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,cABSTRACT

We derive unitarity inequalities involving ReF(s,t) and

;- ImF(s,t) in a region .0 < |t| < |T| which exhaust the
content of unitarity given only the elastic amplitude
F(s,t}) in this range of t, If the Froissart bound is
saturated, these inequalities lead to inequalities of
Martin's scaling functions. The inequalities may be used
£o check compatibility with unitarity of thecretical
models or experimental data,
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Recent bp elastic scattering experiments at the
colliderl'2 show a change in slope at [t| ~ 0,15 - 0.2 (GeV/c)2
and a shoulder around |[t] ~ 0.8 (Gev/c)z. The "preliminary

results” in the shoulder region2 *seem to be in disagreement”

with some theoretical models3 as well as with an analysis based
on geometrical scaling4. This situation has stimulated us to
develop a method to test unitarity at high energies. The methed
we report here can be used to check unitarity of theoretical
models as well as of experimental data at any energy, directly.

We also derive asymptotic unitarity restrictions in the case
when the Froissart bound on Crot is saturated. These restric-
tions can be tested against experimental data using a modifica-
tion of the method of Dias de Deus and Kroll4, in which the
asymptotically small contribution of ReF(s,t) is estimated using
the scaling theorem of Auberson et al. and of MartinS. For
s » © we obtain non-trivial unitarity restrictions on the
scaling function.

At low energies the partial wave expansion of the elastic

amplitude F(s,t)
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F{s,t) = (22+1)f£(s)P£(cose) (1)

=0

is a very good tool for checking the unitarity condition
2
Inf, (s} > |£,(s)| (2)

{(We use s,t to denote squares of the c.m. energy and momentum
transfer respectively, and kK = ¢.m. momentum). The expansion {1l)
converges within the Lehmann-Martin (L-M) ellipse6 in the cos9-
plane with foci -1 and +1 and semimajor axis 1 + to/(2k2), where
to is a positive constant independent of s (to = 4m§ for many
interesting cases). At high energies, as the ellipse shrinks to
the real line cos8 = -1 to +1, a very large number of partial
waves is needed to approximate F(s,t). For example, using

in

o == § (22+1)Imf, (s) (3)
tot k% 220 L



and 0 ¢ Inmf, & 1, we see that for /S ~ 540 GeV and o, _, v 60 mb,
we need more than 800 partial waves. A second difficulty is
that to compute fz(s) we need F(s,t) for all cos® in (~1,1), and
fregquently the data exist only in a near forward cone of small
opening angle. Therefore, so far, indirect tests, such as the
McDowell-Martin bound7 on the derivative of the absorptive part
at t=90, and the Singh-Roy bound8 on the absorptive part at
negative t have been used9 to check consistency of high energy
data with unitarity. '

Our object is to derive unitarity inequalities involving
both the real and imaginary parts of the amplitude which can be
tested given only the elastic amplitude in a limited t-range
0 ¢ |t] g |T]: further, given only this information the

inequalities exhaust the content of unitarity.
The unitarity relation for the elastic amplitude Foa
where ;a' ;b are initial and final directions in c.m. is

k
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where, in the contribution of the inelastic states, the symbol

E stands for summations over all kinds of particles as well as

pﬁase space factors. and identical particle factors if necessary.
Suppose we know only the amplitude Fba inside a narrow

cone of half-angle o within which Ea'gb varies from cos(2a) to

1, i.e.,

0 g lt] < 2k2(1 - cos{2a}) {5)

*
Multiplying Eq. (4) by U(Ea)U (n ). where v(n) is an arbitrary

function, and intedrating over n, and Eb over the region R

inside the cone, we have,
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which follows because the two factors in each integrand on the
right-hand side are complex conjugates of each other. In
writing (é) we have thrown away the unknown but positive
contributions of elastic scattering outside the cone, as well

as of inelastic scattering, such that the inequality (6) involves
only known elastic amplitudes. For every unit vector n inside
the cone R

n = (sindcos¢, sinfsind, cos6), (N

L}
define another unit vector 3 which has ¢' = ¢, and a larger 8'
given by

’ 2
1 - cosd = Tocoss (l-cosg). (8)

