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Abstract

We study a specific SUGRA model with nonuniversal gaugino masses as an

alternative to the minimal SUGRA model in the context of supersymmetric dark

matter. The lightest supersymmetric particle in this model comes out to be a

Higgsino dominated instead of a bino dominated lightest neutralino. The thermal

relic density of this Higgsino dark matter is somewhat lower than the cosmologically

favoured range, which means it may be only a subdominant component of the cold

dark matter. Nonetheless, it predicts favourable rates of indirect detection, which

can be seen in square-km size neutrino telescopes.

PACS: 13.40.Em, 04.65.+e, 14.60.Ef, 14.80.Ly

1 Introduction

The lightest supersymmetric particle (LSP) in the standard R-parity conserving super-

symmetric model is the leading particle physics candidate for the dark matter (DM)

of the universe [1]. The most popular supersymmetry (SUSY) breaking model is the

minimal supergravity (SUGRA) model having universal scalar, gaugino masses and tri-

linear couplings at the GUT scale. Over most of the parameter space of this model the

LSP is dominantly a bino (χ̃0
1 ≃ B̃) which does not couple to W or Z-boson. Hence

they can only pair-annihilate via the exchange of superparticles like squarks or sleptons,

B̃B̃
q̃(l̃)
−−→ qq̄(l+l−). The experimental limits on these particle masses, mq̃ >∼ 200 GeV and
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ml̃
>∼ 100 GeV [2], imply a rather slow rate of pair annihilation. Consequently, the model

predicts an over-abundance of the DM relic density over most of the parameter space [3].

This has led to several recent works, extending the SUSY DM investigations to nonmini-

mal SUGRA models [4-7]. While many of them explore models with nonuniversal scalar

masses, we shall concentrate here on nonuniversal gaugino mass models. In particular,

we shall focus on a model leading generically to a Higgsino-like LSP. Because of its un-

suppressed coupling to W and Z bosons the H̃H̃ → W+W−, ZZ annihilation rates via

s-channel Z-boson and t-channel Higgsino exchanges are large. Besides, there is a near

degeneracy of the lighter neutralinos and lightest chargino masses in this case,

mχ̃0

1
≃ mχ̃0

2
≃ mχ̃±

1

≃ |µ|, (1)

where µ is the supersymmetric Higgsino mass parameter. This leads to large coannihila-

tion cross sections [8]. Consequently, the Higgsino DM density falls below the cosmologi-

cally favoured range [9],

0.05 < Ωmh2 < 0.2, (2)

where the lower limit corresponds to the galactic density of DM (Ωm ≃ 0.1) from rotation

curves. Thus the Higgsino DM can only be a subdominant component of the galactic DM

density. However, its large coupling to Z implies a large rate of capture inside the Sun.

Hence, the model predicts a sizable indirect detection rate of Higgsino DM via high energy

neutrinos coming from their pair annihilation in the solar core. This is much larger than

the minimal SUGRA model prediction and should be detectable at the future neutrino

telescopes, as shown below.

2 Non-Universal Gaugino Mass Model

SUGRA model with nonuniversal gaugino masses at the GUT scale have been discussed

in many earlier works [10, 11, 12]. We shall only quote the main results here, focusing

on the SU(5) GUT. In this model the gauge kinetic function depends on a nonsinglet

chiral superfield Φ, whose auxiliary F -component acquires a large vacuum expectation

value (vev). Then the gaugino masses come from the following dimension five term in the
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Lagrangian:

L =
< FΦ >ij

MP lanck

λiλj (3)

where λ1,2,3 are the U(1), SU(2) and SU(3) gaugino fields i.e. the bino B̃, the wino W̃

and the gluino g̃ respectively. Since the gauginos belong to the adjoint representation of

SU(5), Φ and FΦ can belong to any of the irreducible representations appearing in their

symmetric product, i.e.

