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Abstract

We propose a simple unified description of two recent precision measurements

which suggest new physics beyond the Standard Model of particle interactions, i.e.

the deviation of sin2
θW in deep inelastic neutrino-nucleon scattering and that of the

anomalous magnetic moment of the muon. Our proposal is also consistent with a third

precision measurement, i.e. that of parity nonconservation in atomic Cesium, which

agrees with the Standard Model.
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The minimal Standard Model (SM) of particle interactions is consistent with all present

experimental data with only a few possible exceptions. One such is a recent measurement [1]

of the electroweak parameter sin2 θW from νµ and ν̄µ interactions with nucleons, which claims

a three-standard-deviation departure from the SM prediction. Another is the measurement

[2] of the anomalous magnetic moment of the muon, which originally claimed a value higher

than the SM prediction by 2.6 standard deviations [3], but is now revised down to only 1.6σ

after a theoretical sign error has been corrected [4]. A third important constraint comes from

the measurement [5] of parity nonconservation in atomic Cesium, which was thought to be in

disagreement with the SM, but subsequent improved theoretical calculations [6] have shown

it to be in good agreement. In addition, the phenomonena of neutrino oscillations are now

well-established [7, 8] which suggest strongly that neutrinos have mass and mix with one

another.

In this paper we propose a simple unified description of all the above effects by extending

the SM to include the gauge symmetry Lµ − Lτ [9]. The relevance of this symmetry to

the muon g − 2 value and neutrino mass has been discussed by us in a previous paper

[10, 11]. Here we focus on how it can also explain the NuTeV result [1] and its other possible

experimental consequences.

Our model assumes the anomaly-free gauge symmetry U(1)X with gauge boson X which

couples to (νµ, µ)L, µR with charge +1 and to (ντ , τ)L, τR with charge −1, but not to any

other fermion. This means that it has the contribution

∆aµ =
g2

Xm2
µ

12π2M2
X

(1)

to the muon anomalous magnetic moment. It also contributes to νµ and ν̄µ interactions, but

since X does not couple to quarks, the NuTeV result [1] is only affected if X mixes with the

Z boson of the SM. This also applies to atomic parity nonconservation.

In our previous paper [10], we assume for simplicity that X − Z mixing is zero by the
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imposition of an interchange symmetry in the Higgs sector, but we also mention that this

symmetry cannot be maintained for the entire theory, so that a small deviation is to be

expected. This small deviation (corresponding to a mixing angle of order 10−3) turns out to

be just what is needed to explain the NuTeV result, as shown below.

The Higgs sector of our model consists of three doublets: Φ = (φ+, φ0) with charge 0 and

η1,2 = (η+
1,2, η

0
1,2) with charge ±1 under U(1)X . The mass matrix spanning X and Z is then

given by

M2

XZ =





2g2
X(v2

1 + v2
2) gXgZ(v2

1 − v2
2)

gXgZ(v2
1 − v2

2) (g2
Z/2)(v2

0 + v2
1 + v2

2)



 , (2)

where v0 ≡ 〈φ0〉 and v2
1,2 ≡ 〈η0

1,2〉 with v2
0 + v2

1 + v2
2 = (2

√
2GF )−1. Assuming that v1 ≃ v2 so

that the X − Z mixing is small, we then have

M2

Z ≃ 1

2
g2

Z(v2

0 + 2v2

1), M2

X ≃ 4g2

Xv2

1, (3)

with the X − Z mixing angle given by

sin θ ≃ gXgX(v2
1 − v2

2)

M2
X − M2

Z

. (4)

The effective νµ and ν̄µ interactions with quarks has the same structure as the SM, but

the effective strength is changed from g2
Z/M2

Z to

g2

Z

(

cos2 θ

M2
Z

+
sin2 θ

M2
X

)

− 2gXgZ sin θ cos θ

(

1

M2
Z

− 1

M2
X

)

≃ g2
Z

M2
Z

[

1 +
2gX

gZ

(

M2
Z

M2
X

− 1

)

sin θ

]

≡ g2
Z

M2
Z

ρµ. (5)

Note that the factor of 2 in the sin θ term comes from the fact that X couples to νµ with

strength 1 whereas Z couples to νµ with strength 1/2 (= I3).