> . >y . .
Then as n varies over the cone, n varies over the unit sphere,
so that

fag_ = fap' i=Sos¢ (9)
a a
R
+> . . . +
Expanding U(na} in spherical harmonics YEm(na)'

un) =

R Ule £m(n ) {10)

and denoting

* >4
Imf oy e gm = [dﬂb Your (n YImF, Y, (n), (11)



> = '
fonng) = faa} Fac £m( oy - (12)
the inequality (8) becomes,
) S ImE u, 3 —E 129082 fqg° I v, (3) i
¢,m, 8 L%m 2'm: fm &m -~ anv/s km tm’c

(13)

We may call the matrix with elements Imf , . .. the "incomplete
absorptive partial wave matrix". This matrix is symmetric under
2 «> ', diagonal in m, m*, and real because in Eg.(11) ImFba
depends only on ga‘gb' No@e'that if cosa = -1, the Imf;e‘,m:Rm
become diagonal also in £, %' and independent of m, and the
relation (13) then coincides with the usual partial wave
unitarity relation (2). O©Of course, the point is that at bigh
energies, l-cosa = 0(1/s), and hence .the usual partial waves
cannot be computed. The unitarity inequalities (13), however,
involve only the amplitude in the limited |t| range (5). Note
that in this range the ¥, (n ) with small R-values are practl-
cally 1ndependent of 9 because Bafu Q; hence in (10} we have
used the Y, (n )} to expand U(n ). For practical computations’

the follow1ng more explicit forms of Eqe.(11l) and {12) will be

useful.
: min(2a,n) ' s f
. . éb ‘ (lla)
" wh 8. 2R B, t. = 22k%(1 8_.), and i
wrere QOS ab = na.nb. ab = .'-" ! -COS ab , - an
a | min{9 b+ea,2n_aab-ea,a)
8 o
K (6 _.) £ N N - jde sind ]dB sine
£8'm’ "ab £'m m (1-cosa) a a

max{eab ea.ea)

{ pT (cose )P (cose ) + P (cose')P (cos@ )}cos{m(¢ -¢b)}

1/2
[{cos(ea~eb) - coseab}{coseab - cos(9a+6b)}]

(11b)
Here P?(x) denote associated Legendre functions, with cosei and



cos8, (i = a or b) related as in Eq.(8), and

1/2
A [22+1 (z-m)z] cos (6. -0 ) = cosl_ -cosb cosb
fm 47 {(L+m) ! a 'b sin sing
a b
(l1lc)
Similarly Eq.(12) vields:
min(a+6c,ﬁ)
- _%m¢c 4 )
fﬂ,m (nc) = e m NEm [ deacslneacF{tac)'
o
min(ac+eac,2w-9c-eac,u) m
Pztcose')cos{m(¢ - )}
x | d6_sing_ a 2 c
lﬂac-ecl f{cos(ea—ec)—coseac}{cossac—cos(9a+6c)}
{12a)

where eac and cos(¢a-¢c) are defined similarly to eab and

cos(¢a—¢b).

Since the relations (13} hold for arbitrary UZm' they
imply that the incomplete absorptive partial wave matrix is a
positive matrix. Further, they give positive lower bounds on the
eigenvalues, For example, if we choose 2all Uﬁm beyond a certain &=L

to vanish, and the U for £ ¢ L to coincide with a normalized

2m
(ZIUEmIZ = 1) eigenvector Ué;) of the incomplete absorptive
partial wave matrix (with &, £' < L) corresponding to eigenvalue
Ai' then
k_ 1 (i)
A, > =283 fan' | J w £, (n) (14)
i - 4nvs 2 c 2, m fm fm e

