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Abstract

We estimate the electron and neutron electric dipole moments in the focus point
scenario of the minimal SUGRA model corresponding to large sfermion masses and
moderate to large tan 3. There is a viable region of moderate fine-tuning in the pa-
rameter space, around tan 3 ~ 5, where the experimental limits on these electric dipole
moments can be satisfied without assuming unnaturally small phase angles. But the

fine-tuning constraints become more severe for tan 8 > 10.
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It has been long recognised that the experimental limits on the electron and neutron
electric dipole moments (EDM) imply stringent constraints on the minimal supersymmetric
standard model (MSSM) and in particular the minimal supergravity (SUGRA) model [[[. In
order to satisfy these limits one has to assume either unnaturally small phase angles (< 1072)
in the model or multi-TeV superparticle masses [B]. More recently it has been shown by the
authors of ref. [f] that the problem is alleviated to a large extent by internal cancellation
between different supersymmetric (SUSY) contributions to these EDMs. Consequently, one
can satisfy the experimental constraints on the EDMs with moderate phase angles and
moderate superparticle masses in the unconstrained version of the MSSM [, f]. However
one still requires large superparticle masses in the minimal SUGRA model [, B, [{], which
is undesirable for three reasons. It implies, i) a large fine-tuning parameter for radiative
breaking of electroweak symmetry, ii) a less viable SUSY signal at the forthcoming colliders,
and iii) a very large dark matter density of the universe [i.

Recently, Feng, Matchev and Moroi [§] have pointed out that the radiative electroweak
symmetry breaking condition and hence the resulting fine-tuning is practically independent
of the universal soft scalar mass parameter mg in the minimal SUGRA model for moderate
to large values of tan 3( 2 5). This is also the range favoured by the LEP data[f]]. This
has been referred to as the focus point phenomenon. It implies that one can have a mq and
hence sfermion masses of the first two generations in the multi-TeV region without affecting
the fine-tuning parameter of electroweak symmetry breaking. Besides, one expects in this
case an inverted hierarchy of squark masses, resulting in a distinctive SUSY signal at the
LHC from gluino production [0, [[1]]. Moreover, it has been shown to predict a dark matter
density of the universe, which is in fact in the desired range [IZ].

In this paper we have calculated the electron and neutron EDMs in the focus point
scenario to see if they can be reconciled with the corresponding experimental limits without
assuming unnaturally small phase angles. The large mass of the first generation sfermions
in this model helps to suppress the electron and neutron EDMs. Moreover, a large value
of the trilinear coupling parameter Ay helps to suppress them further via a more effective
cancellation between the different SUSY contributions. But this is partly offset by the
increase of these EDMs with tan 3. Thus for tan 3 > 10, one cannot satisfy the experimental
limits without assuming unnaturally small phase angles. However, there is a viable region
of the parameter space at around tan 5 ~ 5, where the experimental limits can be satisfied
with moderate values of the phase angles.

In the following section we briefly discuss the focus point scenario of the minimal SUGRA



model and estimate the fine-tuning parameter over the region of interest to the EDM calcula-
tion. In the next section we discuss the EDM calculation and identify the region of parameter
space, where the EDMSs can be reconciled with the experimental limits for moderate phase

angles. We shall conclude with a brief summary of our results.

Focus Point and Fine-tuning:

The basic parameters of the minimal SUGRA model are mg, M, /2, Ag, B and p —i.e. soft
supersymmetry breaking scalar and gaugino masses, trilinear and bilinear couplings, along
with the supersymmetric Higgs mass parameter [[J]. The last two can be determined in
terms of the two Higgs vacuum expectation values, v; and vy, using the two minimisation
conditions. The first condition determines B in terms of the ratio ve/v; = tan 3 and the

sum
v? =0 + 0] =2m%/(¢* + ¢*) ~ 175 GeV. (1)
The second condition gives

my, — my, tan® 3
tan? 3 — 1

1
S = — 0P + A, )

where the last term comes from the radiative correction to the Higgs potential. This equation
determines the modulus of .

