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Bosonic string theories with new boundary conditions
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Abstract. We show that the classical Nambu-Goto string in D dimensions admits Poincaré

invariance in d dimensions (d < D)if (i) d -2 of the transverse co-ordinates x! are periodic and
the rest quasi-periodic involving a real orthogonal matrix with (D—d) (D~d—1)/2 free

parameters, or if (i) d—2 of x* obey Neumann and the rest obey a boundary condition .

involving N free parameters, where N = (D—d)*/2if D —diseven,and N = [(D—-d)*—-1]/2
if D—d is odd.

Keywords. Bosonic string theory; boundary condition.

PACS No.  11-10; 12-40; 11-30

String theories at present offer a hope of having a satisfactory theory of particle
interactions including gravitation (Goddard et al 1973; Schwarz 1982; Green 1983;
Brink 1984; Green and Schwarz 1984; Witten 1984; Green and Schwarz 1985). There are
two known bosonic string theories (Goddard et al 1973; Schwarz 1982; Green 1983;
Brink 1984) viz (i) closed string with periodic boundary conditions and (i) open string
with Neumann Boundary Conditions. Besides one has fermionic strings (Ramond
1971; Neveu and Schwarz 1971a,b) and heterotic strings (Gross et al 1985). These,

however, can be embedded in the known bosonic string theories (Freund 1985; Casher -

et al 1985). It is therefore of considerable interest to investigate the possibility of new
bosonic string theories. Of particular practical interest is the question, whether the
absence of free parameters, a striking feature of present string theories, will persist in
the new theories.

Here we report a family of new string theories based on the classical Nambu-Goto
(Nambu 1970; Goto 1971; Hara 1971) action in D dimensions, but endowed with new
boundary conditions. After imposing the requirement of Poincaré invariance in the
“physical” d dimensions, where d < D, we show that we are still left with a[(D—d)
(D —d —1)/2] parameter family of theories. The usual ‘open’ and ‘closed’ strings are
thus special cases of a continuum of acceptable theories. On quantisation the usual
string theories lead to restrictions on the Regge slope parameter 2(0) and on the
dimension (D = 26). Similar restrictions are obtained (Roy and Singh 1985) also on
quantization of the new family of theories presented here.

Consider the Nambu-Goto action for a string with co-ordinate x*(o, 1), where
u=0, 1,2,..;,D—1,0<a<2n,and11 <TE1T,,

T2 2x
S=f drf do L. (1)
7 0 .
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Here o is a real constant of dimension (mass)™?, and

1
= — fe )2 2232 2
L {(x'- %) —x'2x*} T 2
(x')* = 0x*/0o, X* = 0x*/0t, (3)

and our metric is g** = diag(l, —1, —1, .. .). Being proportional to the area of the
string world sheet, the action is independent of the particular choice of the parameters
o, 1 used to describe that sheet. Consider deriving the equations of motion of the string
from the principle of least action. For an arbitrary variation dx*(g, 7),

o (8L & [0L
I —_— —
oS = f dtf da5x (o, r)[ (6):’“) ar(ax"‘)]
T, BL 2n 2r 6L
—— ol _ u
+L dt(ax”‘ ox )6=0+J‘0 da(a ”5x )

The condition 4§ = 0 then yields the usual Euler-Lagrange equations. If the variations
are subjected to 6x* (o, ;) = dx* (0, 7,) = 0, and to boundary conditions at o = 0, 2n-
such that

T—‘l’z

4)

=1,

0 2n
——% ox* (o, 1)

ox' =0 : (5)

=0

To elucidate the nature of these boundary conditions it is convenient to choose o,Tto
obtain an orthonormal transverse gauge:

1
x’-x'=0,x'2+x2=0,x+sx\';§x =q"+pTt. (6)
Then x~ = (x° ——xl)/ﬁ can be solved for in terms of the transverse x'(i = 2,3, .. .,

D —1) and one integration constant using

(x'l'r)z + (x' Tr)z

X7 = xT=(x%x% ... X7 (7

To separate the first d dimensions in which we wish Poincaré invariance from the
remaining (D —d) it will be convement to use the notation

xt=(x% ..., x" ), xB= (x4, ..., xP7N) ' (8)
The Euler-Lagrange equations now become
0> o2

and the boundary conditions (5) becomes

2n

X 5xT (g, 7) | =0, (10)

a=0
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We shall show that equations (10) are obeyed not only for the usually discu§sed
boundary conditions of open strings (X ™ =0 at ¢ =0, 2m) and closed strings
(x™(2m, 1) —x™(0, 7) = x' ™ (2%, ) — x' (0, 7) = 0), but also for 2 much larger class of
boundary conditions. The first step is to realize that (10) may be rewritten as

(¥ + )75y — 6¢) = 0, (11)

with the superscript T denoting transpose, and ¥ and ¢ denoting the 2(D —2)
dimensional column vectors. ' '

(x'(0, ) + x(0, 7))* (x'(0, 1) — x(0, 7))*
] '@2n, 1) — x(2m, 7)) b= (x'(2m, 1) + x(2m, 7))4
V= x'©0,7)+x(0,7)® {7 | (x'(0,7)—x(0, 7))®
(27, 7) —x (27, 7))? (x' (27, 1) + x(2m, 7))®