Inequalities (14) constitute an optimum form of {(13). The
unitarity test involves cowputing the eigenvalues Ai and the
normalized eigenvectors Ué;) of the partial wave matrix truncated
at =L, 2'=L. If some ki is negative the amplitude violates
unitarity; if all Ai are non-negative they still have to satisfy
{14) for unitarity to be valid.,

The unitarity inequality (14) can be used directly to
test theoretical models, as well as experimental data if both

ReF(s,t) and ImF(s,t) are measured. Often only do/dt is



measured. If we assume that in the range (5) ImF(s,t) # 0 and
ReF(s,t) is negligible, we can test using (14) whether these
assumptions are compatible with unitarity. Instead of neglecting
ReF(s,t) we shall use the scaling theorem of Ref, 5) to estimate
it. Ref.5)impliesthatif g /(fn s)? > const and the odd
signature amplitude is negligible for s + », then for s + « with
T = totot fixed,

ImF (s,t) /InF (s,0) » ¢(1), ReF(s,t)/ReF(s,0) + == (T¢) (15)
The fits of Block and Cahnlo, for instance, suggest that satura-
tion of the Proissart bound is a reasonable hypothesis. Dias
de Deus and Kroll4 then use

da

a0 t(s>{¢2(r) ¢ o2 (e (& o) (16)

1 2
lem Gto
where

p{s) = ReF(s.,o)/ImF({s,o0) , (17)

to calculate ¢ (1) from do/dt data. This method is interesting,
but it ignores the possibility, allowed by Eq.(15), that the
non-scaling part of ImF(s,t)/ImF(s,0) could be comparable to
p(s)ReF(s,t)/ReF(s,0). Hence we suggest a modification of the
method of Ref.4) in which the scaling Egs. (15) are used only to
estimate the small term p(s)ReF(s,t)/ReF(s,0}. We write

90 (s,0) = gk o2 {670 + oTs) (G (co(s, 007} (e
where
¢(s,t) = ImF(s,t)/ImF(s,oc) (19)

At each s, 4(s,t) can be calculated from do/dt data if p(s) is
xnown. We give below unitarity restrictions on ¢(s,t).

The unitarity inequality (13) vyields,



2
k“ (l-cosa)g
z U*. . U N > tot
%,m, 8 2'm*L'm;: fm Am - 3om
N * - i -+ 2
x [dQC‘J; Ugm{p(s)xmm(nc) + 1¢£m(nc)}‘ ' {20)
where
= R P | * ) hd)
-+ ___ ' * -y )
¢£m(nc) E ]an Ylm(na)¢(s'tac)' (22)
and
() = faa' ¥, A') =S (t_ 6(s,t_)) (23)
Xim R = d a Yﬂm R4 ditacj ac¢ Se ac’ "

We have used the scaling approximation only for the asymptoti-

cally small term p(s)ReF(s,t}/ReF(s,0)s For s + « this term is

negligible, ¢(s,t} + ¢$(1) and kz(l-cosa)otot is a finite non-zero

constant for T fixed; hence inequality (20) becomes a popn-trivial

unitarity constraint on the scaling function ¢{t). At any s,

Eq, (20} states that the matrix ¢2.m:£m

Further, if we choose U, = 0 for £ > L, and U for £ £ L equal
(i) m £

to Ulm » the normalized eigenvectors with eigenvalue Ai of the

truncated matrix ¢2'm:£m s then,

is a positive matrix.

(j_)* - -+ 2
— L Vem {p ) X B) +10,, G }]

(24)

which can be experimentally tested. The simplest inequality for
L =0 is,

\ , kz(l-cosa)oto
faa_fa els.t ) > ron?

t

2
' d .
X fdnc'fdﬂé{p(s)dtac (t t(s.& ) + 1¢{s.tac)}| (25}




In summary, we have presented optimum unitarity inenualities
given only the amplitude in the near forward region, both in
the exact version (13) and in the asymptotic version (20) where
scaling formulae are used to estimate the contribution of

ReF(s,t). Their practical utility remains to be explored.
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