Thus for any tan 3, the naturalness of the electroweak symmetry breaking scale requires
mi;, and |u|?* to be of the order of m%, so that there is no large cancellation between these
quantities [[4]. Since m7, is linearly related to mg, M7, and | Ap|? via its renormalisation
group equation (RGE), one usually assumes the naturalness criterion to imply each of these
parameters to be < 1 TeV. Indeed, most of the phenomenological studies within the minimal
SUGRA model are based on this assumption. However, as pointed out by Feng et al [§, for
physical values of the top quark mass and the gauge couplings, m7, at the electroweak scale
becomes practically independent of its GUT scale value m2 for tan 3 Z 5. One can see this
result from the approximate analytic solution of the one-loop RGE for m3;, [[3, [@]. For
tan 3 not too large, one gets while neglecting the b Yukawa coupling contribution,

3
m%& ~ mg — iymg + f(M1/27 AO? y)7 (3)

Here f is a quadratic function of the soft parameters M, /, and Ay, and y represents the top
Yukawa coupling squared relative to its fixed point value, i.e.
y:h—?: 1+1/tan? 8
hi 14 1/tan®

(4)
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The top Yukawa coupling is related to its running mass,
hy = my(My)/vsin 3, (5)
which is related in turn to the physical top quark mass via
M; = my(My) [1 4+ Aqep + Asusy] - (6)

The QCD and SUSY radiative corrections add about 6% and 4% respectively to the running
mass to arrive at the physical top pole mass, M; = 175 £5 GeV [{]. It is well known now
that a physical top mass of 175 GeV corresponds to the fixed point value, tan 3y ~ 1.5 at
the electroweak scale [[[], which defines the minimal value of tan /3 in this model. Such a
low value of tan 3 is of course ruled out by the recent LEP limit on the lightest higgs boson
mass [{], suggesting tan 5 > 2(4) for maximal (small) stop mixing. Substituting the above
value of tan Gy in ([I) gives

y ~2/3 for tan 33 5. (7)

Thus over a large range of tan 3, which is also favoured by the above mentioned LEP data,
my, of eq. (B) at the electroweak scale is practically independent of its GUT scale value mg.
This is the so called focus point phenomenon, which implies that mg can be made > 1 TeV
without affecting the naturalness criterion. The corresponding squark and slepton masses of

the first two generations remain large at the electroweak scale,

mg.j ~m2 + O(ME/Q) > 1 TeV, (8)

since their RGEs are not affected by the top Yukawa coupling. Interestingly, the focus point
condition ensures that | ,u\z at the electroweak scale is practically the same as its GUT scale

value, since [I{]
1
[af* = 18] *(1 — )2 == |pso]”. (9)

The sensitivity of the electroweak scale to the SUSY parameters are determined from eq.

(B) in terms of the partial derivatives

a Om?%

2
my Oa

C, = : (10)

where a denotes mg, M2, 1o and Ag. The fine-tuning is defined by the largest of these
quantities [[L4]
C = max {Cpny, Ciry > Cs Cty } - (11)



This parameter is a plausible though not unique measure of fine-tuning. It is based on the
sensitivity of the electroweak scale to the SUSY parameters, but not other quantities like
m (g

For estimating the fine-tuning parameter we have taken the radiative electroweak sym-
metry breaking code of ref. [[7], which uses two-loop RGEs along with two-loop QCD
correction to the top quark mass of eq. ({f); and added the one-loop SUSY correction to the
latter following ref. [[§]. The radiative correction to the Higgs potential in (B) is evaluated
using the complete one-loop result [L9].

We have computed the fine-tuning parameter C' in the (my — Ag) planes of Figs. (1a) to
(1d) for fixed values of M;,. Figs. (1a) and (1b) show the contour plots of C' for M5 = 300
and 500 GeV at tan § = 5, while Figs. (1c) and (1d) show the analogous plots at tan § = 10.
The phases in these figures correspond to ¢, = 0, and ¢4, = 0 and 7, for the upper and the
lower half regions of the contours respectively. In general, C' is very weakly sensitive to the
phase ¢, as long as ¢, is in a range which satisfies the EDM constraints in a broad region
of parameter space. On the other hand, it is modestly sensitive to the phase ¢4, as can be
seen by comparing the ¢4, = 0 and 7 parts of the contours in Figs. (1a) to (1d).

We see that for moderate values of |Ag| ( < 2000 GeV ) the fine-tuning parameter
increases appreciably with M o, but it is effectively independent of mg at fixed M/, and
Ap. Figs. (la) and (1b) indicate that, for contours with ¢4, = 0, one can go up from
Ag >~ my =~ 0 to mg =~ 2000 GeV and Ay ~ 1500 GeV without paying any appreciable
price in terms of fine-tuning. Finally, these figures also show that there is only a marginal

improvement of the fine-tuning parameter in increasing tan # from 5 to 10.