(24 × 24)symm = 1 + 24 + 75 + 200 (4)

The minimal SUGRA model assumes Φ to be a singlet, which implies equal gaugino masses

at the GUT scale. On the other hand if Φ belongs to one of the nonsinglet representations

of SU(5), then these gaugino masses are unequal but related to one another via the

representation invariants. Thus the three gaugino masses at the GUT scale in a given

representation n are determined in terms of a single SUSY breaking mass parameter M1/2

by

MG,n
1,2,3 = Cn

1,2,3M1/2 (5)

where C1
1,2,3 = (1, 1, 1), C24

1,2,3 = (−1,−3, 2), C75
1,2,3 = (−5, 3, 1) and C200

1,2,3 = (10, 2, 1). The

resulting ratios of MG
i ’s for each n are listed in Table 1.

n MG
3 MG

2 MG
1

1 1 1 1

24 1 −3/2 −1/2

75 1 3 −5

200 1 2 10

Table 1: Relative values of the SU(3), SU(2) and U(1) gaugino masses at GUT scale for

different representations n of the chiral superfield Φ.

Of course in general the gauge kinetic function can involve several chiral superfields be-

longing to different representations of SU(5) which gives us the freedom to vary mass

ratios continuously. We shall explore such a possibility in a future work. But let us
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concentrate here on the representations 1, 24, 75 and 200 individually. While the singlet

representation corresponds to universal gaugino masses, each of the nonsinglet represen-

tations corresponds to definite mass ratios and is therefore as predictive as the former.

These nonuniversal gaugino mass models are known to be consistent with the observed

universality of the gauge couplings at the GUT scale [10–13]

αG
3 = αG

2 = αG
1 = αG(≃ 1/25) (6)

Since the gaugino masses evolve like the gauge couplings at one loop level of the renor-

malisation group equations (RGE), the three gaugino masses at the electroweak (EW)

scale are proportional to the corresponding gauge couplings, i.e.

M1 = (α1/αG)MG
1 ≃ (25/60)Cn

1 M1/2

M2 = (α2/αG)MG
2 ≃ (25/30)Cn

2 M1/2

M3 = (α3/αG)MG
3 ≃ (25/9)Cn

3 M1/2 (7)

For simplicity we shall assume a universal SUSY breaking scalar mass m0 at the

GUT scale. Then the corresponding scalar masses at the EW scale are given by the

renormalisation group evolution formulae [14]. A very important SUSY breaking mass

parameter at this scale is mH2
, as it appears in the EW symmetry breaking condition,

µ2 + M2
Z/2 =

m2
H1

− m2
H2

tan2 β

tan2 β − 1
≃ −m2

H2
, (8)

where the last equality holds for the tan β >∼ 5 region, which is favoured by the Higgs

mass limit from LEP [2]. Expressing m2
H2

at the right hand side in terms of the GUT

scale mass parameters at a representative value of tanβ = 10 gives [14, 15]

µ2 +
1

2
M2

Z ≃ −0.1m2
0 + 2.1MG

3

2
− 0.22MG

2

2
− 0.006MG

1

2
+ 0.006MG

1 MG
2 +

0.19MG
2 MG

3 + 0.03MG
1 MG

3 , (9)

neglecting the contribution from the trilinear coupling term at the GUT scale. Moreover,

the coefficients vary rather mildly over the moderate tanβ region. Although we shall use

exact numerical solutions to the two-loop RGE, two points are worth noting from this

simple equation.
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Firstly, eq.(9) gives a measure of fine-tuning from the required degree of cancellation

between the dominant terms µ2 and MG
3

2
to give the right EW scale M2

Z/2. The LEP

limit on the lightest chargino mass, mχ̃±
1

> 100 GeV [2] implies

|µ|, |M2| > 100 GeV (10)

while eq.(9) implies

µ2 + M2
Z/2 ≃ 2.1M2

1/2 ( for mSUGRA) and,

µ2 + M2
Z/2 ≃ 1.4M2

1/2 ( for n = 200 model) (11)

Thus for the universal gaugino mass case of mSUGRA eqs.(7), (10) and (11) imply fine-

tuning at least at the level of ≃ 10 [16]. On the other hand one sees from these equations

that the fine-tuning problem is significantly alleviated in the nonuniversal models with

n = 75 and 200, corresponding to Cn
2 = 3 and 2 respectively [17].

