennard-Jones liquid is obtained from the Wertheim–Thi
solution of the Percus–Yevick equation using this effect
hard-sphere diameter and density.

We have already discussed that the calculated valu
the total zero frequency viscosity at the triple point is in ve
good agreement~within 10%! with both the simulated and
the experimental results. The calculated value of the dif
sion coefficient at the triple point is 1.32531025, while the
simulated value is 1.7531025 cm2 s21.15

Figure 1 depicts a comparative study between the t
dependent friction and the viscosity atr* 50.844 andT*

FIG. 1. The time dependence of the frictionz(t) ~solid line! and the vis-
cosity h(t) ~dashed line!, for a Lennard-Jones liquid near its triple poin
(r* 50.844 andT* 50.728!. The friction and the viscosity are normalize
by their initial values to facilitate comparison of the dynamics. The time
scaled by the usual dimensionless time,tsc5(ms2/kBT)0.5, which is here
equal to 2.527 ps. For more details see the text.
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50.728. Thus, we are considering an argonlike liquid n
its triple pont. In this figure, both the viscosity and the fri
tion have been normalized to unity att50 by their respec-
tive initial values. This figure has several interesting featu
Both the two quantities exhibit a pronounced ultrafast Gau
ian decay which accounts for almost 90% of the total rel
ation. The Gaussian time constants are equal to 130 for
friction and 160 fs for the viscosity. The second interest
aspect is that both the two quantities exhibit slow long-ti
decay which is also comparable.

It is worthwhile to discuss the relative contributions
the binary and the three-particle correlations to the ini
decay. If the triplet correlation is neglected, then the val
of the Gaussian time constants are equal to 89 and 93 fs
the friction and the viscosity, respectively. Thus, the trip
correlation slows down the decay of viscosity more than t
of the friction. The greater effect of the triplet correlation
in accord with the more collective nature of the viscosi
This point also highlights the difference between viscos
and friction. As already discussed, the Kirkwood superpo
tion approximation has been used for the triplet correlat
function to keep the problem tractable. This introduces
error which, however, may not be very significant for
argonlike system at triple point. Figure 2 displays the sim
larity between the short-time dynamics of the friction a
viscosity on an enlarged scale.

Figure 3 depicts the imaginary part of the frequency
pendent viscosity which clearly demonstrates the bimoda
of the viscoelastic response. In the same figure we have
plotted the prediction from the Maxwell’s relation. In th
latter we have calculated the relaxation timets by the well-
known expression,ts5h(z50)/G` . It shows that the Max-
well relation produces only one peak at low frequency a
provides inadequate description at higher frequencies.
other important aspect of this graph is that the simple M

FIG. 2. The same as Fig. 1—the short-time dynamics is shown in an e
gated ordinate scale to facilitate comparison.
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well relation fails to describe adequately even the low f
quency peak.

In Fig. 4, the frequency dependent real part of the v
cosity has been plotted. It should be pointed out that
frequency dependence of both the real and the imaginary
bear striking resemblance to those of the friction, discus
in Ref. 8.

Figure 5 shows the calculated ratiomz/(hR) against
the calculated viscosityh, for a variation ofh for more than
an order of magnitude—hereR is the radius of an atom

n-

FIG. 3. The imaginary part of the calculated viscosity is plotted as a fu
tion of the frequency at the triple point~solid line!. Also shown is the
prediction of the Maxwell viscoelastic model~dashed line!, given by Eq.~1!
of the text. The viscosity is scaled bys2/A(mkBT) and the frequency is
scaled bytsc

21, wheretsc5@ms2/kBT#1/252.527 ps.

FIG. 4. The real part of the calculated viscosity is plotted as a function
the frequency at the reduced densityr* 50.844 and the reduced temperatu
T* (5kBT/e)50.728. The viscosity is scaled bys2/A(mkBT) and the fre-
quency is scaled bytsc

21, wheretsc5@ms2/kBT#1/252.527 ps.
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R5s/2. The values ofr* , T* , h, and z are all given in
Table I. It can be seen from this figure that in dense liqu
the ratiomz/(hR) is close to 6p, which is indeed surpris-
ing. Any hydrodynamiclike behavior is not seen at low de
sities where the value of the viscosity decreases faster
lowering the density than the friction. Actually, such brea
down of hydrodynamic behavior has also been observe
the computer simulations of Lennard-Jones ellipsoids.22