EDMs of Electron and Neutron:

The EDM of an elementary fermion (electron or quark) is the coefficient d” of the effective
Lagrangian .
—1 _ v
»CE = Tdfqba,uuf%qbﬁw ) (12)

which has the nonrelativistic limit d f@DLE . Ew A, Wa being the large component of the Dirac
field. Fig. (2) shows the one-loop contributions to the effective Lagrangian of eq. (IJ) in
the MSSM, coming from the chargino and the neutralino exchanges, along with the gluino

exchange in the case of quark. Denoting the generic interaction Lagrangian by

— Line = Y hp (K, Py + L Pr)Yidr + H.C., (13)
ik



the one-loop EDM is given by [f]

g faa() n(Z)

where P, p = (1 F v5)/2 and

1 2 2
Inr rﬁnr) . (15)

1
A(r) = STERSE (3—7“+ 1—7“)’ B(r) :m <1—|—7‘+ T,
Here @ denotes electric charge. The @Q; and Q) terms in ([[4) correspond to the diagrams
with photon coupling to the chargino xi and the sfermion fk respectively.

The presence of CP violating phases in the minimal SUGRA model is responsible for
a nonzero imaginary part for the product Ky L% in ([4). If one neglects sfermion flavour
mixing to avoid large flavour changing neutral current effects, then there are two independent
physical CP violating phases in this model [PJ]. They can be chosen to be the phases of p
and Ag, namely ¢, and ¢4,, while M; ), and By are chosen to be real [B, f, [1]. The reality
of By ensures that the Higgs vacuum expectation values and the resulting tan 8 are real.
Following the renormalisation group equation of ;1 one may note that the phase of u is scale
independent.

The form of the effective Lagrangian of eq. ([J) requires different chiralities of the initial
and the final state fermions, as indicated in Fig. (2) and eq. ([[4). For the gluino exchange
contribution, this comes from the chirality flip of the sfermion via the L-R mixing term in
its mass squared matrix. For the chargino exchange contribution, this is accomplished via
gaugino-higgsino mixing in the y* mass matrix, while the sfermion preserves its chirality.
The neutralino exchange receives contribution from both of these sources. Since both the
L-R mixing sfermion mass squared term and the higgsino-sfermion-fermion coupling are
proportional to my, all the contributions are proportional to the external fermion mass.
Another consequence of the chirality flip is the explicit proportionality of the contributions
to the exchanged fermion mass m; in eq. ([4).

The gluino exchange contribution to the quark EDM is given by

_ 2ea m?
e oy P o (15, "

T =1

where D? is the L-R mixing matrix for the squark ¢, which diagonalises the corresponding
Mg Bl

my

Im(D4, DY) = —Im(D§,Df;) = m(

|Ag| sin g + |p|sin g, Ry), (17)



where
R, =cot 3, Rq = tanf3, (18)

and ¢, is the phase of A, at the electroweak scale. For the first generation of fermions, the
magnitudes and phases of the A parameters at the electroweak scale are close to those of A

at large Ay, since [f]

o
£
12

Ad >~ Ao - 36M1/2
Ae ~ A() - 07M1/2 (19)

The chargino exchange contributions to the EDMs are given by

i\ 1 (M
A ) 38\ )| @)
dy
m2+ 2 m2+
nd b R b IR
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2 +
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where @1, d; refer to the dominantly left-handed squark mass eigenstates. In our numerical
analysis we have also included the small contributions from the terms with s, do. Here,
U and V are the gaugino-higgsino mixing matrices, which diagonalise the chargino mass
matrix. Explicit expression for the U and V' matrices are given in ref. [B] in terms of M; s,
tan 3, |u| and ¢,. We shall simply note here that each of the coefficients Im(U%V;}) and
Im(V3U%), is proportional to |p]sin¢,. Consequently,

d;ﬁf’e X |y sin ¢, (23)

The neutralino exchange contributions to the EDMs can be collectively expressed as,

m2Q
- Sy om (). o)
I

47rs1n ka 1=t

where
b = [—V2{tan 0w (Qs — Tay)Ny; + Tyy N} Dfy — 1y Ny D |
X (ﬂtanerho‘ng — IibeiD{k) s (25)

7



with
My, mg.e

= y Rde =
V2myy sin 3 ¢ V2myy cos 3
and b = 4(3) for u(d,e). The D! are the L-R mixing matrices for the sfermion f, which

occurred earlier in eq. ([§). Explicit expression for its matrix elements are given in ref. [f

(26)

atn

in terms of |As|, |n|, ¢ and ¢,. Finally, N is the 4 x 4 unitary matrix, diagonalising the
neutralino mass matrix, which is evaluated numerically.