Secondly, the universal gaugino mass model corresponds to |µ| > |M2| > |M1|, which

implies that the lighter chargino and neutralinos are dominantly gauginos with hierarchical

masses -i.e. mχ0

1
≃ M1 and mχ0

2
,χ±

1

≃ M2 ≃ 2M1. There is however a narrow strip of very

large m0 region where the first term of eq.(9) pushes down |µ| towards the LEP limit as

given in eq.(10). This is the so called focus point region [18], where the lighter chargino

and neutralinos are mixed Higgsino-gaugino states. But, over the bulk of the parameter

space the LSP is dominantly a B̃, which leads to an over-abundance of the DM relic

density, as discussed earlier. One expects from Table 1 a similar result for the n = 24

model. In fact it predicts a larger hierarchy between the χ0
1 and χ0

2(χ
±

1 ) masses, M1 and

M2. Consequently the LSP is completely dominated by B̃ and can be relatively light. The

SUSY DM phenomenology for this case has been discussed recently in Ref. [6, 7, 19]. In

contrast we see from eqs.(7), (11) and Table 1 that the n = 200 model predict the opposite

hierarchy |µ| < |M2| < |M1|, while the n = 75 model has |µ| < |M1| < |M2|. Thus the

lighter chargino and neutralino states are Higgsino dominated and roughly degenerate

(eq.(1)) over the bulk of the parameter space for both n = 75 and 200 models. This leads

to a DM relic density somewhat below the cosmologically favoured range (eq.(2)). We

should mention here that unlike the case of mSUGRA, there is no possibility of having

stau coannihilations in the n = 75 and the n = 200 models. This is related to staus
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being significantly heavier than mχ̃0

1
in these scenarios for all values of tan β. This in fact

originates from the gauge sector running of the slepton RGEs due to the specific gaugino

mass nonuniversalities.

It is for the above reason that the Higgsino DM phenomenology of the nonuniversal

SUGRA models, corresponding to n = 75 and 200 have not been explored in detail so far.

We feel that this is important for two reasons: (i) Even though the Higgsino may be a

subdominant component of the galactic DM density, its large coupling to Z-boson implies

large rate of capture inside the Sun. Hence the model predicts a sizable indirect detection

rate via high energy neutrinos coming from their pair annihilation inside the sun. Even

after rescaling by the low DM density factor the indirect detection rate comes out to

be larger than the minimal SUGRA predictions [20]. (ii) It is possible that the thermal

relic density of the Higgsino DM is enhanced by either a modification of the freeze-out

temperature of the standard cosmological model due to a quintessence field as suggested

in Ref.[21] or by nonthermal production mechanisms of the type suggested in Ref.[22]. In

that case it can be the dominant component of the galactic DM density. Therefore we

have computed the indirect and direct detection rates both with and without rescaling.

3 Higgsino Dark Matter in the n=200 SUGRA Model

We shall concentrate on the nonuniversal SUGRA model corresponding to n = 200 be-

cause it can generate radiative electroweak symmetry breaking (EWSB) over a much

wider range of parameters compared to the n = 75 case, the latter being restricted to

have small tan β solutions only. Fig. 1 shows the allowed regions in the m0−M1/2(= MG
3 )

plane for tan β =5, 10, 30 and 50. The area marked I at the top is disallowed because

µ2 falls below the LEP limit (eq.10) and then becomes negative, signalling the absence

of EWSB. The area marked II at the bottom is disallowed because the Higgs potential

becomes unstable at the GUT scale. We have chosen µ > 0 since the µ < 0 branch is

strongly disfavoured by the b → s + γ branching ratio, along with the muon anomalous

magnetic moment (aµ) constraint. This figure shows that the b → s + γ constraint to be

rather mild for µ > 0. The lower limit from aµ (not shown) is even milder.

We see from the contours of µ in Fig. 1 that one generally has µ < 500 GeV in the
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model as anticipated. It also shows the gaugino component of the LSP,

Zg = N2
11 + N2

12, (12)

where

χ̃0
1 = N11B̃ + N12W̃ + N13H̃1 + N14H̃2. (13)

We see that the bulk of the allowed parameter space corresponds to Zg < 10%, which

means that the LSP is dominated by the Higgsino component to more that 90%. Finally

Fig. 1 shows the contours of neutralino relic density Ωχh2 which was computed using

the micrOMEGAs of Ref. [23]. It is seen to generally lie below the lower limit of the

cosmologically desirable range of eq.(2) by a factor of 2 to 4. This is due to the rapid pair

annihilation processes H̃H̃ → W+W−, ZZ via s-channel Z-boson and t-channel Higgsino

exchanges, as mentioned earlier. Besides, the near degeneracy of the lighter chargino and

neutralino masses (eq.1) leads to large coannihilations. In view of the mass degeneracy

it is important to include radiative corrections to the χ̃0
1,2 and χ̃±

1 masses in the Higgsino

LSP scenario [24]. We have included this using the code of Manuel Drees. But, it does

not enhance the neutralino relic density significantly. It should be noted here that the

dominant gaugino component of the LSP (eq.13) comes from W̃ instead of B̃, in view

of the inverted mass hierarchy µ < M2 < M1 in this model. Since, the winos have very

similar annihilation mechanisms like the Higgsinos there is no increase in the relic density

in the mixed Higgsino-gaugino region (Zg > 10%).