(12)

The Euler Lagrange equation (9) are linear in x. To have super-position principle we
also seek linear homogeneous boundary conditions of the form 4,y + 4 2¢ = 0 where
Ay, A, are 2(D —2) x 2(D — 2) dimensional matrices. A, and A, are to be found such
that for any solution x(c, 7) of the equations of motion and the boundary conditions
A1Y + A, ¢ = 0,any variation §x(o, 7) subjectto 4,6y + 4,6¢ = 0obeys (1 1). Clearly,
the variation 6x(s, t) = Ax(0, T) where 4 is a constant obeys Ay 6y + A, 0¢ = A (A, y
+A,¢) =0, and hence we require

W+ (W —¢)=0, (13)
ie, V'Y = ¢7d, and ¢"y —y7p = 0. (14)

- Hence the boundary conditions must be of the form

y=Ug, U'=U""'=U, (15)

where U is a real 2(D —2) x 2(D — 2) dimensional matrix. Conversely, any arbitrary
variation dx respecting the boundary conditions (15) is directly seen to obey (11). We
thus have : :

Theorem 1. In the orthonormal transverse gauge, the Nambu-Goto action is stationary
under variations subject to dx(a, 1) = 8x(0, 1) = 0if x(q, 7) obeys the equations of
motion (6%/81* — 8%/d62)x = 0 and the boundary conditions y = U¢ where U is a
symmetric, real orthogonal matrix.

It is trivial to check that the usual boundary conditions are of this form e.g. open
strings correspond to U = — 1.

We now show that the requirement of relativistic (Poincaré) invariance in the first d .

dimensions (2 < d < D) can be used to restrict the free parameters of U. To include
physical Poincaré invariance it is desirable to have d > 4. This restriction is however not
insisted upon in the present work.

Poincaré invariance. Let x*(o, 7) be one solution of the equations of motion and the
boundary conditions in the transverse gauge. To impose Poincaré invariance, we
require (Goddard et al 1973; Schwarz 1982; Green 1983; Brink 1984) that the new
function y*(o, 7) given by

VH(0,7) = X*(6, ) + ¢ + 0*'x, (0, 7), | (16)

is another such solution, provided that a* and o*"(= —w"™) are infinitesimal
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translation and Lorentz transformation parameters, and 6 — o, 7 — t are infinitesimal
reparametrization transformations which ensure that y(g, 7) is also in the transverse
gauge (6), with

Y =gt +aT +(p* +ol P (17)
Here

2r
p’= % L do x* (o, 1). ‘ (18)

Further, we assume that a* and w*’ are zero for U, v > d because we are interested in
Poincaré invariance in d dimensions only. We then have

T—1= —CO: (xv(o., T)"Pvf)/P+a V (19)

G—0 = —-(a)v*/p‘“)[Jtdt’x’“(O,r’)+J‘
0

a

do’ (X*(¢’, ) — p")], (20)
0 ,
and

(o, 1) = x*(g, 1) + a* + 0", (0, T) + x"*(0, 7)(6 — o)
+ x*(a, TN —1). | () 1’)
By the construction of the &, 7 it is ensured that
(0%/9t* — 8%/8a)x*(6, T) = 0,

and hence y*(g, t) obey the correct equations of motion. The only non-trivial thing to
impose is that y* obeys the same boundary conditions as x*. We do this in several steps.

Step 1. Translational invariance in the first d — 2 transverse dimensions requires that
a™ must obey the boundary conditions (15), i.e.,

, 0,...0). (22)
P a2 20=d)

Step 2. Space rotational symmetry in the d —2 transverse dimensions alone requires
that the boundary condition matrix U obeys '

LU, W1 =0, W = “diagonal” (v, w, 0, 0), (23)

where o is an arbitrary (d —2) dimensional rotation matrix, and “diagonal” denotes
block-diagonal. It now follows readily that (i) U has zero matrix elements connecting
the 4 and B group of indices, (ii) thatin the 4 sector the boundary conditions do not
couple different transverse dimensions and (iii) that the decoupled boundary con-
ditions for the (d—2) transverse dimensions are identical. Finally the decoupled
boundary conditions are further restricted by the translational invariance requirement
(22). The allowed boundary conditions become for the (D — d) dimensions,

( (x'(0, 7) +x(0, 1))® )_ p &0,7)—x(0,7))?
x'2m, ) -x2m, ) )~ "\ w(en, )+ x(2n, z))B)’
V=VT yTy=1, » - (29)

UL=~LL=(,...1 —1,... -1,

where V'is a real 2(D — d) x 2(D — d) dimensional matrix. For the first (d — 2) transverse
dimensions we obtain, either “closed”, i.e., ' '

x' (27, 1) = x(0, 1), x"(2n, 1) = x'{(0, 1), (25a)
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or “open”, i.€.,
x''(2r, 1) = x'{(0, 7) = 0, (25b)
as the only allowed boundary conditions. Here i =2, ...,d — 1. Translational and

rotational invariance in the (d — 2) transverse dimensions have restricted the boundary
condition in that sector to be the usual ones.
Step 3. Lorentz transformations can now be studied using (21), and the boundary
conditions (23)—(25). Assume first the closed string boundary conditions (25a) on the
(d—2) transverse dimensions. Since

