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Abstract

We investigate the phenomenology of a wino LSP as obtained in AMSB and some

string models. The WMAP constraint on the DM relic density implies a wino LSP mass

of 2.0-2.3 TeV. We find a viable signature for such a heavy wino at CLIC, operating at

its highest CM energy of 5 TeV. One also expects a viable monochromatic γ-ray signal

from its pair-annihilation at the galactic centre at least for cuspy DM halo profiles.

1 Introduction

The minimal supersymmetric standard model (MSSM) is the most popular extension of the

standard model (SM) on account of four attractive features [1]. It provides (1) a natural

solution to the hierarchy problem of the SM, (2) a natural (radiative) mechanism for the

electroweak symmetry breaking (EWSB) , (3) a natural candidate for the cold dark matter

(DM) of the universe in the form of the lightest superparticle (LSP), a prediction that has

gained in importance in view of recent observations [2], and (4) unification of the SM gauge

couplings at the GUT scale. However it also suffers from two problems:

(i) Little Hierarchy Problem: The LEP limit on the mass of an SM-like Higgs boson [3],

mh > 114 GeV, (1)

requires the average top squark mass to be typically an order magnitude higher than MZ [4].

This implies some fine-tuning of SUSY parameters to obtain the correct value of MZ .

(ii) Flavour and CP Violation Problem: The general MSSM makes fairly large 1-loop con-

tributions to flavour changing neutral current (FCNC) processes, like µ→ eγ decay, as well
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as to CP violating processes like fermion electric dipole moments (EDM). The experimental

limits on these FCNC decays require either large scalar masses,

mφ
>
∼ 10 TeV (2)

or a near degeneracy among the sfermion masses of different generations. Similarly, the

experimental limits on the electron and neutron EDM require either large scalar masses

(as in Eq.2) or unnaturally small CP violating phases. It may be added here that while

the degeneracy of sfermion masses can be realised in simple models like minimal supergrav-

ity (mSUGRA) or anomaly mediated SUSY breaking (mAMSB), there is no simple model

ensuring small SUSY phases.

The split SUSY model [5] tries to solve the second problem at the cost of aggravating

the first by pushing up the scalar superparticle masses. In fact the cost is much more, since

this model assumes the scalar masses to be many orders of magnitude larger than the TeV

scale. This means that one has to give up (1) the supersymmetric solution to the hierarchy

problem of the SM along with (2) the radiative EWSB mechanism. One only retains the LSP

dark matter and the unification of gauge couplings, since the chargino and the neutralino

masses are assumed to remain within a few TeV. We find the cost much too high since the

first two features were the original motivations for weak scale supersymmetry.

We shall consider instead a more conservative model where the scalar superparticle masses

are assumed to lie in the range

mφ = 10 − 100 TeV. (3)

Thus, it solves the second problem at the cost of aggravating the first; but without abandon-

ing the supersymmetric solution to the hierarchy problem or the radiative EWSB mechanism.

Moreover, we retain the LSP dark matter as well as gauge coupling unification by assuming

the chargino and neutralino masses to remain within a few TeV.

We shall be primarily interested in the electroweak chargino-neutralino sector and in

particular the lightest neutralino, which we assume to be the LSP. The diagonal elements of

the 4×4 neutralino mass matrix are M1,M2, and ±µ, corresponding to the bino B̃, the wino

W̃ , and the higgsinos H̃1,2 = H̃u ± H̃d, respectively, while the non-diagonal elements are all

≤ MZ . Now, there are experimental indications from the Higgs mass limit (Eq. 1) and the

b → sγ decay width that the SUSY masses representing the above diagonal elements are

typically larger than MZ , at least in a universal MSSM like the mSUGRA model [6]. We
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shall assume this mass inequality to hold in a more general MSSM. Then it implies that the

neutralino mass eigenstates correspond approximately to the above interaction eigenstates

B̃, W̃ and H̃1,2 and the LSP constitutes of one of these states. An interesting exception to

this rule is provided by the case of a near degeneracy between two diagonal elements, which

results in a large mixing between the corresponding interaction eigenstates, as the mixing

angle is given by tan 2θ = 2Mij/|Mii −Mjj | . In particular the LSP can be a mixed bino-

higgsino, bino-wino or wino-higgsino state. Such mixed LSP cases have been investigated in

Ref. [7, 8], and named “well-tempered” neutralino in Ref. [8].

