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Fractionally charged non-leaking dyons and fermions in a bag
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Abstract. We consider a fermion of charge e confined to a spherical bag with a Dirac
monopole of strength g at its centre. We find that the boundary conditions making the lowest
angular momentum hamiltonian self-adjoint are characterized by a unitary matrix U, and the
corresponding vacuum charge has a fractional part 2|egle/n where detU = —exp (2ia).
Boundary conditions for conservation of helicity, CP, CT and PT are displayed. We
demonstrate the possibility of a fractionally charged dyon whose interaction with a fermion
conserves helicity. We also show that the simultaneous validity of helicity, CP, CT and PT
requires integer vacuum charge.
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The Jackiw-Rebbi (1976) discovery of half-integral fermion number of fermion-
monopole systems is further dramatised by Witten’s (1979) result that in the presence of
a cp-violating angle 8, the monopole acquires a charge —ef,/(2n) where e is the
fermion charge. In an apparently different line of research Kazama et al (1977), Callias
(1977) and Goldhaber (1977) discovered that the fermion-Dirac monopole
Hamiltonian in the lowest angular momentum state is self-adjoint only when a
boundary condition at the origin (monopole position) involving the CP-violating
parameter 6, is imposed. Two major consequences are the “inevitable failure of helicity
conservation” (Goldhaber 1977) (intimately related to the Rubakov-Callan effect in the
non-abelian case (Rubakov 1981, 1982; Callan 1982a, b, 1983)), and the confirmation by
Grossman and Yamagishi (1983) of the Witten effect with a precise connection to the
r = 0 boundary condition. The monopole becomes a helicity leaking dyon of fractional
charge, the fraction being irrational in general but a half-integer or an integer when CP
is conserved. '

The present work demonstrates that these conclusions get radically altered when the
fermion monopole system is enclosed in a spherical bag of finite radius R. In particular
itis possible to have a helicity conserving dyon of fractional charge. CP violation forces
fractional charge but does not force helicity violation. Further, the simultaneous
conservation of helicity, CP, CT and PT forces the monopole charge to be integral. For the
lowest angular momentum hamiltonian we find a simple formula relating the vacuum
charge to the boundary conditions. The charge eigenvalues are independent of R but
depend non-trivially on boundary conditions at r = R (as well as r = 0) and hence have
non-unique R — oo limit. A similar boundary condition dependence of the vacuum
charge was obtained recently (Roy and Singh 1984a, b) for the 1 4+ 1 dimensional
Jackiw-Rebbi and Goldstone-Wilczek (1981) hamiltonians. We generalize here the
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Witten-Grossman-Yamagishi results connectmg fractional charge to violation of
discrete symmetries.

We use the Wu-Yang (1975) vector potentials A = A,(r) forreR, (0 # m),and A,(r)
for reR, (0 # 0) where '

ZIxF
A —_— 1
) = A=) = g; (1)
with g = monopole strength. The Dirac wave section ¥ (= ¥, in R, ¥, in R;) obeys,
oY(r, t)
ot

0 10
n=—iV—eA,a=(o g),;;:(o _1>, 3)

o are Pauli matrices and e and m denote charge and mass of the fermion, confined to the
bag |r| < R. Before defining the boundary conditions which make H self-adjoint, we
note, following Goldhaber (1977) the following “formal” symmetry properties

T nHI - =H, (CP)H(CP)™' = —H,
(CT)H(CT) ! = —H, (PT)H(PT)™! = H. (4)

Here X mis related to the helicity, with X = diag (e, o). The discrete transformatlons C,
P, T are defined by

Hy(r,t)=i ,H=a n+fm, 2

where

Va (X, 1) djab X, 1) =npBYp . (—X, 1), %)
W 1) S Y, 1) = nefas (X, 1), | (6)
Y% 8) D YT(x, 1) = 1T Y * (x, —1), o
PAX)P™! = CAX)C™! =TAX)T ! = —A(x), (8)

where |11, = |n¢| = |17 = 1. The subscripts a, b in (5) refer to regions R,, R,. The
corresponding subscripts in (6)-(8) are omitted, since the same subscript occurs
throughout each equation. It follows that the wave sections,