IV. STOKES RELATION REVISITED

In an interesting previous study, Mehaffey and Cukie19

showed that when the size of the solute becomes very l
compared to the solvent molecules, a form akin to Stok
Einstein relation is recovered. Earlier we showed in Ref
that when the size of the diffusing particle becomes lar
than the size of the solvent molecules, the contribution of
current mode@the second term in Eq.~23!# to the total dif-
fusion can become larger than the combined contribution
the binary and the density modes. Numerical calculat
shows that this crossover takes place when the solu
solvent size ratio becomes somewhat larger than 2. If
solute–solvent interaction energy remains unchanged,
one finds that the friction numerically converges to a va
given by 4phR—that is, the slip limit.

As emphasized in Sec. I, the hydrodynamic derivat
~based on the contribution of the current mode alone23! of the
relation between the friction and the viscosity has no valid
in the case of neat liquids~where the tagged molecule has t
same size as a solvent molecule!. On the other hand, the
experiments,24 computer simulations,25 and the MCT calcu-
lations presented here all show that the ratio of friction
viscosity almost always lies between 4p and 6p even for a

FIG. 5. The ratio of the calculated friction to the calculated viscosity
plotted against the reduced viscosity. These values are obtained at va
densities and temperatures, all given in Table I. The viscosity is scale
s2/A(me). The prediction of the Stokes relation with the stick bounda
condition is shown by a dashed line.
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neat liquid. It is, therefore, imperative to analyze the cause
apparent validity of the Stokes relation in greater depth.

To explain the validity of the Stokes–Einstein~SE! re-
lation for solutes of the same size as the solvent at h
density, Mehaffey and Cukier19 have suggested the followin
expression for the diffusion coefficient,

D5DE1
kBT

chR
1DL , ~25!

where DE is the Enskog diffusion coefficient, the secon
term on the right is the contribution from the ring term, a
DL is the contribution to diffusion from the longitudinal den
sity mode. According to Mehaffey and Cukier, the longit
dinal density mode contribution may cancel the Enskog c
tribution and the diffusion will be expressed by the S
relation.

The analysis presented in this article and several pr
ous works2,8,16,17 has shown that the contribution from th
longitudinal mode is not an additive term to the diffusion b
to the friction! Hence such a cancellation is not possible.

In the following we present a semiquantitative argume
on the recovery of the hydrodynamic boundary conditi
from microscopic considerations.

An analysis of the relevant integrals@in Eqs. ~13! and
~18!# shows that the dominant contribution of the dens
mode to the viscosity and the friction comes from interm
diate length scale (8>ks>3). That is, more than 90% o
the contribution comes from a region surrounding the sh
first peak of the static structure factor, that is, aroundks
52p. At these values of the wave number, the dynam
structure factor is well determined by the following simp
mean field expression first used by de Gennes many y
ago,

F~q,t !5S~q!expS 2Dqm
2 t

S~qm!
D . ~26!

Here D is the self-diffusion coefficient which is deter
mined self-consistently from Eq.~23! and then is used in the
above expression to provide a correct intermediate scatte
function to be used in the calculation of the viscosity.

Further simplification can be made by using a simp
prescription for the wave number dependence of the struc
factor, as shown by Balucani.26 The above prescription pro
vides fairly accurate values for the zero frequency fricti
and the viscosity.

It is, therefore, clear from the above discussion that
collective contribution to the viscosity is dominated by t
structural relaxation, which in turn is determined by the ra
of diffusion. Thus, it is more appropriate to consider t
viscosity of the medium as being determined by the dif
sion. This is, of course, a matter of perspective.

There is, however, an even more interesting aspect.
ing the results of Balucani,11 it can be shown that the initia
value of the viscosity and the friction are related appro
mately by

mz~ t50!

h~ t50!R
'

20

r*
. ~27!
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For r* 50.844 andT* 50.72, Eq.~27! gives a value of the
ratio equal to 23.6966.

Now, we have already found that the decay of the n
malized viscosity is slightly slower than that of the frictio
and the ratio of the time constants is 160/124. Thus,
contribution of the bare part to the zero frequency friction
equal to 23.69663124/160, which is equal to 18.364. Ther
fore, the ratio of the bare part of the zero frequency fricti
to that of viscosity is nearly identical to 6p. This we believe
provides a microscopic explanation for the results shown
Fig. 5.