Leaving aside such an accidental degeneracy between the two lightest mass eigenvalues,

one expects the LSP to be approximated by one of the interaction states - bino, wino or

higgsino. The bino carries no gauge charge and hence does not couple to gauge bosons.

Thus it can only pair-annihilate via sfermion exchange. But the current experimental lower

limits on the sfermion masses [3] imply a low annihilation rate, resulting in an overabun-

dance of dark matter over most of the MSSM parameter space. Only in special regions like

stau co-annihilation (M1 ≃ mτ̃1) or resonant pair annihilation (2M1 ≃ mA) can one get

a cosmologically acceptable DM relic density. But neither of these regions extend to the

scalar mass range of Eq.(3). Even the so called focus point region, which corresponds to

a “well-tempered” bino-higgsino LSP, does not reach the scalar mass range of Eq.3 in the

universal MSSM [9, 10], although, in a generic and unconstrained MSSM, it can obtain the

correct DM relic density for very large scalar masses [8]. In contrast, the higgsino and wino

carry isospins 1/2 and 1 respectively. Hence they can pair annihilate to

H̃H̃ →WW (f̄f), W̃ W̃ →WW (f̄f), (4)

by their gauge couplings to W boson. Consequently, the annihilation rate and the resulting

DM relic density is controlled mainly by the higgsino (wino) LSP mass. It has only a

marginal dependence on the sfermion mass [8] and it is practically independent of the other

SUSY parameters. The current WMAP result on the DM relic density alongwith the 2σ

error bar [11] is

Ωχ̃h
2 = 0.104+0.015

−0.019 (5)

where h = 0.73 ± 0.03 is the Hubble constant in units of 100 Km s−1 Mpc−1 [11] and Ωχ̃ is

the DM relic density in units of the critical density. This corresponds to a higgsino (wino)

LSP mass of about 1 (2) TeV, where the larger wino mass is due to its larger gauge coupling.
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In ref. [10] we investigated the phenomenology of higgsino LSP in collider and dark matter

experiments. The present work is devoted to a similar investigation for the wino LSP.

In the next section, we discuss the wino LSP models and estimate the wino mass band

compatible with the WMAP relic density range of Eq.5 . In the two following sections we

investigate the prospects of detecting such a heavy wino LSP in future collider and DM

search experiments respectively. Finally we shall conclude with a summary of our results.

2 Wino LSP in AMSB and string models:

A universal gaugino mass at the GUT scale leads to the weak scale wino being always

heavier than the bino, since the gaugino masses evolve like the corresponding gauge couplings.

Hence, the wino LSP scenario can not be realised in the universal MSSM. The most popular

SUSY model for a wino LSP is the anomaly mediated supersymmetry breaking (AMSB)

model [12,13] wherein the gaugino and scalar masses arise from supergravity breaking in the

hidden sector via super-Weyl anomaly contributions [14], namely,

Mλ =
βg

g
m3/2 (6)

m2
φ = −1

4

(

∂γ

∂g
βg +

∂γ

∂y
βy

)

m2
3/2 (7)

Ay = −βy

y
m3/2. (8)

Here m3/2 is the gravitino mass, βg and βy are the β functions for gauge and Yukawa

couplings, and γ = ∂lnZ/∂lnµ, where Z is the wave function renormalization constant. The

GUT scale gaugino masses (6) are thus non-universal, with

M1 =
33

5

g2
1

16π2
m3/2 , M2 =

g2
2

16π2
m3/2 , M3 = −3

g2
3

16π2
m3/2 (9)

at the one loop level. Evolving down to the weak scale gives

M1 : M2 : |M3| ≃ 2.8 : 1 : 7.1 (10)

including the two loop corrections. Unfortunately, evolving the scalar masses of Eq.(7) down

to the weak scale gives negative mass-square values for sleptons. In the minimal version of

the model (mAMSB) this is remedied by adding a common parameter m2
0 to the right hand
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side of Eq.(7) for all the scalars in the theory. This model has been widely studied because

of its economy of parameters, i.e.,

m3/2, m0, tanβ, sgn(µ) (11)

µ2 being fixed by the radiative EWSB condition. We shall come back to this model below.