PL(X, £) = 0 BE2YE o (—X, — 1), | 9)
YT, 1) = —nentBa,Z ¥ (x, —t), (10)
and . ,
VS, 1) = —ncnfeayd.(—x, 1) (11)

obey the same Dirac equation as Y/ (x, t). In the lowest angular momentum state j =
lq‘ —%a q = eg, .
F (6,
l,[/(x, t) — __( (r) nj,m( 4))
r\G() 7m(6,¢)

1 ()@1;m(6, $) exp (—iE2), - (12)

)exp(—iét)

~ | =
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(24) must imply that y, e D (H,). We thus find that D (H,) consists of y which apart from
obeying,

f “dr ()20) < o0, rdr(ﬂox)T (Hop) < oo, 29)
0 0

also obey the boundary conditions
F(R)+ G(R)sgnq _ U(F(R)—G(R)sgnq 26)
F(0)—- G(0)sgng F(0)+ G(0)sgng

where U is the 2 x 2 unitary matrix

cosAexp[i(B+mn/2)] sinAexp(iy) ) (27)

U = exp (ia)<sin/1 exp (- iy) —cosAdexp[—i(f+m/2)]

with a, B, y, A being arbitrary real parameters. These boundary conditions define a four |
parameter family of self-adjoint hamiltonians similar to the Jackiw-Rebbi and
Goldstone-Wilczek one space dimension cases considered previously (Roy and Singh
1984a, b).

Self-adjointness of helicity

Similarly, the boundary conditions which make h, self-adjoint are

F(R)+G(R)sgnq\ _ V(F(O)-l—G(O)sgnq)
F(R)—G(R)sgng) ~ \F(0)—G(0)sgng )’

where ¥V is an arbitrary 2 x 2 unitary matrix.

(28)

Simultoneous self-adjointness of hamiltonian and helicity

For this purpose the parameters o, f, y, A must be such that (26) and (28) are equivalent
(i.e., they imply each other). This happens if and only if sin A = + 1. Hence the common
domain of self-adjointness of the hamiltonian and helicity is specified by the simple
boundary condition

FR) \__ . (F()
(G(R)Sgnq> = eXp (4 +M01)(G(O)Sgnq>’ (29)
where
exp (iy,) = exp (iy)sin 4, sin A = + 1. (30)
Both (26) and (28) are equivalent to (29) with,
0 . .
U=exp (icx)(exp (—p)) ZXP (%)), V =exp (iy1)<ZXp (i) (e)xp(—-icx))' (31)

The departure of the boundary condition (29) from the quasi-periodic ones mentioned
by Grossman (1983) corresponding to « = nm (n = integer) will be crucial for the
existence of fractional Witten charge.

Discrete symmetries

For CP invariance (4) to hold if ye D(H,), then yPe D(H,), and vice versa. Similar
conditions hold for CT and PT invariance. Thus conditions for the discrete symmetries
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to hold are given by
PT:U=U" CTI:U= —03U%qy; CP:U = —g3U*0,. (32)

The infinite space results follow from (32) by setting |U,,| = 1, and other U;=0,
showing that PT invariance allows arbitrary 8, in (23) whereas CT and C P invariance
give identical conditions 6, = nn. For finite R, (32) yields

PT:sinAsiny =0 :

CT either sina'= cos A sin = 0 or cosa = cos § = sin A = 0

CP: either sina = cos A sin § = sin Asiny = 0, (33)
or cosa = cos A cos B =sindcosy = 0.

For CT or CP invariance we need sin o cos o = 0. If sin & = 0, CP invariance implies CT
invariance. If cos o« = 0, CT invariance implies CP invariance. The most symmetric case,
with helicity self-adjoint and conserved, and all the discrete symmetries PT, CT, CP
valid corresponds to:

ho, PT, CT, CP:sino.=cosil =siny =0, ie. U = + ¢y, (34)
i.e., periodic or antiperiodic boundary conditions.
Vacuum chafge eigenvalues

The Dirac field operator ¥(x, t) in the Heisenberg representation obeys the same
differential equation as the c-no. wave function ¥ (x, t) and has the charge conjugation

property
W, (x, 1) 5 WEX, 1) = 10 (Baz)as ¥ (%, 1) (34)
The total charge operator N (odd under C) and its eigenvalue N, in a vacuum state

(with a convenient regularization (Goldstone and Jaffe 1983; Paranjape and Semenoff
1983; Niemi and Semenoff 1983)) are given by ‘

N = %fd%c [Wix,t), ¥, (x,0)], (35)
1 ,
N, = lim [~—§ Y (sgnE,,)exp(-—8|E,,f)j|+No,0a, (36)
e= 0+ n
E, #0

where N ¢ is the contribution of zero energy levels to vacuum charge. When there are v
zero energy c-no. wave functions the vacuum state is 2" fold degenerate and the
corresponding N o vary from —v/2 to v/2 in steps of unity. In such a case we shall
calculate the N corresponding to the choice of the vacuum with N 0,0 = —V/2; the
other vacua will have charges differing from this by integers.

