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ABSTRACT

Upper and lower bounds on the
absorptive contribution to the elastic dif-
ferential cross-sections are given in terms
of the forward slope and the elastic and to-
tal cross-sections. They are compared with

recent experimental data.
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1)

on the forward logarithmic slope b of the absorptive contribution to the

A long time ago, McDowell and Martin derived a lower bound

elastic differential cross-section doA/dt of two spinless particles,

A
bis)= 55 Log %[% (s,¢) , (1)

=0

in terms of the total cross-section o and the absorptive contribution

tot
to the elastic cross-section Géz. This bound, which follows from unitarity

alone, is valid at all energies and reads :

2
Gtob (5) _ 2
2)

Later on, this result has been extended by Roy and Singh , who obtained
a sharp unitarity upper bound on the absorptive amplitude A(s,t) at ne-

gative t, and hence on

de’ (56) = B A'st) .

hA i = 3
at sk
in terms of the same quantities Gtot and Géz. Remarkably enough, this

bound is almost saturated by the high energy experimental data in the near
forward region of the diffraction peak, under the assumption of purely
absorptive, spin-independent, scattering. On the other hand, this bound
being everywhere positive does not allow us to predict the existence of
physical zero(s) of A(s,t) [end hence of dip(s) in the elastic cross-
sectioi] on the basis of unitarity. Further, no non-trivial lower bound

on ch/dt exists, given only the values of o and céz. In this

letter, we show that by adding the experimentaltngormation the bound

(2) on b(s) is close to saturation ; we get both a non-trivial lower bound
on doA/dt(s,t) as well as information on the existence (and location) of
zeros of A(s,t). This is suggested by the fact that the exact saturation
of the McDowell-Martin bound completely determines the amplitude A(s,t),
which sisplays infinitely many physical zeros in the asymptotic limit., A
Actually, inserting the known ! partial wave distribution a,(s) which

saturates inequality (2) into the expansion
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A(st)= %: &(lq‘r')ae(‘)ﬁ(“z‘%) (4)

one easily obtains for s - ®

Y, (5)
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where

_ o Gat (5)
T= tleﬂ Gy (5) (6)

One can then expect that, when b gets sufficiently close to its minimal
allowed value, the qualitative picture exhibited by any unitary amplitude
should not be too different from that given by Eq. (5). This in turn should
imply the existence of unitarity upper and lower bounds tending to a common
limit given by the right-hand side of Eq. (5) when b reaches its lower
bound. We may also expect that improving the value of b would improve

the upper bound of Ref. 2) in such a way that it could becomsz interesting

at higher values of 1.

In view of these considerations, we have looked for the best
possible upper and lower bounds on A(s,t) for 1t < 0, ziven the wvalues

of ¢ ﬁz and b. Here, we present our results, an! compare them with

c
tot’

a few experimental data in order to stress their usefuln~:cs. The details
of the derivation, together with some related questions, wil. be discussed

elsewhere, Two simplifying assumptions have been made.

3)

i) Spin effects are neglected [breliminary results seem to indicate
that spin effects can spoil the scalar bounds only weakly, as they

*)
do for the McDowell-Martin bound (2) ’_].

ii) The asymptotic approximation is used. This means that the energy
is high enough to make all terms of relative order 0(1/s) negli-
gible. In particular, it is assumed that sciot/bel >> 1, so that one

*
) They have been shown to reduce the right-hand side of Eq. (2) by a factor
y
of less than 1% 4)0



is allowed to replace the Legendre polynomials by their Bessel approximation
J (ZEV-t/s) and the sum over 4 by an integral in Eq. (4). This approxi-
matlon, although very good in the energy range considered, is by no means
essential. It has the virtue of producing bounds on A(s,t)/A(s,0) which
no longer depend explicitly on s, but only on two dimensionless parameters,
nemely the rescaled transfer variable T defined by Eq. (6) and the R

parameter, defined as

_ Gdl()
R = 18T G'b.()L(S) -

[}he numerical factor in the right-hand side is adjusted so that the bound
(2) simply reads R 2> .

Then, according to Egs. (1), (3), (4) and the optical theorem,

the problem to be solved can be stated as follows.

For each 1t < 0, find the supremum and the infimum of

A(st) = j df 28 agts) J, (21VE) (6)

given the quantities
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_ e (7
Gab = =% jo dl 2l ap(s) & o)
and the positivity constraints
ae(s) >0 {or a.“ R/S (12)

[@e have omitted the remaining unitarity constraints, az( s) <1, as they
turn out to be automatically satisfied by the solutions, given high energy

A
data on Q. .9 ) and E].




