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Soliton and boundary condition induced fractional fermion number

S M ROY and VIRENDRA SINGH ,
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

Abstract. We show that for a fermion in a bounded background potential in a finite box,
eigenvalues of the total charge are independent of whether the potential is solitonicand depend
only on the boundary condition: half-odd integral or integral for charge conjugation (C)
invariant boundary conditions and an arbitrary fraction for C non-invariant boundary
conditions. Fractional fermion numbers for infinite space Jackiw-Rebbi and Goldstone-
Wilczek Hamiltonians are reproduced in finite space by using boundary conditions different
from the periodic ones of Rajaraman and Bell. ‘
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1. Introduction

Jackiw and Rebbi (1976) discovered that when a Dirac fermion is coupled to a soliton,
the soliton has half-integral fermion number. Further, Witten (1979), Grossman (1983)
and Yamagishi (1983a, b) have established that for fermion monopole interactions in
the presence of cp-violation the monopole becomes a dyon of fractional charge. The
occurrence of fractional vacuum charge is now confirmed in several field theoretical
models, and condensed matter systems. (Goldstone and Wilczek 1981; Jackiw and
Schrieffer 1981; Su et al 1979, 1980; Rice 1979; Takayama et al 1980; Heeger 1981; Su
and Schrieffer 1981; Bardeen et al 1983; Shastry 1983; Ikehata et al 1980; Goldberg et al
1979).

The fractional charge phenomenon nevertheless needs further elucidation. In
contrast with the above models in infinite space, Kivelson and Schrieffer (1982), and
Rajaraman and Bell (1982) have found that for a Dirac fermion in a box of length L
interacting with a soliton, and obeying periodic boundary conditions, the total vacuum
charge is integral. Only a partial charge operator in a sub-region of length L; with a
diffuse boundary of width d can have fractional eigenvalues in the carefully defined
limit L > L, » d — co. This makes the fractional charge phenomenon appear less
dramatic and raises the question: is fractional total charge a peculiarity of the infinite
length case?

Yamagishi’s detailed investigations (1983a, b) did not answer the above question.
However, in a somewhat more complicated example of three space-dimensional chiral
bag models, fractional (but conflicting values) of baryon number within the finite bag
have been obtained recently by Rho et al (1983), and by Goldstone and Jaffe (1983).
These results suggest that fractional charge is not necessarily related to the L = co limit.

In this paper therefore we reconsider a fermion in a bounded background potential
confined to a one-dimensional box xe[ L, L,]. As a first step we do for finite L,, L,
what Callias (1977) and Goldhaber (1977) did for L, = 0, L, = o (i.e. semi-infinite):
find the allowed boundary conditions for the Hamiltonian to be self-adjoint. The
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resulting boundary conditions are characterized by four real parameters of a 2 x 2
unitary matrix U in contrast with only one parameter for L; = 0, L, = o0 (i.e. semi-
infinite box case) and contain the previously considered periodic boundary conditions
as a special case. A new question immediately arises: If the charge is fractional, on which
of the four parameters does it depend?

A regularized charge operator has to be defined. An exponential energy cut-off used
by Goldstone and Jaffe (1983), and a regularization identifying the charge operator
with minus half the n-invariant of Atiyah et al (1973) yield identical results. Our
somewhat unexpected conclusions for the eigenvalues of the total charge for finite L
are: (i) the total charge eigenvalues are independent of the background potential,
solitonic or otherwise, and independent of L (ii) they depend only on the unitary matrix
U specifying the boundary condition (iii) the eigenvalues are in general fractional and
the fractional part depends only on det U (iv) for C non-invariant boundary conditions
charge eigenvalues can be arbitrary fractions but for C-invariant boundary conditions
they are half-odd integral or integral.