We shall only calculate the contribution to vacuum charge N, of the lowest angular
momentum levels. The results will however give the full vacuum charge whenever the
boundary conditions for the higher j levels respect CP or CT leading to E—» —E
symmetry of these levels and hence their zero contribution to N,.

For the most general boundary condition given by (26) and (27), we find that the
energy leyels are given by

sin (kR)
k

cos (kR)cosa + [E sina+ M cos 4 cos f] = cos?, 37
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where

k* = E*> — M?, cos{ = sin A cosy. (38)
Vacuum charge for M =0

In this case,

a+{ +2nn and n=0,+1, +2,.... (39)

EM=0)=—" -

Each of these levelsis 2j + | = 2|eg| = 2|q| fold degenerate. A simple calculation yields

No(M=0)=2|q|(§——1—-Int(%)—Int(a;f>>, (40)

with Int x = largest integer < x

Vacuum charge for M > 0

In this case, for a given U, E = E(M = 0)+0(1/n), for n— co. We then show that
dNo(M)/dM = 0 except at those values M = M; where one or more eigenvalues E pass
through zero leading to an integer jump in No(M) = N, (Roy and Singh 1984a, b). We
find, :

NO(M) No(M = 0)+1, (41)
where I is an integer given by
dE
1= -2]q| 2 sgn( dM) O(M — M)O(x)0 (~ ), @)
with 6(x) being the step function, and
1
X; :.——-.B(cos,lcosﬂcosCJr(—l) S cos o), , (43)
1 .
WEL (cosacos+ (—1) S cosAcosp), (44)
S = +(cos?{ +cos? A cos? f—cos? a)'/?, (45)
D= cos? ), cos? fp —cos? a, (46)
M, E—Ilzsin h~1x, @)
and ,
dE MR
sl = — 4 M:R)).
( Fiv; )M o Sna (cos & +cos A cos f coth (M;R)) (48)

Equation (41) gives the exact formula for the vacuum charge No(M). Its fractional part
is given by the simple formula

Fractional part of (No(M)—2|eg|a/m) =0. (49)

Helicity conservation allows arbitrary o and hence arbitrary fractional value for
vacuum (monopole) charge. So does PT conservation. For either CP or CT to be
conserved sin & cos o = 0, and hence the vacuum charge is 4 x integer, where the integer
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Table 1. Dependence of fractional part of vacuum charge (equation (49)) on
symmetries of the lowest angular momentum fermion-monopole bag hamiltonian
assuming CP (or CT) invariance of the higher angular momentum hamiltonians.

Conserved Helicity,
quantities Helicity CP (T PT CP,CT, PT

Fractional part of
vacuum chargé arbitrary 0,3 0,% arbitrary 0

can be even or odd. This is due to the fact that the non-zero energy levels then occur in
pairs due to E - — E symmetry and do not contribute to the vacuum charge. If helicity,
CP, CT and PT are conserved then sino = 0, and the vacuum charge must be integral
(table 1). '

Our extension of the Callias-Goldhaber and Witten-Grossman-Yamagishi results
demonstrate that the change from infinite to finite space volume has interesting
consequences for the vacuum charge eigenvalues and symmetry properties e.g., if we
consider U =diag exp [in(6, —n/2)], exp [ —in(6o —m/2)] which Yamagishi used in
discussing the R — oo limit, we find that N, has a fractional part 2g (6, — 6, + m)/(2n),
with a non-trivial dependence on the boundary condition parameter 6} at r = R, no
matter how large R may be. This fact escaped notice previously because N, was not
calculated for finite R. Further, more symmetry properties are possible to satisfy for
finite R than for R = oo, each symmetry restricting boundary conditions and vacuum
charge eigenvalues. ‘
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