It should be noted here that the anomaly mediated contributions of Eqs.(6,7,8) are present

in all supergravity models. But, in general, one can also have tree level SUSY breaking

contributions to the gaugino and scalar masses arising from possible dimension five and six

terms in the effective Lagrangian, namely

Mλ ∈ FS

Mpl
λ λ (12)

and

m2
φ ∈ F †

S FS

M2
pl

φ⋆φ (13)

where FS is the vev of the F component of a chiral superfield S responsible for SUSY

breaking. If present, these tree level contributions are expected to overwhelm the anomaly

mediated contributions of Eqs.(6& 7). The AMSB scenario assumes the SUSY breaking

superfield to be carrying a non-zero gauge charge, so that the gaugino mass term (Eq.12) is

eliminated by gauge symmetry. However, such symmetry considerations can not eliminate

the tree level scalar mass term (Eq.13). So in this case the scalar mass is expected to be

typically larger than the gaugino mass by a loop factor, namely

mφ ∼ 100Mλ . (14)

This was the case in the AMSB model of Ref. [13] which has been revived in Ref. [15].

On the other hand, the mAMSB model [12, 14] assumes the SUSY-breaking hidden sector

and the visible sector to reside on two different branes, separated by a large distance in a

higher dimensional space, so that the tree level scalar mass term (Eq.13) is suppressed by

geometric considerations. We shall consider both the possibilities here.

Note also that one can get a AMSB like scenario in the string theory, where the tree-level

SUSY breaking masses can only come from the dilaton field, while they receive only loop

contributions from moduli fields. In fact, such a scenario was already suggested in Ref. [16]

before the AMSB model by assuming that SUSY breaking is dominated by a modulus field.
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It contributes to the gaugino mass Mλ as well as the squared scalar mass m2
φ at the 1-loop

level. The resulting hierarchy of gaugino masses is very similar to that of the AMSB (9).

On the other hand, the scalar mass here is expected to be typically larger than the gaugino

mass by the square root of the loop factor, i.e.

mφ ∼ 10Mλ. (15)

Note that the range (3) is roughly compatible with both Eqs.(14 & 15).

As mentioned earlier, we expect the DM relic density to be determined by the wino

mass M2, practically independent of the other model parameters. To check this, we have

computed the DM relic density, using the Micromegas code [17], as a function of M2 with

the corresponding M1 and M3 determined from the AMSB relation (Eq.10). With the above

gaugino mass relation, the wino mass values for the three values (lower, central and upper)

of the WMAP relic density of Eq.(5) corresponding to a common sfermion mass of 10 TeV

are

(M2,Ωχ̃h
2) : (1.91 TeV, 0.084), (2.10 TeV, 0.104), (2.23 TeV, 0.119). (16)

The other chosen SUSY parameters were µ = 9 TeV and tan β = 10. In other words, the

wino mass range corresponding to the ±2σ range of the WMAP relic density is

M2 ≃ 1.9 − 2.2 TeV. (17)

We have confirmed these results using the DARKSUSY code [18] and cross checked them

with the results obtained by Profumo [19]. We have also checked that changing the sfermion

mass from 10 to 100 TeV changes the wino mass upper limit of (16) from 2.23 to 2.37 TeV,

due to the vanishing of the small but negatively interfering sfermion contribution, while it

has practically no dependence on µ and tan β.

We have also done a more detailed analysis using the mAMSB model. We have estimated

the weak scale superparticle masses from the GUT scale input parameters (11) via two

loop RGE using the SUSPECT code [20]. The superparticle masses were then used in the

Micromegas to compute the DM relic density.

Fig. 1 shows the allowed parameter space in the m3/2 − m0 plane for tan β = 10 and

positive µ. The upper disallowed region corresponds to µ2 < 0, i.e. no radiative EWSB,

while the lower disallowed region corresponds to either a tachyonic slepton (for small m3/2)

or a tachyonic pseudoscalar Higgs (larger m3/2). It also shows contours of fixed µ and fixed
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Figure 1: Allowed and disallowed regions of the mAMSB parameter space with contours

shown for µ (solid lines) and M2 (dashed lines). The WMAP satisfied neutralino relic density

zone is shown by red/dark dots which is concentrated in the region of M2 = 2.0 − 2.3 TeV.