The main contributions to the EDM of quarks come from chargino and gluino exchanges,
while neutralino exchange contribution is relatively small. They are related to the neutron

EDM via the nonrelativistic quark model relation [21],
m __ 1 d u
d" = [4d — d"| g, (27)

where ng = 1.53 is a QCD correction factor for evolving down the quark EDMs from the
electroweak to the hadronic scale [B, .

There are two other contributions to the neutron EDM, arising from the quark chromo-
electric dipole moment and the gluonic dimension-six operator, which are defined by the
effective Lagrangians »

= 0,5 T G (28)

and )
/E,] = - 6 dG fach/u/a GZPGM

poe (29)
where T are the SU(3) generators, fu. the Gell-Mann coefficients and G*** the gluonic field
tensors [23]. Their contributions to the neutron EDM were earlier supposed to be small with
respect to the quark EDM contribution of eq. (27) [B3]. But as demonstrated in ref. [J], the
large internal cancellation between the chargino and the gluino contributions to the d? can
make the net quark EDM contribution comparable to those from the quark chromoelectric
and the gluonic dimension-six operators over certain regions of parameter space. In the
present analysis we have included each of these three contributions to the neutron EDM
following ref. [{.

We have investigated the ranges of the phase angles ¢, and ¢4,, over which the predicted
electron and neutron EDMs can be reconciled with the corresponding experimental limits
[,

d® < 4.3 x107%" ecm, d" < 6.3 x 1072 ecm. (30)

It may be noted here that the above neutron EDM limit is a factor of 2 smaller than that
considered in most of the previous analyses [B, B, @, [. Although it is still an order of

8



magnitude larger than the electron EDM, both of these provide comparable constraints over
the parameter space of interest in our analysis.

Figs. (3a), and (3b) show the range of ¢, at tan = 5, over which the predicted
electron and neutron EDMs can be reconciled with the experimental limits (B{), by allowing
a variation of ¢4, over the range of —m to 7. It should be mentioned here that the chargino
contribution to d" or d¢ overshoots the corresponding experimental limits for the moderate
values of |¢,| (~ 0.1 — 0.2 radian) shown in Figs. (3a) and (3b). What helps to satisfy the
experimental limits is a cancelling contribution from gluino exchange for d" (and neutralino
exchange for d°). Consequently, there is a strong correlation between the two phase angles,
as noted in earlier analyses. In particular the maximal allowed value of |¢,| for a given m
and |Ag| corresponds to |¢4,| ~ 7/2, and there is an opposite sign correlation between the
phases. The relatively smaller range of ¢,, at moderate |Ay| (< 2000 GeV) is due to a larger
coefficient of sin ¢, in the chargino contribution of eq. (£3) in comparison with the coefficient
of sin ¢4, in the gluino contribution coming from eqs. (IG[I7[I9). It is seen that only for
very large |Ap| (> 6000 GeV) the two coefficients become comparable; and one can satisfy
the experimental limits for any value of ¢,,. But, one has to pay a high price in terms of the
fine-tuning parameter amounting to C' > 1000. Besides, the purely gluonic dimension six
operators play an effective role in the cancellation mechanism in this region.

It should be added here that in plotting Figs. (3a) to (3d) we have scanned the mg space
in 50 GeV bins. Decreasing the size of this bin further leads to occasional spikes in the
maximum value of |¢,|. This is indeed an important effect reflecting further suppression of
the neutron EDM due to internal cancellation amongst the electric dipole, chromoelectric
dipole and the gluonic operator contributions. As already noted in ref. [, such a drastic
suppression of the EDM can occur over narrow ranges of the SUGRA parameters due to
these cancellations. But in the present analysis we shall concentrate only on those results
which hold over wide range of SUGRA parameters, granting a possible correlation between
the two phases.