In the NuTeV analysis, if ρµ = 1 is assumed, then sin2 θW = 0.2277 ± 0.0013 ± 0.0009,

which deviates from the SM prediction of 0.2227 ± 0.00037 by approximately 3σ. On the

other hand, if a simultaneous fit to both ρµ and sin2 θW is made, they obtain

ρµ = 0.9983 ± 0.0040, sin2 θW = 0.2265 ± 0.0031, (6)
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with a correlation coefficient of 0.85 between the two parameters. They then suggest that one

but not both of them may be consistent with SM expectations. Here we choose to consider

the deviation of the NuTeV result as being due to ρµ.

The NuTeV analysis also makes a two-parameter fit in terms of the isoscalar combinations

of the effective neutral-current quark couplings, resulting in

(geff
L )2 = 0.3005 ± 0.0014, (geff

R )2 = 0.0310 ± 0.0011, (7)

with a negligibly small correlation coefficient, whereas the SM predictions are

(geff
L )2

SM = 0.3042, (geff
R )2

SM = 0.0301. (8)

Now if we take for example ρµ = 0.9962, then the above two values become (geff
L )2 = 0.3019

and (geff
R )2 = 0.0299, placing them both within 1σ of the experimental measurements.

In atomic parity nonconservation, because X does not couple to electrons, we have

ρe = cos2 θ + sin2 θ

(

M2
Z

M2
X

)

≃ 1 (9)

to a very good approximation. Thus there should be no deviation from the SM, in agreement

with experiment.

From Eq. (5) we obtain

sin θ = (ρµ − 1)

(

gZ

2gX

)(

M2
X

M2
Z − M2

X

)

, (10)

which is of order 10−3 for ρµ = 0.9962. This will affect precision data at the Z resonance

in the following way. First, the observed resonance is of course the physical Z boson which

has a small X component. However, since X does not couple to electrons, the production

of Z is only suppressed by cos2 θ which is indistinguishable from 1. The decay of Z to most

fermions is also unaffected because the suppression factor is again just cos2 θ. The exceptions
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are Z → µ+µ−, ν̄µνµ, τ+τ−, ν̄τντ . Their effective couplings are

µ : gV = −1

2
+ 2 sin2 θW − 2

(

gX

gZ

)

sin θ, gA = −1

2
, (11)

νµ : gV =
1

2
− 2

(

gX

gZ

)

sin θ, gA =
1

2
− 2

(

gX

gZ

)

sin θ, (12)

τ : gV = −1

2
+ 2 sin2 θW + 2

(

gX

gZ

)

sin θ, gA = −1

2
, (13)

ντ : gV =
1

2
+ 2

(

gX

gZ

)

sin θ, gA =
1

2
+ 2

(

gX

gZ

)

sin θ. (14)

Precision measurements of Z couplings at LEP-I give [12]

gµ
V = −0.0359 ± 0.0033, gτ

V = −0.0366 ± 0.0014, (15)

where the smaller error on gτ
V is due to the use of τ polarization along with the forward-

backward asymmetry. Thus

gτ
V − gµ

V = 4(gX/gZ) sin θ = −0.0007 ± 0.0036, (16)

adding the two errors in quadrature. Consider now Eq. (10) with the more conservative

choice

ρµ = 0.9976 (17)

which is within 1.6σ of the NuTeV measurement of (geff
L )2. Comparing it to Eq. (16), we

then obtain the following 2σ bounds on MX :

MX < 72 GeV or MX > 178 GeV. (18)

A lower bound on MX as a function of gX is also available from LEP-I data on Z decay

into the 4-muon final state via Z → µ+µ−X [10]. For example, if gX = 0.2, then MX > 58