A contour for Ωχ̃h
2 = 0.104 (central value) is also shown. Isolated dots near the REWSB

boundary correspond to Higgsino dominated LSP regions. The upper shaded (gray) region

is disallowed via µ2 < 0,i.e. the first REWSB constraint. The lower shaded (gray) region

is disallowed as it contains a tachyonic slepton zone (for smaller m3/2) and a tachyonic

pseudoscalar Higgs zone (for larger m3/2), i.e. from the second REWSB constraint.

M2 in the allowed region of parameter space. The dotted band shows the part compatible

with the WMAP relic density range of eq.(5), that is the wino mass band

M2 = 1.9 − 2.3 TeV. (18)

Note also a thin dotted band around the µ = 1 contour, representing a higgsino LSP. Thus,

a WMAP satisfying higgsino LSP of mass of ∼ 1 TeV is realised in mAMSB as well as in

the mSUGRA model [10]. The lower end of wino mass corresponds to slepton and squark

masses in the range of 9 − 14 TeV, while the upper end corresponds to these masses in

the range of 28 − 30 TeV. All these results are very insensitive to changes in tanβ and

sign(µ). It should be noted here that the region below the WMAP compatible wino mass
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band of Eq.18 corresponds to an under-abundance of the DM relic density in the standard

cosmological model. This region may be allowed if there are alternative DM candidates, or,

more interestingly, if there are non-standard cosmological mechanisms for enhancing the relic

density of the wino DM. In fact, both thermal and non-thermal mechanisms for enhancing

the wino relic density have been suggested in the literature [21–23]. In the first case, the

presence of a quintessence field leads to faster Hubble expansion and hence an earlier freeze-

out, resulting in a higher thermal relic density [21]. In the second case, late decay of the

gravitino enhances the wino relic density in the AMSB model [14, 23]. Therefore, while

investigating the wino LSP signal in collider and dark matter search experiments in the next

two sections we shall cover wino masses below the band of Eq.18 as well.

3 Wino LSP search in collider experiments

Evidently, the wino mass band of Fig. 1 is way above the discovery reach of LHC in the AMSB

model [24]. In fact, the total wino pair production cross-section at LHC (W̃±W̃ 0 + W̃+W̃−)

is only ∼ 10−2 fb [7], corresponding to 1 event per year even at the high luminosity run of

LHC. Moreover, the mass degeneracy of W̃± and W̃ 0 implies that the only visible objects

in the final state will be 1 or 2 soft pions from the

W̃± → π±W̃ 0 (19)

decay. It will be impossible to identify such events without an effective tag at the LHC.

The most promising machine for detecting a wino LSP of mass up to the 2 TeV range is

the proposed e+e− linear collider CLIC, operating at its highest energy of 5 TeV [25]. We

shall follow the strategy of Ref. [26] in estimating the signal and the background. The same

strategy has been followed by the LEP experiments in setting mass limits on a wino LSP [3];

in particular, the OPAL experiment has used it to set a mass limit of 90 GeV [27]. The pair

production of charged wino is tagged by a hard photon from initial state radiation (ISR),

i.e.

e+e− → γW̃+W̃−. (20)

The photon is required to have an angle

170◦ > θγ > 10◦ (21)
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relative to the beam axis. Moreover, it is required to satisfy

Eγ
T > Eγmin

T =
√
s

sin θmin

1 + sin θmin

= 100 GeV, (22)

which vetoes the radiative Bhaba background e+e− → γe+e−, by kinematically forcing

one of the energetic e± to emerge at an angle > θmin. At the maximum CLIC energy of
√
s = 5 TeV, the above Eγmin

T of 100 GeV implies θmin ≃ 1.2◦. The OPAL detector has

instrumentation down to θmin = 2◦, while it seems feasible to extend it down to 1◦ at future

linear colliders [26]. We shall also impose the recoil mass cut

Mrec =
√
s

(

1 − 2Eγ

√
s

)
1

2

> 2mχ̃, (23)

where mχ̃ represents the LSP mass (= M2 for wino). This is automatically satisfied by the

signal (Eq.20).

In calculating the cross-section of Eq.20 we have included ISR effects by convoluting the

hard 2 → 3 cross-section with the electron distribution function as described in Ref. [28].

Although a negatively interfering t−channel ν̃e exchange contribution reduces the above

cross-section for smaller sneutrino masses, the decrease is <
∼ 15% for our region of interest

(Eq.3) where sfermion mass is higher than 10 TeV. Hence, we have neglected the sneutrino

exchange contribution.