In Figs. (3a) and (3b) we have indicated the fine-tuning parameter C' at some specific
points on the fixed | Ag| contours. Essentially, the point marked on each contour corresponds
to the region of the right tip of the fixed C' contours for ¢4, = 0 of Figs. (la) and (1b).
Comparing the two figures one can easily see that C' hardly varies up to the marked point on
each [Ag| contour. Thus one can accommodate at least moderate values of |¢;}**| = 0.1 0.2
radian for C' = 100 — 200, i.e. without paying any price in term of fine-tuning. Figs. (3c)

and (3d) show the analogous ranges of ¢, at tan = 10. We see that for given values of



| Ap|, corresponding to the similar values of C, the ¢, range is less than half the size of that
of Figs.(3a) or (3b). The underlying reason of course is the comparatively larger coefficients
of the chargino contributions for d of eq. (1)) and d° of eq. (BZ) at large tan 3. Thus the
EDM limits disfavour large values of tan § (> 10).

Finally, we also analyse the case of tan3 = 3 and M/, = 300 GeV, as displayed in
Figs. (4a) and (4b). Fig. (4a) shows the contours for constant fine-tuning C' which are very
different from what we found in Fig. (1a). Such a low value of tan [ falls outside the focus
point scenario [§]. Besides, it is disfavoured by the LEP limit on the lightest Higgs mass [f].
Nonetheless most of the previous EDM analyses have concentrated in this low tan (3 region
B, B, [, since it corresponds to smaller coefficients of the chargino contributions of eqs. (21])
and (B3). However, in this region of tan 8 the fine-tuning parameter C' steadily increases
with mg unlike what one finds in the focus point scenario. Here, C' is same as C},; and a
contour of constant C,, is a part of an ellipse [[7. Fig. (4b) shows the variation of maximal
|| with myg for various |Ay| values. Unlike Figs. (3a) to (3d), C increases here rapidly
along the contours of constant [Ag|. Consequently, a [¢;}**| of 0.1 radian would correspond

to a fine-tuning measure C' ~ 200, which is larger than the value required at tan § = 5 (Fig.

(3a)).
Summary:

We have analysed the electron and neutron EDMs in the focus point scenario of the min-
imal SUGRA model along with the fine-tuning parameter. In this scenario the soft scalar
mass mg can go up to 2 TeV without affecting the fine-tuning parameter. Similarly, the
trilinear coupling parameter can be increased from 0 to 1.5 TeV without any appreciable
increase in fine-tuning. The large mg values correspond to large masses for the 1st generation
of sfermions which helps to suppress the one-loop SUSY contributions to the EDMs. More-
over, the large | Ag| corresponds to larger gluino (neutralino) contribution to quark (electron)
EDM, which can cancel the chargino contribution more effectively. Therefore, one can satisfy
the experimental limits of the electron and the neutron EDMs without assuming unnaturally
small phases ¢, and ¢4, for my and |Ay| values of ~ 2 TeV each. But this is possible only
for a moderate value of tan 3 ~ 5. The chargino contributions to the EDMs increase with
tan 3, so that the experimental limits cannot be satisfied without assuming small |¢,| or a
large fine-tuning parameter C' for tan 3 > 10. Since the completion of this work a general
phenomenological analysis in the focus point scenario including the EDMs has appeared

recently in ref. [P4]. However the present work contains a more detailed treatment of this
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issue.
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Figure 1: Lines of constant fine-tuning C' in (my— Ap) plane for different values of tan 3 and
M, /5. Here ¢, = 0, and for each contours ¢4, corresponds to 0 and 7 for the upper and the
lower parts respectively. The shaded areas in the right represent the excluded regions due
to the chargino mass limit and the electroweak radiative breaking constraint. The shaded

areas in the left are excluded by the top squark mass bounds.
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(a)
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(b)

Figure 2: One loop diagrams contributing to the electric dipole moments of quarks and

leptons.
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(d)

M — myg) for different cases of tan 3

and M ;. Here the maximum value of |¢,| is obtained by varying ¢4, from —m to 7. The

symbols shown in the figures refer to the appropriate values of the fine-tuning measure C

which remains practically constant on each curve up to the marked point.
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Figure 4:  (a): Lines of constant fine-tuning C' in (mo — Ap) plane for tan5 = 3 and
M,/ = 300 GeV. Here ¢, = 0, and for each contours ¢4, corresponds to 0 and 7 for the
upper and the lower parts respectively. The shaded areas in the left are excluded by the top

squark mass bounds. (b): Lines of constant |Ay| in the plane of |¢,™*"|

—my for tan § =3
and M/, = 300 GeV. Here the maximum value of |¢,| is obtained by varying ¢4, from —7
to 7. Unlike Figs.(3a) to (3d), here C' strongly varies along the constant |Ag| contours.
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