It is to be noted that in the above discussion, althou
the numerical values of the prefactor are close to 6p, it does
not in any way imply the stick boundary condition. Th
above calculation is based only on microscopic consid
ations and is semiquantitative in nature. The main point h
is that in the high density liquid regime, the ratio of th
friction to the viscosity attains a constant value independ
of the viscosity~density and temperature! and this value is
numerically close to~but less than! 6p.

It is now interesting to discuss the simulated values
this ratio at high density. For an argon system near the tr
point at r5.021 Å23 and T586.5 K, the ratio is 4.7p. At
r5.021 Å23 and T595 K, the ratio is 5.1p. In computing
the above ratios, the friction is obtained from the Einst
relation using the known value of diffusion coefficient.25 It is
perhaps fair to allow an uncertainty of 5%–15% in the d
termination of this ratio both by theory or simulation.

V. CONCLUSION

Let us first summarize the main results of the stu
First, it is shown that the short-time viscous and friction
responses in a neat liquid occur essentially on the same
scale. The time dependence of this response is largely Ga
ian, which is followed by a slow long-time decay. This b
phasic response is a hallmark of dynamical processe
dense liquid. This is clearly reflected in the imaginary part
the frequency dependent viscosity as shown in Fig. 3.
second important result is that the time scale of the ini
decay is of the order of 100 fs, which is typically the tim
scale observed both in polar and nonpolar solvation dyn
ics. In the present case, the ultrafast dynamics origin
clearly from the nearest-neighbor static correlation. The th
important result is the demonstration that the apparent va
ity of a Stokes-like relation between friction and viscos
has its root both in statics and dynamics. While the init
values of these quantities primarily determine the ratio,
nearly identical dynamics sustains this ratio even in the
quency plane.

As discussed before, in this work we did not consider
recovery of the Stokes relation for large solutes. This
been discussed in Ref. 2, where it was shown that for
same solute–solvent interaction the friction is determin
primarily by the current mode when the solute–solvent s
ratio becomes somewhat larger than 2. The numerical va
of the calculated friction were found to converge to a va
given by 4phR—that is the slip boundary condition. How
ever, if the solute–solvent attractive interaction also
creases with the size, a different picture might emerge.27
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On the other hand, we show here that for solutes of
same size as the solvent, both the friction and the visco
are determined by the microscopic terms and numerically
friction converges to a value close to~but less than! 6phR.
Thus the origin behind the validity of the Stokes relation f
the same size solute is that both the microscopic friction
the viscosity are determined essentially by the same dyna
cal variables. We have emphasized that the occurrence op
is not to be taken as a signature of the stick boundary c
dition.

The above discussion leads to the following importa
point. For a neat liquid the Navier–Stokes hydrodynam
cannot be used to justify apparent numerical validity of t
Stokes relation. In this case, the validity of a Stokes-l
relation between the viscosity and the friction can be
plained only when the contributions from the bare~that is,
the binary! and the density modes are both taken into
count. Another point of interest is that while in hydrodynam
ics based analysis it is believed that it is the viscosity wh
determines the friction, the present study suggests that
haps it is more meaningful to think in terms of the rever
scenario. In the region where hydrodynamics is not valid
a Stokes-like relation is obeyed, it is the diffusion~or the
friction! which determines the viscosity and not vice vers

Thus the recovery of the Stokes–Einstein relation
large solutes and for solutes of the same size as the so
have completely different origins.

Note that although we have discussed diffusion and v
cosity only in the normal liquid domain, the study can
extended to the region near the glass transition. The exp
sions for friction and viscosity will remain the same but t
dynamical variables such as the dynamic structure factor
develop a long-time tail within a very narrow densi
range.28,29This long-time tail of the dynamic structure facto
accounts for the rapid rise of the value of viscosity and fr
tion over this narrow density range. As discussed in Ref.
a decoupling between the diffusion and the viscosity c
arise near the glass transition, which might lead to a co
plete breakdown of the SE relation in this regime. This d
coupling might arise due to the existence of the slowly
laxing solidlike microdomains in the supercooled liquid
The presence of this solidlike domain gives rise to inhom
geneity in the liquid with some domains which are solidli
and others which are liquidlike. In each of these domains
SE law might be valid but the overall value of the diffusio
can decouple from the measured viscosity.

The results presented here could also be used in var
applications, for example in understanding nonpolar sol
tion and in activated barrier crossing dynamics.29
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