If we can not identify the W̃± → W̃ 0 decay products then the main background is

e+e− → γνν̄. (24)

Fig.2 shows the signal and background cross-sections as function of the LSP mass. The

latter is seen to be larger by a factor of ∼ 1000 owing to the large contribution from the

t−channel W -exchange contribution to γνeν̄e production. In the case of higgsino LSP sig-

nal, this background could be suppressed by using right (left) polarised e− (e+) beam [10].

Unfortunately, this does not help here since the wino pair production signal (20) can arise

only from the left (right) polarised e− (e+) collision. On the other hand, one can enhance

the signal cross-section along with the background by using left (right) polarised e− (e+)

beam. We have estimated the signal and background cross-sections for beam polarisations

similar to that envisaged for ILC [29], i.e.

Pe− = −0.8 (mostly left handed), Pe+ = 0.6 (mostly right handed). (25)
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Figure 2: Cross-sections for the wino signal (solid) and the neutrino background (dashed) at

CLIC (
√
s = 5 TeV) with both unpolarised (thick lines) and polarised (thin lines) e− and

e+ beams. Initial state radiation is included.

It is easy to check that it corresponds to the following fractional luminosities,

e−Le
+
R : e−Re

+
L : e−Re

+
R : e−Le

+
L = 0.72 : 0.02 : 0.08 : 0.18 (26)

while each was 0.25 in the unpolarised case. It results in increase of both the signal and the

background cross-sections by a factor of 0.72/0.25 ≃ 3, as shown in Fig. 2.

Evidently, it is essential to identify the W̃± → W̃ 0 decay products for extracting the

signal (Eq.20) from the much larger background (Eq.24). Indeed it is possible to identify

these decay products unambiguously unlike those for the higgsino case [10], thanks to a

robust prediction for the W̃± and W̃ 0 mass difference δm [14, 30], which largely arises from

radiative corrections. The gauge boson loops give [31]

δm =
αMW

2 (1 + cos θW )

[

1 − 3

8 cos θW

M2
W

M2
2

]

≃ 165 MeV (27)

with the approximate equality holding only for µ ≫ M2 ≫ MW . For M2 ∼ 2 TeV and

µ > M2 , the region of our interest, it gives

δm = 165 − 190 MeV. (28)
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The tree-level contribution to δm is ≃ tan2 θW sin2 2βM4
W/(M1 µ

2) < 1 MeV. Similarly, the

sfermion exchange loop contribution to δm is O(M4
W/m

3
φ) < 1 MeV.

The mass difference of Eq.(28) implies W̃± → π±W̃ 0 to be the dominant decay mode with

a range cτ = 3− 7 cm, nearly independent of the wino mass [26]. Moreover, as was pointed

out in [26], the SLD vertex detector has its innermost layer at 2.5 cm from the beam and

this gap is proposed to be reduced to 2 cm or even less at the future linear colliders. Thus,

it should be possible to observe the tracks of W̃± as two heavily ionising particles along

with their decay π± tracks in vertex detector. Moreover for the momentum of the decay

pion, pπ ∼
√

δm2 −m2
π ∼ 87 − 128 MeV, one expects the impact parameter resolution to

be better than 0.3 mm. Thus both the decay pions have impact parameters of >
∼ 100σ,

which should be easily measurable. These should enable us to distinguish the signal (Eq.20)

unambiguously from the background (Eq.24) even in the presence of the beamstrahlung

pions [32]. Therefore we expect the viability of the signal to be determined primarily by the

number of signal events.

We see from Fig. 2 that, with the proposed luminosity of 1000fb−1 at CLIC [25], one

expects 600 (200) to 120 (40) events with polarised (unpolarised) beams for the WMAP

satisfying wino mass range of 2.0 to 2.3 TeV (Fig.1). It should be noted here that the search

can be extended to wino mass of 2.4 (2.5) TeV with a proportionate increase of the beam

energy by 5 (10)%.

Fig. 3 shows the recoil mass distribution of a 2 TeV wino LSP signal along with the

background events. While the recoil mass distribution of the background (24) stretches all

the way from MZ up to the kinematic limit, the signal shows a characteristic threshold at

2mχ̃. This will help confirm the signal as well as to measure the LSP mass mχ̃.