The solution is obtained in a standard way. PFirst, the varia-
“tional method with Lagrange multipliers is applied heuristically to derive
partial wave distributions az(s). Then, the corresponding extremal ampli-
tudes are shown to be true bounds by a "direct subtraction" proof 5 .
For the upper bound, it is found that there is an interval O <T< To
(with T, depending on R) where the variational equations have no solu-
tions. In this case, the best upper bound actually coincides with the b
independent bound of Ref. 2), and corresponds to a supremum of the function-
al (8) under the constraints (9)-(12) which is not attained but only approa-
ched arbitrarily well. In the other cases, the computation of the Lagrange
multipliers is tedious and has to be done partly numerically, so that the

resulting bounds (ryR) on A(s,t)/A(s,0)

8y,1

Als®)
U (T, R) s A(i SU(T R) (T%O/RB‘) (13)

cannot be expressed in a closed form. That these bounds actually depend
only on T and R is obvious from Egs. (8)-(12), after an appropriate

rescaling of £ and az(s).

For the needs of application, we have found approximate formulae
for &y L(T,R), the error of which does not exceed 0.001 when 0 <T<6
9
and 1 <R < 1.222

30(1’,R) ¥ 3%, H/— + 105 m[ (1,848-5.IZF R-1 + ?.‘fslr(R—n))

2
~ (0.54354_907 R-1 +2.760 (R—l))T+(0.436‘r-l.7?3 VR-T + 2.56¢ (R-u)),%]
(14)

L/

&2 3 < _ g
%L(T,R)— T m — VRT (3.884 §.3¢ R|+8.?8(R-|))

- (0.813~ [L¢¥¢4 \/é?+ 2‘76&(R-|))T+ (D 528 -1.306 V-1 + 2.283 R-) 10 J
(15)
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Squaring gU L(T R) provides us with the desired bounds on the differential
cross- sectlon° Notice that gU(T R) (gL(T R)) gives a lower (upper) bound
wherever gU(T,R) (gL(T,R)) turns out to be negative

gjing;dms de(s)/ 9 (so>~MungL<TR)

(16)

One can show that these optimal bounds remain true bounds when céz(s) is
replaced everywhere (in T and R) by oez(s). It is worth mentioning
that the variable T defined by Eq. (6) is nothing but the natural variable
occurring in the "weak scaling" property of Cornille and Martin 6 « When-
ever such a scaling takes place (which happens if s ciot/ﬁeﬂ - ® and R
remains bounded when § — ® ), the limit function f£(T) of Ref. 6) has

to obey the bounds of Eq. (6).

Coming back to the question of zeros of A(s,t), we find a
partial answer in the fact that gU(T,R), as a function of T, exhibits
changes of sign when 1 < R < 1.028. This entails the existence of physical
zeros, if R 1is in this range. Also some information on their location is
obtained. If, e.g., R = 1.028, the first zeros of gU(T,1.O28) and
gL(T,1.028) occcur at T = T.4 and 4.2, respectively, which means that
A(s,t) must vanish at least once in the interval (4.2)16m cel/biot <
< -t < (7.4)16m aeﬂ/biot' This result already has some practical interest.
Consider for example pp scattering at’ Piap = 100 GeV/c : from the
absence of zero below T=T7.4 (the t value of the dip in the differential
cross-section corresponds to T::15), we immediately infer that R > 1.028.
It must be stressed, however, that the condition R < 1.028, although suf-
ficient for enforcing at least one physical zero, is by no means optimal.
This is due to the fact that the upper bound gU(T,R) cannot be saturated
simultaneously for all T's. The true maximal value of R for which uni-
tarity requires a physical zero must lie somewhere between 1.028 and 1.125
[A(s,t) = exp(-at) meets the positivity condition and gives R=1.125].

Its determination demands the solution of a separate problem.