4 Indirect Detection Rates

Since the Z-boson couples only to the Higgsino component of neutralino, the Zχ̃0
1χ̃

0
1 cou-

pling is proportional to N2
13,14 [25]. Moreover, the spin dependent force from Z-exchange is

known to dominate the χ̃0
1 interaction rate with the solar matter, which is predominantly

Hydrogen [1]. Hence the solar capture rate of the Higgsino DM is predicted to be enor-

mously larger than the bino DM of the minimal SUGRA model. This implies in turn an

enormously higher rate of pair annihilation, H̃H̃ → W+W−(ZZ), since the capture and

annihilation rates balance one another at equilibrium. The high energy neutrinos coming

from W(Z) decay are expected to be detected at the large area neutrino telescopes like the
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IceCubes [26] and the ANTARES [27] via their charged current interaction (ν → µ). The

resulting muons constitute the so called indirect DM detection signal. Fig. 2 shows the

indirect signal rate contours over the full parameter space which was computed by using

DARKSUSY of Ref. [28]. The signal contours are shown both with and without rescaling

by a factor ξ = Ωχh2/0.05 [29]. The denominator corresponds to Ωm = 0.1 which is the

galactic DM relic density assumed in this computation. Even with rescaling one expects

muon flux φµ of 5-100 events/km2/year over practically the full parameter space of the

model. In contrast the minimal SUGRA model predicts a φµ < 1 event/km2/year over

the entire parameter space, except for a very narrow strip at the |µ| = 100 GeV bound-

ary corresponding to a larger Higgsino content in the LSP [20]. The proposed large area

neutrino telescopes like IceCube and ANTARES are expected to cover a detection area

of 1 km2. The irreducible background for these experiments, coming from the high en-

ergy neutrinos produced by the cosmic ray interaction with the solar corona is estimated

to be φµ ∼ 5 events/km2/year [20]. Therefore these experiments can probe a signal of

φµ >∼ 5 events/km2/year, as expected over practically the full parameter space of this

nonuniversal SUGRA model. It may be mentioned here that in the presence of some

enhancement mechanism for the Higgsino DM relic density [21, 22], it can become the

dominant component of the cold dark matter. This will enhance the indirect detection

rate further, as indicated by the contours without rescaling.

5 Direct Detection Rates

For the sake of completeness we have computed the χ̃0
1p elastic scattering cross-sections

in this model, which determine the signal rate in direct detection experiments. Both the

spin-dependent and the spin-independent cross-sections have been computed using the

DARKSUSY code [28].

The spin-dependent cross section is known to be dominated by Z-exchange. Therefore

the spin-dependent cross-sections are much larger here compared to the minimal SUGRA

model. Fig. 3 gives scatter plots of spin-dependent cross section against the LSP mass,

both with and without rescaling for tan β =10 and 50. Even the rescaled cross-section is

1-2 orders of magnitude larger than the minimal SUGRA predictions [30]. Unfortunately,

the direct detection experiments are not sensitive to the spin-dependent cross-section as
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they are based on heavy nuclei. For example the UKDMC detector is only sensitive

to a spin-dependent cross section >∼ 0.5pb [30], which is much above any SUSY model

prediction.