It appears that the role of background fields of non-trivial asymptotic behaviour in
infinite or semi-infinite space, is played for finite L by appropriate boundary conditions.
We agree with Rajaraman and Bell (1983) that the total charge is integral for periodic
boundary condition. We show however that the physics of the L, = — 00, L, = + 00
solitonic Jackiw-Rebbi case, including half-odd integral total charge eigenvalue, is
simply modelled for finite L by a different boundary condition, viz vanishing of the
lower component of the Dirac wavefunction at the end points. Similarly the Goldstone-
Wilczek fractional charge is obtained for finite L via appropriate (non-periodic)
boundary conditions.

2. Self-adjoint Goldstone-Wilczek hamiltonian in a box

The Jackiw-Rebbi equation for a 2-component fermion field in one-space dimension in
a background field g¢,(x) is,

. 1%—]:{!/! H= -zazdd +961¢,(x), Q)

where g is a non-negative coupling constant. In infinite space, Y = (o3),5¥; also solves

(1) demonstrating charge conjugation (C) invariance: (The ¢, are Pauli matrices). The
fermion number operator N odd under C is

N =} ax[ (9, V(o] @

The vacuum sector ¢,(o0) = ¢,(— ), differs from the soliton sector ¢,(0) = — ¢,
(—.00) in that the latter contains a zero energy c-number solution of (1) assoc1ated with
a destruction operator a. In the soliton sector

N =a*a+ [dk(b} b —di d)—3, 3

where by, di are fermion and antifermion destruction operators. Thls leads to
eigenvalues + 3 for the degenerate soliton states s>, a* |s > annihilated by a and a*

respectively. The fractional eigenvalue is also an immediate consequence of the
generalized index theorem of Callias (1978). A generalization of (1) violating C-
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invariance is the Goldstone-Wilczek (1981) Hamiltonian -

H= “‘i02%+9[01¢1(«’5)+0’3¢3(3‘)]- 4

The grbund state fermion number for g # 0 is then [(c0) — 8(— c0)]/(2n), where
$(x) = ¢1(x) +ig3(x) = p(x) exp [i0(x) ], ©)

with p, 6 real. A generalization to 3 + 1 dimensions calculating ground state fermion
number of magnetic monopole fermion systems in terms of an asymptotic surface
integral of the magnetic flux has been given by Paranjape and Semenoff (1983).

We here consider the Goldstone-Wilczek Hamiltonian (4) with xe[L,, L,],
assuming ¢, (x), ¢3(x) to be bounded. Denoting a c-number spinor as

_(fO\ _ul) /1) =) 1 4 ,
'//(X)—(g(x))_\/'i<i)+\/§(_i)’ ©)

where '

() =’5(—’3)—;.§9—@, o) =ﬂ’—"%"-@, )
we deduce,

(W2, HY 1) — (HY2, ¥y) = ‘“i(A;'Ax-B;Bl)a_ (8)
where, for any , ’

u(Ly)\ u(L,)
= = 9
4 (v(LL))’ b (u(Ll))’ ®)

and A;, B; denote values of A, B for Y = ;. It follows that the GoIdstone-Wilczek
Hamiltonian for xe[ Ly, L, ] is self-adjoint provided its domain consists of normaliz-
able Y obeying the boundary condition,

A = UB, ‘ (10)

where U is any 2 x 2 unitary matrix. Since U may be parametrized as

: .. [cos@exp(if) sinf exp (iy)

U= , 11
exp Oa)(sinf) exp(—iy) <cosfexp(—if) (11

we obtain a four-parameter family of self-adjoint Hamiltonians. The choice U = ¢ L

corresponds to periodic boundary conditions. For C-invariance we need not only

¢35 = 0, but also that y/° obeys the same boundary condition, i.e., U = U*. For future

applications with internal symmetry we derive in an appendix self-adjoint extensions of
an'N x N Dirac Hamiltonian.

3. Fermion number eigenvalues

For a general U the fermion number operator (2) is ill-defined. Convenient regularized
expressions for the eigen-value of N in the ground state (annihilated by fermion and
anti-fermion destruction operators) are (Goldstone and Jaffe 1983; Paranjape and
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Semenoff 1983; Niemi and Semenoff 1983)
N, = lim <~%ngnE,~ exp(-—elEJ)), , (12)
e+ 0+ i
and
' No = —31(0), n(s) = ngn EilEi|—ss (13)

where the sums go over all eigenvalues of H. Here 5(0) is the #-invariant of Atiyah et al
(1973) obtained by continuation from large positive Res. The two definitions above
lead to identical results.