More interesting are the bounds themselves. On Fig. 1, they
are plotted against T for values of R ranging between 1 and 1.222,
together with some experimental data at various energies, taken from
Refs. 7). Of course, the upper and lower bounds coincide for R=1 [énd
are obtained by squaring Ed. (52]. The points a, b, ¢ correspond to T

values where the (negative) lower bound on the amplitude begins to exceed
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the upper bound in magnitude, so that the upper bound on the cross-section
‘is given by gE(T,R) for higher values of T [és explained before Eq. (6}].
Still, the "extrapolated" upper bounds gg(T,R) (faint lines) retain a sen-
sible meaning, because they continue to represent true upper bounds if one
knows that no zero has occurred below the T value considered. One observes
that : i) the lower bounds are good only in the low transfer region (0 <
<T< 2) ; 1i) for reasonable values of R, the upper bounds are quite good
in an extended range (O <T< 6), and improve considerably the R inde-
pendent bound of Ref. 2) s they can be used to put lower bounds on R. As

a rough illustration, consider pp scattering at Piap = 100 GeV/c : com-
paring the data points between T=3 and 5 with the UB curves, and assuming
that the real part effects are negligible, one deduces that R 1is certainly

larger than 1.13, whereas the purely experimental value is R=1.09 f 0,05,

For the sake of comparison with experimental data, the use of
the variable T is not very convenient, because the horizontal error bars
(due mainly to the uncertainty on Oeﬁ) are "correlated" with the value of
R (which also depends on Ueﬂ)' We have made a more detailed analysis of
the recent (and preliminary) results of Ankenbrandt et al. 8) on pp elastic
scattering at Pigp = 200 GeV/c by coming back to the t variable (Figsc 2
and 3). The two relevant parameters are b[(GeV/c)_2] and oeﬂ/oizzot Enb_1:|.
Extrapolating the data points of Ref. 8) dowmn to t=0 gives 9.7 < b < 10.5,

9) 0.0042 < oeﬂ/biot < 0.0048., The corresponding lower bounds are

whereas
plotted in Fig. 2 [}he range of Oeﬂ/biot has been reduced to (0.00468,
0.0048), as R > 1 implies geﬁ/b%ot > 0.00468 for b::9.f]. It appears
that the lower bound is not violated by the experimental points in the region
2 . 2
0.07 < t < 0,153 [KGeV/c) :] only if b > 10.3, whatever value of ceﬂ/btot

is chosen within its full experimental range. Further information is gained

by looking at the upper bounds plotted in Fig. 3 (where we have confined the

two parameters within their new allowed intervals), Demanding that the

bounds be not violated in the region 0.2 < t < 0.5 leads to the conclusion
that b > 10.5 and Ueﬁ/ciot > 0.,0048., Of course, these results are reliable

only to the extent that the real part (and spin) effects for the t values

considered are small as compared to the level of accuracy we are working
with (~5% on the cross-sections). A% plab::ZOO GeV/c, this is a rather
reasonable assumption, since the real part at +t=0 has been found to be
practically vanishing (53% on the amplitude 1O)). Moreover, as far as

lower bounds are concerned, notice that the only assumption of a vanishing
forward real part suffices to make them exccl bounds on dOA/dt(s,t) (because

the forward slope b 1is entirely due to the zbsorptive part in that case).
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A . .
Then do/dt]exb"dg /dt]LB provides us with an interesting upper bound
for the real part effects in non-forward directions., ILet us finally point
out a general feature which is apparent on Figs. 2 and 3 : for fixed, and

not too high, t wvalues (t < O.2), the lower bound is rather insensitive
2
tot’
rather insensitive to the variations of b.

to the variations of the parameter cez/b whereas the upper bound is

We believe that our bounds are of use in the analysis of high
energy elastic scattering data. They offer a means of narrowing the range
of the less accurately known quantities, like b, T egr and real part con-
tribution. Our discussion of the preliminary results of Ankenbrandt et al.

just intended to be a possible paradigm for such a use.
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FIGURE CAPTIONS

Figure 2

Upper (UB) and lower (IB) bounds on (doA/dt(s,t))/(doA/dt(s,o))
as functions of T= -t(ch/dt(s,o))/bel(s) for various values

of R., The faint lines are extrapolations of the upper bound

in the region where the (negative) lower bound on A(s,t) exceeds
the upper bound in magnitude. The line "any R" is the R in-
dependent upper bound of Ref. 2)., Experimental data are taken

from Refs. 7).

Lower bounds on (doA/dt(s,t))/(ch/dt(s,o)) in the small t

region as compared to the (preliminary) experimental data of
Ankenbrandt et al. 8 « Each shaded strip corresponds to a given
value of b (9.7, 10.1 and 10.5 (GeV/c)_z) and a common range
for °ez/%§t : 0,00468 - 0,00480 mb™', At fixed +, the bounds

are decreasing functions of the latter parameter.

Upper bounds on (ch/dt(s,t))/(ch/dt(s,o)) for two values of
b (10.3 and 10.5 (GeV/c)-z) and two values of ceﬁ/giot
(0.00468 and 0.,00480 mb’1), as compared to the experimental

data of Ref. 8).
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