The spin -independent (scalar) cross-section is dominated by Higgs exchanges. Since

the Higgs couplings to a χ̃0χ̃0 pair is proportional to the product of their Higgsino and

gaugino components [25], they are suppressed for both Higgsino and gaugino dominated

DM. Fig. 4 gives scatter plots of the scalar cross-section with and without rescaling for

tanβ =10 and 50. The upper range of the scatter-plots correspond to the mixed Higgsino-

gaugino region (Zg > 10%) of Fig. 1, as expected. The cross sections without the rescaling

factors are moderately larger than the minimal SUGRA prediction [30]. But the rescaled

cross-sections are similar in size to the latter. Fig. 4 also shows that a significant part of

the unrescaled cross-section lies above the discovery limits of the future CDMS [31] and

GENIUS [32] experiments; but the rescaled cross-sections generally lie below these limits

except for the mixed Higgsino-gaugino region. The DAMA [33] and present CDMS limits

are also shown. In other words the upcoming experiments can detect the Higgsino DM

if it is the dominant component of the galactic DM, but not if it is only a subdominant

component of the latter.

6 Summary

We have investigated the dark matter phenomenology of a SUGRA model with nonuni-

versal gaugino masses. Its gauge kinetic function is a function of a nonsinglet chiral

superfield, belonging to the 200-plet representation of SU(5). It is as predictive as the

minimal SUGRA model and has less fine-tuning problem than the latter. It predicts

a dominantly Higgsino LSP over the practically entire parameter space. The resulting

thermal relic density of the Higgsino dark matter lies moderately below the cosmologi-

cally favoured range of eq.(2). Thus the Higgsino can only be a subleading component

of the cold dark matter in the standard cosmological scenario. On the other hand its

unsuppressed coupling to the Z-boson implies an enhanced rate of capture by the Sun.

Consequently the predicted rate of indirect detection via high energy neutrinos coming

from its pair-annihilation inside the Sun is much larger than the minimal SUGRA even

after rescaling by the low density factor. This signal can be detected by the proposed
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km2 neutrino telescopes like IceCube and ANTARES over practically the full parameter

space of the model. For the direct detections the predicted rate after rescaling is rougly

similar to the minimal SUGRA prediction.

We thank Manuel Drees for discussion and for the use of his radiative correction code

for chargino and neutralinos.
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Figure 1: Contours of Ωχ̃h2, µ, Zg and Br(b → s + γ) in the (m0 − M3(MG)) plane for

tanβ = 5, 10, 30 and 50 for the n = 200 nonuniversal gaugino mass model with µ > 0.

The neutralino relic density Ωχ̃h2 contours are shown as (red) solid lines. The contours

for µ are shown as (blue) dot-dashed lines where the notation µ500 means µ = 500 GeV.

The gaugino fraction for the LSP Zg contours are shown as (black) dashed lines. The

Br(b → s + γ) excluded regions for each figure are the regions left to the (blue) dotted

lines. The (gray) I-zones in the top left parts are discarded via the lighter chargino

mass lower bound and the absence of radiative EWSB and (gray) II-zones are eliminated

because of the lack of stability of the Higgs potential at the GUT scale MG.
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Figure 2: Contours for muon flux from the Sun in units of km−2yr−1 for tan β = 5, 10,

30 and 50 in the nonuniversal gaugino mass model with n = 200. The (blue) solid lines

refer to φµ and the (black) dashed lines correspond to ξφµ where ξ = Ωχ̃h2/< Ωχ̃h2 >min,

with < Ωχ̃h2 >min = 0.05. The regions marked with I and II are same as that in Fig.1
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Figure 3: (a) and (b): Spin dependent neutralino-proton scattering cross sections σSD

χ̃0

1
−p

vs mχ1
0 for tan β = 10 and 50 respectively for the n = 200 nonuniversal gaugino mass

model. The (red) dots and the (blue) filled circles refer to points with below and above

10% gaugino fractions respectively in this generic Higgsino dominated LSP scenario. (c)

and (d): Same as (a) and (b) except for the scaled cross sections ξσSD
χ̃0

1
−p

, where ξ =

Ωχ̃h2/< Ωχ̃h2 >min, with < Ωχ̃h2 >min = 0.05.
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Figure 4: (a) and (b): Spin independent neutralino-proton scattering cross sections σ
χ̃0

1
−p

vs mχ1
0 for tan β = 10 and 50 respectively for the n = 200 nonuniversal gaugino mass

model. The (red) dots and the (blue) filled circles refer to points with below and above

10% gaugino fractions respectively in this generic Higgsino dominated LSP scenario. (c)

and (d): Same as (a) and (b) except for the scaled spin independent cross sections ξσχ̃0

1
−p

where ξ = Ωχ̃h2/< Ωχ̃h2 >min, with < Ωχ̃h2 >min = 0.05.
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