-1

X’ =x"0' +x"0't + Y wixd, ‘ (26)
i=2
d_l . - ‘
o) (*=p' 1) = ¥ o] (x/—1p’), (27)
i=2
d—1 .
wrx"=1p 0T+ ¥ o x, (28)
j=2

and the x/(j=2,...,d—1) and their t-derivatives obey closed string boundary
conditions, we see by inspection of equations (19)~(21) that the y*(o, 7) for ie[2, . ..,
d — 1] obey closed string boundary conditions provided only that x~ (g, 7) does so. We
also see that for i > d — 1 the y'(g, 7) obey the same boundary conditions as the x'(o, 7)
provided that the x'/(g, 7) obey the same boundary conditions as x'(g, ). First for x,
using (7) we find that

2=n
x'" (o, 7)

; =0 (20)

for arbitrary real U obeying (15), and

2 1 2n

x“(o, 7)) =— do’ x™(¢", 1) x' ™ (¢, 1), (30)
0 P Jo

d/ 2 _ 1 T 2 (uTr N

e B (0, 7) o )T ((x" (e, 1)) + (x™ (o, T))» ) . (31)

The vanishing of the right side of (30) at = = 0 is a well-known condition for closed
string theory even for D = d. Its vanishing at all  follows provided that the right side of
(31) vanishes; that happens if and only if

x®(2m, 1) = Rx®(0, 7), x'*(27, 1) = Rx"%(0, 1), (32)
where Risa (D—d)x (D—d ) dimensional real orthogonal matrix,
RT=R1, | (33)

Apart from the discrete ambiguity det R = + 1, R has (D—-d)D—d—1)/2 free
parameters if D > d + 1. Equation (32) means that ¥ must have the special form,

0 RT
V=(R ) ) (34)
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where each entry on the right side is a (D—d)x (D —d) dimensional matrix.
Orthogonality of R guarantees orthogonality of V. The last conditior_l that x'3(a, 1)
should obey the same boundary condition as x? (o, 7) follows automatically from the
equation of motion (9) and the boundary conditions (32).

This finishes the consideration of “closed” boundary conditions (25a) on the d —2
transverse x'. The “open” case (25b) may be considered similarly. It leads to the

condition x’~ = 0 at ¢ = 0 and 2=, and hence to a boundary condition (24) with
i 0 T -1 ;
= . Vi= Vl'= Vi N f0r1=1,2, (35)
=" %)

where V, and ¥, are (D — d) x (D — d)dimensional real symmetric orthogonal matrices.
Thus, in the “open” case V has N free parameters, where N = (D —d)?/2 if (D —d) is
even and N = [(D —d)* —1]/2 if (D —d) is odd. ‘

Our final results are summarized by the following two theorems in the “closed” and
“open” cases respectively.

Theorem 2. In a D-dimensional string theory with Nambu-Goto action Poincaré
invariance in the first d dimensions hold if (i) the first (d — 2) transverse co-ordinates
have the closed boundary conditions (25a), (ii) the remaining (D — d) transverse co-
ordinates obey the quasi-periodic boundary conditions (32) involving the real
orthdgonal matrix R with (D — d)(D —d — 1)/2 free parameters, and (iii) the right side
of (30) vanishes at 7 = 0.

Theorem 3. In a D-dimensional string theory with Nambu-Goto action, Poincaré
invariance in the first d-dimensions holds if (i) the first (d — 2) transverse co-ordinates
obey the Neumann (“open”) boundary conditions (25b), and (ii) the remaining (D —d)
transverse co-ordinates obey the boundary condition (24) with the matrix V' given by
(35) involving N free parameters, where N = (D —d)?/2if D —d is even,and N = [(D
—d)*—1]/2if D—d is odd.

Remarks: (i) If the matrix R in the expression (34) has k eigenvalues equal to unity then
the theory discussed in theorem 2 is actually Poincaré invariant in d + k dimensions.
Similarly for special choices of ¥; and ¥, the theory given by theorem 3, could be
Poincaré invariant in a dimension larger than d.

(ii) The theorems 2 and 3, enumerate all possible linear boundary conditions on x™
which permit Poincaré invariant theories.

Quantization of the string theory based on the new family of boundary conditions
here obtained has been carried out consistent with Poincaré invariance in d dimensions.
The results are presented separately (Roy and Singh 1985). Before writing this work we
became aware of a completely different approach to string boundary conditions
developed by Vafa and Witten (1985); also see Govindarajan et al 1985, based on
multiple valued currents on the string world sheet. It is intriguing to compare the
boundary conditions we derived (theorem 2) with those postulated by Vafa and Witten.

Theideas presented here were conceived in January 1985 during a visit here of B Sakita.
Itis a pleasure to thank him and J L Gervais for discussions. One of us (SMR) wishes to

thank warmly P Majumdar for his interest in this work and for a collaboration on
extending it to the case with fermions.
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