GeV. Furthermore, Eq. (3) requires

gX >
gZMX

2MZ

. (19)
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In Figure 1 we show the above lower limit on gX as well as the 2σ upper limits on gX

as functions of MX from Z → µ+µ−X decay and the difference of the Z → e+e− and

Z → µ+µ− partial widths as the result of the X radiative contribution. Details are provided

in Ref. [9]. The Z decay limit essentially rules out MX < 60 GeV. The analogous process

e+e− → µ+µ−X at LEP-II does not improve this bound, as already shown [10]. Thus we

conclude that MX between 60 and 72 GeV is still allowed, but perhaps MX > 178 GeV is

more likely.

Going back to Eq. (1) for the muon g− 2 discrepancy, we note that there is a theoretical

lower bound [10] of 1.56× 10−9 in this model, whereas the corrected [4] range of the experi-

mental discrepancy is 2.65±1.65×10−9. This is entirely consistent with the low MX solution,

while in the case of the high MX solution, the maximum deviation we get is 2.7 × 10−9. In

either case, the X boson signal will be too small to be observable at the Fermilab Tevatron,

but will be clearly visible at the CERN LHC [10] via the associated production processes

uū(dd̄) → µµX and ud̄(dū) → µνX. At a future muon collider, X would be copiously

produced, especially if it turns out to be light.

To obtain naturally small Majorana neutrino masses, we may add one heavy neutral

fermion singlet NR with U(1)X charge 0 as in our previous paper, but then an extra charged

scalar boson ζ+ with charge +1 is needed there to get a second neutrino mass term, i.e. νeντ ,

radiatively. A possible alternative is to add two NR’s. One is assumed to couple only to a

linear combination of (νµη0
2 − µLη+

2 ) and (ντη
0
1 − τLη+

1 ), and the other to (νeφ
0 − eLφ+) as

well. Using the canonical seesaw mechanism [13], this structure allows for the appearance

of two massive neutrinos: one is predominantly a mixture of νµ and ντ , the other is a linear

combination of νe and the orthogonal νµ − ντ mixture. This may then lead to a consistent

pattern of neutrino masses and mixing for explaining the present atmospheric [7] and solar

[8] neutrino data.
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The interchange symmetry η1 ↔ η2 in the Higgs sector allows us to assume v1 = v2, but

this cannot be maintained for the entire theory. If we try to extend this to the gauge sector,

then µ ↔ τ is implied. Hence mµ 6= mτ in the Yukawa sector would break this symmetry.

However, the size of this breaking is only of order (m2
τ −m2

µ)/v2
0 which is smaller than what

we require for sin θ. In other words, X − Z mixing of order 10−3 is a very reasonable value.

In conclusion we have shown in this paper how the gauge symmetry Lµ −Lτ (as realized

specifically by us in a previous paper [10]) explains naturally the recent NuTeV result [1]

on the possible deviation from the Standard Model in νµ and ν̄µ scattering with nucleons.

Our proposal also explains the possible discrepancy in the recent measurement [2] of the

anomalous magnetic moment of the muon. It further explains why there is no deviation

from the Standard Model in atomic parity nonconservation [5]. Our model is constrained by

the precision measurements of Z → µ+µ− and Z → τ+τ−, from which we predict that the

new gauge boson X is likely to have a mass between 60 and 72 GeV, or be heavier than 178

GeV. As such, our model is verifiable experimentally in the future at the LHC.

We thank S. N. Ganguli and A. Gurtu for discussions on the LEP data. This work was

supported in part by the U. S. Department of Energy under Grant No. DE-FG03-94ER40837.
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Figure 1: The predicted lower limit of the X boson coupling shown along with the LEP-I

upper limits from Z → µ+µ−X decay and the universality relation between the Z → e+e−

and µ+µ− partial widths. The X mass ranges of interest to the NuTeV anomaly are MX =

60 − 72 GeV or MX > 178 GeV.
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