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We derive from a dynamical symmetry property that the linear and nonlinear Schrodinger equations with
harmonic potential possess an infinite string of shape-preserving coherent wave-packet states with classical motion.
Unlike the Schrodinger state with A x Ap = #/2, the uncertainty product can be arbitrarily large for these states
showing that classical motion is not necessarily linked with minimum uncertainty. We obtain a generalization of
Sudarshan’s diagonal coherent-state representation in terms of these states.

A celebrated exception to the nearly all pervasive
phenomena of spreading of wave packets in quan-
tum mechanics is the “coherent state” of the har-
monic oscillator constructed by Schrodinger! and
very fruitfully exploited by Glauber, Sudarshan,
and others in quantum optics.? The Schrodinger
coherent state at time ¢

|a)=ex "'2/2<i _T___[a(}ﬁj" |n>)e"“”/2, (1)

where w is the oscillator frequency, a'a |n)=n |n>,
@ ln>= 1, a and a' are the annihilation and creation
operators, respectively, and

a()=a(0)e ! = |a(0) [e# @+ @)

has the following remarkable properties:

(i) The probability -density wave packet remains
unchanged in shape as time progresses and has
classical motion, i.e., (x)=x_,(¢)=Acos(wt+¢),
(p)=p,(t)=Mzx, where A = |a |[27/(Mw)]'/2.

(ii) The probability of being in state |n) is in-
dependent of time and has a Poisson distribution.

(iii) The uncertainty product is the minimum
possible, AxAp=7/2,

(iv) The state |a) is an eigenfunction of the
annihilation operator with eigenvalue «(t).

(v) A unitary displacement operator on the ground
state yields the state |a):

]a)=U(a)exp(—@2l)|0), (3)
where

U(a)=expla(t)a’ - a*(tal
=exp (—é(xclp —pdx)) ) (4)

«x and p denoting the position and momentum oper -
ators.

States with properties (iii), (iv), and (v) are often
called MUCS (minimum -uncertainty coherent
states), AOCS (annihilation-operator coherent

states), and DOCS (displacement-operator coher-
ent states), respectively. Group-theoretical gen-
eralizations of coherent states based on AOCS
(Ref. 3) and DOCS (Ref. 4) have been given. Re-
cently, Nieto, Simmons, and Gutschick in a series
of beautiful papers®® (and a movie’) note that®
these generalizations “represent a departure from
the original motivation for studying coherent
states; namely that they obey the classical mo-
tion,” and propose that the defining criterion for
coherent states for general potentials should be
Schrodinger’s original one, i.e., property (i).
Nieto, Simmons, and Gutschick reduce the arbi-
trary-potential case to a harmonic-oscillator-like
problem and produce states which nearly follow
classical motion, and are a generalization of the
MUCS.

In this paper we adopt the motivation of Schro-
dinger' and Nieto, Simmons, and Gutschick®® and
define coherent states as those with undistorted
normalizable wave packets with classical motion.
The states constructed by Nieto, Simmons, and
Gutschick are approximately (not exactly) coherent.
Further, Mathews and Eswaran® constructed
“semicoherent” oscillator states with A x con-
stant though the wave packets suffer distortion
with time. We demonstrate for the linear and non-
linear Schrodinger equations with harmonic-oscil -
lator potential (and elsewhere® for other poten-
tials) the existence of exact coherent states obeying
(i) exactly but not (ii)—(v). For the linear Schro-
dinger equation the existence of such states was
first noticed by Senitzky.'°® We show that for these
generalized coherent states the properties (ii)-(v)
possess suitable generalizations. In particular,
the uncertainty product AxAp= (n+3)%, n
=0,1,2,..., with no upper limit for n, showing
that classical motion with undistorted wave packets
does not imply minimum uncertainty. Other useful
properties of the generalized coherent states are
noted.
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A DYNAMICAL SYMMETRY

Let ¢ (x, ) be a solution of the nonlinear or linear
(x=0) Schrodinger equation with a harmonic-oscil-
lator potential
h—z azd)

17
”75'7 _E;n-gF+§Mw2x2d)+Wg( [ )

=Hy+xg([v]), (5)
where g( ]zp l) is an arbitrary real function [the
choices g= | |?> and 1 - exp(—¢ |4 |?) being frequently
encountered’! when w=0]. Then we prove by direct
substitution that

e, 1) =plx —x4(8), )
x exp<i£°—;[(ﬁ[x - %xcl(t)]) (6)

is also a solution, with x, and p , as defined in
(i). We see readily that

Vx, 1) =Ula)p(x, 1), (M

where U is the unitary operator (4). This general
symmetry property of Eq. (5) is of special interest
when ¢ is an eigensolution:

¢ (x, 1) = palx) exp(—iE,t/7) . (8)

The new solution

wn,m(x; t) =¢n(x _xcl(t)) exp[%cl (x "‘x'_QL) "Z&i] )

then, has a probability or number-density packet
| Ax = x () |? which retains its shape and moves
classically. This particlelike or “lump’” property
is common to the nonlinear (1#0) and linear (A=0)
Schrodinger equations. We have thus a “pertur-
bative lump” whose motion xcl(t) is independent
of X and whose shape ¢, obeys (E, —H)¢,(x)
=¢png(|dn]). Clearly for A=0, ¢, =cu,(x), where
u,(x) denote normalized oscillator eigenfunctions.
Perturbatively ¢, and E, can be given explicitly
to any order in A, e.g.,

En = (n + %);ZO)
+A f” dx u,?(x)g( lc |u,,(x)) +0(A\?). (10)

We now discuss the linear case (A =0) in detail.