3.1 Zero mass (g = 0) case

We shall see that even in this case we may have fractional N, for finite L, and suitable
boundary conditions. For any U, the wavefunctions are given by

u(x) = ¢, exp (iEx), v(x) = ¢, exp (—iEx), ‘ (14)
with ¢,, ¢, determined from the boundary condition,

exp (iIEL)—exp [i(e+7)] sin 9' —cosf exp[i(x+p—EL)] > <c1> ~o
(exp[i(a—ﬁ)] cos 0 1—sin@explil@—y—EL)] /\c,)

The condition for existence of non-trivial solution for ¢, ¢, is, (15)

cos (EL — o) = sin 0 cos y. (16)
Hence, the energy eigenvalues are

o+{+2nn o—{+2nn
- 17

E 7 and 7 , (17)
where

n=0,+1, +£2,... _ (18)
and { is any solution of '

cos{ = sin 6 cos 7. (19)

The eigenvalues are independent of the parameter f in U; this could have been guessed
a priori. For zero mass, a rotation exp (if,0,) leaves H invariant except that the rotated
¥ obeys a boundary condition with § — 8+ 2,. Hence physics must be independent
of B.

The above eigenvalues yield

o« a+{ o—{ -
No——n 1 Int( 5 ) Int( e ), (20)
where Int (x) denotes the largest integer < x. The ground-state fermion number is
fractional for all boundary conditions with o/n fractional. Note that detU =

—exp (2io), and hence the fractional part of N, depends only on det U. For periodic
boundary conditions a/r is integral and so is the fermion number.

{

3.2 Jackiw-Rebbi and Goldstone-Wilczek cases (g # 0, L, > 0> L,)

For simplicity of explicit calculations we shall use
$(x) = ¢ step (x)+ d_step (—x), - (21)

¥
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where step (x) is the step function, and ¢, are complex constants. This is similar to the
Rajaraman-Bell (1982) simplification of the Jackiw-Rebbi soliton function. The Dirac
equation Hy = Ey then requires that u(x), v(x) be continuous at x = 0 and obey

d
(— ia—E> u(x) = ig v(x) ¢(x),
' (22)

2
(ad;; + k% step(x) + k% step (— x)) u(x) = 0,

where k, are real or pure imaginary solutions of,
k2 =E*—g*¢, [~ : (23)

The solution is

¢, coskyx+c, sink.x, for x >0
u(x) = { 1 _
Cy cosk-x+k p [ki@p-cy+iE(ds —p_)c ] sink_x,
-Q 4
and forx<0,f.. (24)
ig; (— (ikycy + Ecy)cos ki x + (ik ¢y — Ec,)sink, x), for x > 0,
+ .
J 1 . I 2_ 2 *
v(x) =¢ - — (ikycy + Ecy)cosk_x +—{icy (E* —g* ¢+ ¢¥)
igg+ -
— Ek ¢y} sin k-x), for x < 0. (25)
The constants c;, ¢, are found, ‘apart from a normalization, from the boundary
condition:
Via sz) (C1> ‘
=0, (26
(Vu Var) \Co )
where,
Vip =cos (ks Ly)+ U0y + Uy, 27)
Vig=sin(k.Ly)+ Uz +Upaog, (28)

V21 = (iE cos (k_L;)+ (E* —g*¢ . ¢*)sin (k—Ll)k—)/(9¢+)