4 Wino LSP search in DM experiments

The wino LSP signal is too small to be observed in direct dark matter search experiments.

The reason is that this signal comes from spin-independent χ̃p scattering, which is dominated

by Higgs boson(h,H) exchange. Since the Higgs coupling to the LSP pair is proportional

to the product of their higgsino and gaugino components, it is vanishingly small for the

wino LSP. However, there can be significant contribution to the spin-independent scattering

cross-section from one loop diagrams as shown in Ref. [33]. The signal is further suppressed
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Figure 3: Recoil mass distributions of a 2 TeV wino signal and the neutrino background at

CLIC (
√
s = 5 TeV) with both unpolarised (thick lines) and polarised (thin lines) e− and

e+ beams. Initial state radiation is included.

by the large LSP mass. Likewise, the neutrino signal coming from the pair annihilation of

wino LSP in the solar core is vanishingly small. This is because the solar capture rate of the

LSP is controlled by the spin-dependent χ̃p scattering cross-sections via Z boson; and the

Z coupling to χ̃ pair is proportional to the square of its higgsino component.

A very promising wino DM signal is expected to come from γ-rays produced by its pair

annihilation at the galactic centre. The largest signal comes from the tree-level annihilation

process (4) into WW , followed by the decay of the W into γ-rays via neutral pions [7].

Unfortunately, the continuous energy spectrum of the resulting γ-rays suffers from a large

background from the cosmic-ray pions. We consider instead the monochromatic γ-ray signal

coming from the annihilation process

W̃W̃ → γγ, γZ (29)

via W̃±W∓ loops [34]. For the resulting cross-sections,

vσγγ ∼ vσγZ ∼ 10−27 cm3 s−1, (30)

where v is the velocity of the DM particles in their cms frame. The resulting γ-ray flux
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coming from an angle ψ relative to the galactic centre can be written as [34]

Φγ(ψ) = 1.87 × 10−13 Nγvσ

10−27cm3s−1
(
1 TeV

mχ̃
)2J(ψ) cm−2 s−1 sr−1 (31)

where Nγ = 2 (1) for the γγ (γZ) production; and

J(ψ) =

∫

line of sight
ρ2(ℓ)dℓ(ψ)

[(0.3 GeV/cm3)2 · 8.5 kpc]
(32)

is the line integral of the squared DM energy density scaled by its local value in our neigh-

bourhood and our distance from the galactic centre.

Several Atmospheric Cerenkov Telescopes (ACT) have started recording TeV scale γ-

rays from the galactic center e.g. HESS and CANGAROO in the southern hemisphere and

MAGIC and WHIPPLE in the north. One generally expects concentration of DM in the

galactic centre; but its magnitude has a large uncertainty depending on the assumed profile

of DM halo density distribution [35–37]. The cuspy NFW profile [35] corresponds to

〈J(0)〉∆Ω=10−3 ≃ 1000, (33)

which represents the DM flux in the direction of the galactic centre averaged over the typical

ACT aperture of Ω = 10−3 sr. Extreme distributions, like the spiked profile [36] and core

profile [37], correspond respectively to increase and decrease of this flux by a factor of 103.

We have computed the γ-ray line signal (31) in the mAMSB model for the NFW profile and

an aperture ∆Ω = 10−3 sr using the DARKSUSY code [18]. Fig. 4 shows the resulting signal

against the LSP mass, where we have added the γγ and γZ contributions, since they give

identical photon energy (= mχ̃) within the experimental resolution. The points satisfying

WMAP relic density are shown as bold dots. One clearly sees a wino LSP of 2-2.3 TeV

mass predicting a line γ-ray flux of ∼ 10−13 cm−2 s−1 along with a higgsino LSP of 1 TeV

mass predicting a flux of ∼ 10−14 cm−2 s−1. Both these are in agreement with the results

of reference [30] and [38, 39]1. They are within the detection range of the above-mentioned

ACT experiments. In particular, the wino signal has the advantage of an order of magnitude

higher flux compared to the higgsino LSP. Furthermore, its higher mass implies an order

of magnitude lower background from cosmic-ray proton and electron showers, as shown in

1It has been pointed out recently [40] that tree-level higher order processes, in particular χχ → W+W−γ,

can increase the flux of photons with Eγ ≃ mχ by up to a factor of 2.
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Figure 4: Monochromatic γ-ray flux from LSP pair annihilation at the galactic center for

the NFW profile of DM halo distribution with an aperture of ∆Ω = 10−3 sr for mAMSB

model for varying LSP mass. The red (darker) points correspond to the WMAP relic density

satisfied values of eq.5

Ref. [38]. It is further shown in [38] that one expects to see a 5σ wino signal over this

background at these ACT experiments for a NFW (or cuspier) profile.