GENERALIZED COHERENT STATES
OF THE HARMONIC OSCILLATOR

The states
|n,a)=Ua(®) [n)expl-i(n+ Hwt], n=0,1,2,...,
(11)

which are displaced excited eigenstates are exact
coherent states since they obey the defining proper -
ty (i) as demonstrated by Eq. (9). The state |0,a)
is just the Schrodinger state. The Fock-space
representation of these states is found to be

2 hnd 1/2
In, a)= ek Z(_ZL') L7 a(0) |2

m=0

x [a(Q) ] [m)eiedma ) - (12)

where L7 ™(x) are Laguerre polynomials with the
normalization Ly(x) =1, L;"(x)=(-x)"/n!. The Fock-
space expansion of |n,a) contains states |m) with
m <n also, a fact which might not be immediately
obvious. The generalizations of (ii)—(v) and some
other interesting properties are given below.

(ii’) The probability for being in state |m), given
by (12), has for n=0 the Poisson distribution, and
for n=1,2,3,... the appropriate generalization of
it.

(iii’) The uncertainties in state |n,a> are

1
mo(8x)f =——(8pF= | axdp [=@+dn.  (13)
Since =0,1,2,3,... , minimum uncertainty is not

necessary for coherence. The higher uncertainty
product is a manifestation of the fact that the wave
packet In, a) has n+1 humps and is not as localized
as the Schrodinger coherent state.

(iv’) The generally valid characterization of co-
herent states ]na) is that they are eigenfunctions
of (a’ - a*(#)Xa - a(#)), with eigenvalue n, n=0,1,
2,3,..., where af#) is any complex number with
time dependence given by (2). Only for n=0 are
they eigenfunctions of the destruction operator.

(v’) The generalization of Eq. (3) is Eq. (11).

(vi) It is remarkable that the expectation value
of energy is a sum of a purely classical and a
purely quantum term:

Ql,alH’n,a>=Ecl+(n+%)h’w, (14)

where E_ = 3Mw?A? is the classical energy for os-
cillation amplitude A.
(vii) Time-enevgy uncertainty relation. If T,

=MAx/ ) (p)l is the time required for the wave
packet fna(t)) to move by Ax, and AH the energy
dispersion, then

(AH)?
2wE

=2wE  sin*(wt+ )T 2=(m+3), (15)

and hence at any time
AHT > (n+ 3)1, ' (16)

the equality corresponding to sin®(wt+ ¢)=1.
Again, minimum uncertainty can be reached only
for n=0, though coherence holds for all #.

(viii) Overcompleteness and veproducing kernels.
Since U(a) is unitary, for any given o, the set of
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states |n,®, n=0,1,2,... forms a complete set
just like the set |n) It is more interesting that for
any given n, the set |n,a) with all complex a’s
forms an overcomplete set. Using Eq. (12) and
orthonormality of the Laguerre polynomials we
obtain the “resolution of the identity”

I=fd—:rg|n,oz>(n,a|, (17)

where d?a =d(Rea)d(Ima) and the integration is
over the whole complex plane. Using U'(B)U(a)
=U(a - B) exp(i ImaB*) and Eq. (12), we get

@,Bln,a)=L,(|a -8|?) expB*a -3 |a|>-%|8]%).
(18)

Equations (17) and (18) establish overcompleteness.

They imply for an arbitrary state |zp) the set of
integral equations

80 [ L2L,(|a -5l

x exp(B*a ~%|a|? -4 813, alv),

(19)
n=0,1,2,... , with the reproducing kernels
K, (B, a) being just the right-hand side of (18).
When |¢) is itself a coherent state, (19) yields
the idempotent condition for the kernel K,. These
relations are already well exploited® for »=0.
Their utility for higher » is obvious from the next
result.

(ix) Diagonal coherent-state vepresentation. The
Sudarshan representation® for the density operator
in terms of the Schrodinger coherent states, useful
in quantum optics, has the following generalization
in terms of the generalized coherent states. Let
G =G(a,a’) be an operator with the Fourier repre-
sentation®?

G=f—‘zjrﬂU(a)g(a) , (20)

where g(a) =Tr(GU%(a)). [A sufficient condition
for its validity is Tr(GG") < «.] Then we prove

G-= f— |n, @), a |pala), (21)
where

Pula) =" fdz"Li(g)lz)exp(z |8|? +Ba* -g*a)

(22)

provided that the integral converges. Here the
principal value is taken at zeros of L,( [B |2)
Further g(B) may be expressed in terms of the
diagonal elements (2, a |G |n, a):

£(8) =g-xiﬂgfﬁlﬁ—2lz)f§%—(na |G |na) exp(af* —a*p).

(23)

Clearly, convergence of the integral (22) at =

is assured for a larger class of g(8)’s for states

with ## 0 than for »=0. Equations (21)-(23) con-
stitute the new diagonal coherent-state represen-
tation.

The above properties of generalized coherent
states raise hopes of their utility in quantum op-
tics similar to that of the Schrodinger state. Since
the electromagnetic field Hamiltonian 2hiwalay is
essentially a sum of oscillator Hamiltonians, its
coherent states H,,|nk, a may be defined such
that for each mode &, the criterion (i) of classical
motion is obeyed. The consequences are under
study.

Since the work of Nieto and Simmons® on coherent
states for general potentials takes off from an
oscillatorlike problem, and since exact oscillator
coherent states with non-minimum uncertainty
exist, it is possible that Ref. 5 might be fruitfully
generalized to yield non-MUCS.
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