+ U, 05 +Ujzasy, (29)
Vs = ko[ —cos (k- Ly)+iEsin (k-L;)/k-1/(g¢+)
+ U, 03+ Ujpay, (30)
with U;; given in (11) and the constants «; defined by,
a, = i[ —E cos (k4 Ly) +ik.. sin (k+L2)]/(g¢+),A (31)
ay = —[cos (k_L,)+isin(k-L,) (¢4 — $-)E/(k-¢)], (32)
oy = [ky cos(ky Ly)—iE sin (k4 Ly)]/(gd+)- (33)

oy = —sin(k_Lyk,p_/(k-¢.). (34)
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The eigenvalue condition is the condition for existence of nontrivial solution ¢y, ¢, to
(26) (see Appendix B).
In the large IE[ limit we have, for positive or negatxve mtegers n of large magnitude,

E=E,, +fni+ 0(1/n?) and E,_ +—n:+0(1/n2), (35)

where,
= (nn+a /L, (36)
and

e =91(L |6+ >~ Ly|$-1?)
i_4ﬂ 21%+ 11% -

g cosf

T 2rsin{

Re (exp (if) {sin (L,E, ) exp (—iL E, )%

—sin (LlEni)exp(—iLzEni)df’_‘}). (37

Thus the large eigenvalues of the Goldstone-Wilczek Hamiltonian (g s 0) differ from
those of the zero mass case by terms of order 1/E, i.e.

E(9)—E(0) = O[1/E(0)]. (38)

Let M be a large enough integer such that in some ordering of the eigenvalues E;(g),
|E;(9)| # 0 for j > M, as g varies from 0 to g. Consider, No(g) = N,(g) + N,(g), where,

1 ¥4 1 .. od
Ni(g)= —= Y sgnE;, Ny(g) = ) lim ) sgnE;exp(—¢|E;]).(39)

‘ 2i=1 £ 0+ j= M4
Then, ’
dN, 1 ® dE;
—= =~ lim e—2exp(—¢lE;|) =0, 40
dg 2 -»0+1_%+1 dg p( ‘ J|) ( )

where the last step follows from | E;| ~ constj,and dE;/dg = 0(1/j). However, at values
g; of g where one or more levels E;(g;) = 0, N(g) jumps by an integer. Thus,

Nol@)—Ne@®=—3 % sgn(‘;—?) } , 1)

g <g j:Ej{g)=0
g=4g

where N4(0) = N, of (17). Since the right side of (41) is integral, our calculation of the

- fractional part of the ground state fermion number of the Goldstone-Wilczek

Hamiltonian is complete.

4. Discussion

For the Jackiw-Rebbi Hamiltonian, ¢3 = 0,¢, = —¢_,we find that the condition for
zero energy levels to exist is,
det(1 —Ug,) =0, ' (42)

which is independent of the value of g. Hence, no levels will pass through E = Q0 as g is
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varied. Thus, for the Jackiw-Rebbi Hamiltonian
No(g9) —No(0) = 0. . (43)

For periodic boundary conditions N 0(0) and hence Ny(g) is integral, the Rajaraman-
Bell (1982) result; the crucial difference from the Jackiw-Rebbi infinite space result is
due to the existence of two-zero energy normalized C-number solutions, (choosing

¢+ = _qb—amEg]qSiL L2= _Ll =L/2)a

_ [exp(—m|x]) m 12
Vor = 0 1—exp(—-mL)/) °’

0 m 1/2 .
Yoz = (exp (m|x|)) (exp (mL)—1 ) (44)

one of which (/,,) disappears in the infinite space limit. For finite L the only boundary
conditions which preserve C-invariance and allow E = 0 solutions (features of infinite

space) are,
U= oy, U = _'t coS 90 + io'z sin 90. ) (45)

Except for U = g, the others have det U = + 1 and hence half-odd integral fermion
number. For U = -+ cos 6, + io, sin §, there is only one zero energy solution:

o = const((1+sin 8y £ cos Gp) Yo,
+i(1 +sin Oy Fcos bp)exp (—mL/2)Yy,). ‘ (46)

Only for U= +1 (ie, cosf, = +1) is the admixture of y,, (which is non-
normalizable in infinite space) absent. (For U = — 1, {q = {/,,). Thus, the physics of
the infinite space solitonic Jackiw-Rebbi case corresponds for finite L to the boundary
condition U = 1. Other (non-periodic) boundary conditions correspond to the infinite
~ space Goldstone-Wilczek results. It seems likely that in 3 dimensions also, different

allowed boundary conditions deduced from self-adjointness might capture the physics
of different nontrivial asymptotic behaviours of background fields.

A brief account of these results is being submitted elsewhere (Roy and Singh 1984)

for publication.

Appendix A
Self-adjoint extensions of an N x N Dirac Hamiltonian

Consider 4
H=ap ,p=—i—, A
ap+hlx)p=—i . (A1)
 where « is a hermitean N x N Dirac matrix, and f(x) is a bounded hermitean N x N
matrix function of x representing a background field. On xe[L,, L,] we seek
boundary conditions which will make the above formal Hamiltonian self-adjoint.
From (A1) we deduce,
L2
(W2, HY) = (HYz, ¥y) = ~ i3 (x)af; (x) > (A2)
x=

=1L

7
%
Z
i
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if ¥, V5, HY, and Hy, are fermion wavefunctions (not fields) obeying

Ly L,
J- Yy dx < oo, j (HY)* (HY) < 0. (A3)
L L

Let ¥ be the orthonormal eigenfunctions of « with eigenvalue 4; such that 4; > 0 for
i=1,...M,and ; <Ofori=M+1,... N,

N .
Y oy = 4!, (no sum over i). (A4)
s=1 '
Denoting
: N

Yx)= 3 wx)x?, | : (A5)
i=1 _ v

and introducing the N component spinors constructed out of the boundary values of

the u;(x),

[ (312 uy(Ly) (A D2 e (L) |
(Ag)H/? uy(Ly) (MMHI)UZ Uy 42(L2)
A= (' (L) (WD wy(L) (A6)
(l Apt sy D”z Upg i1 (Ly) (Ay)t? u;(Ly)
(|flm+2|)”2 U4 (Ly) ()12 uy(Ly)
(Au)H"? wry. | .l w@ |,

- —d — ]
we see that (A2) becomes, '

(Y2, HYn)— (HY,, ¥y) = —i(43 A, — B3 By), (A7)

where 4; and B; (i = 1, 2) denote values of 4 and B for y = ;. From (A7) we deduce
easily that the boundary condition on y/(x) in order that the formal Hamiltonian (A1)
becomes self-adjoint is that (in addition to (A3)),

A =UB, (A8)

where U is an arbitrary N x N unitary matrix. Thus we have an N2 parameter family of
self-adjoint Hamiltonians. For a semi-infinite box one of the end points, say L, — oo,
and the corresponding u;(L,) must vanish due to (A3). Hence A will have (N — M)
components, B will have M components and U will be a rectangular (N — M) x M
matrix obeying Ut U = 1, , UUT =1y _syv-m- FOr Ly = —00, Ly = +00, 4
and B must vanish and the Hamiltonian is essentially self-adjoint.

. Appendix B

Eigenvalue equation for Jackiw-Rebbi and Goldstone-Wilczek cases

It is worthwhile to note down the exact eigenvalue equation corresponding to

¢ (x) = ¢ step x + ¢ _step (—x), (B1)
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which is given by the condition that equation (26) of the text leads to nontrivial values of
¢; and ¢,. This is given by

G(E)=0, (B2)
where '
G(E) = —sin 6 cosy +cos (k. L) cos (k- L;)cos

+sin (kiLy) sin (k- )
k. k_
+E cos 8 Im [exp (if) (99* —9¢%)]}

+sinl'chLz

{Re[ (¢4t —E*)exp ()]

-cos (k- L,) {E sina + Re(g¢% exp (if))cos 6}

+

sin (k- |Ly])
k-' .

Note that the phase § occurs only in the combination ¢* exp (if). The large eigenvalues

are then given by (35)-(37) of the text. :

+coskiL, {E sina + Re(go* exp (if))cos 6}.  (B3)
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