However, it should be noted here that the HESS experiment has reported TeV photons

coming from the direction of the galactic centre with an energy spectrum, which is unlike

that expected from a TeV scale γ-ray line [41]. Instead, it shows a power law decrease

with energy, which is similar to that of other ”cosmic accelerators”, notably the supernova

remnants (SNR). Besides this, it is not clear whether this signal is coming right from our

galactic centre (defined as the location of the super-massive black hole Sagittarius A⋆),

or from a nearby SNR lying within the angular resolution of HESS. In particular, the SNR

Sagittarius A east, lying a few parsecs away from Sagittarius A⋆ has been suggested to be the

culprit [42]. Given the modest energy resolution of the present ACT experiments (∼ 15%),

it may be more difficult to extract a line γ ray signal at the 5σ level in the presence of this

γ ray background. Therefore it is imperative to improve the energy and angular resolution

of these experiments to suppress this background; and also to look for other possible clumps
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of DM in galactic halo [43]. We point out here that in our discussion we have considered

the neutrino and gamma ray signals to probe the known sources of DM concentration like

the solar and the galactic cores because of their directionality. On the other hand the DM

annihilation in the galactic halo can also be probed via the positron and the anti-proton

channels as discussed in Refs. [7, 46]. Indirect detection of wino as a dark matter candidate

satisfying WMAP data via cosmic ray positron and anti-proton fluxes particularly becomes

more interesting because of non-perturbative enhancement of cross-sections [46].

We shall conclude with a brief discussion of the non-perturbative contribution to the

annihilation cross-sections of TeV scale wino LSP and its impact on our results. The non

perturbative contributions coming from the s-channel bound states, as calculated in [30,44]

via an effective potential, leads to a large enhancement of the wino pair annihilation cross-

section into WW and γ-γ channels. In a recent work of non-perturbative calculation [45] the

above authors have computed the velocity averaged wino pair annhilation cross-section at the

freeze-out temperature and the resulting wino relic density. They show a ∼50% reduction of

the thermal abundance, with respect to the perturbative value corresponding to ∼600 GeV

or a ∼25% increase in the wino mass satisfying the WMAP relic density. The collider signal

for such a wino LSP will require a proportionate ∼25% of the CLIC beam energy. On the

other hand the line γ-ray signal will be larger that that shown in Fig. 4. The corresponding

enhancement of the continuum gamma ray signal has been discussed in Ref. [30], while the

positron and the anti-proton signals have been discussed in Ref. [46].

5 Summary

1) We study the phenomenology of a wino LSP obtaining in the AMSB and some string

models.

2) The WMAP constraint on the DM relic density implies a heavy wino LSP mass of 2.0−2.3

TeV in the standard cosmology. But one can also have wino LSP mass < 2 TeV assuming

nonstandard cosmological mechanisms for enhancing the DM relic density.

3) We find a viable wino LSP signal all the way upto 2.3 TeV at the proposed e+e− linear

collider (CLIC), operating at its highest CM energy of 5 TeV. This is helped by the robust

prediction of the charged and neutral wino mass difference, δm = 165 − 190 MeV.

4)We have also estimated the monochromatic γ-ray signal coming from the pair annihilation
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of wino DM at the galactic centre. One finds a viable signal upto wino masses of 2.3 TeV

for cuspy DM density profiles. Inclusion of non-perturbative effects would increase this limit

by about 25%.

Acknowledgments

We thank Manuel Drees, Gian Giudice, Antonio Masiero and Stefano Profumo for many

helpful discussions. DPR acknowledges the hospitality of CERN Theory Division, where

this work was initiated and receiving partial financial support from BRNS (DAE) under the

Raja Ramanna Fellowship Scheme. DD would like to thank the Council of Scientific and

Industrial Research, Govt. of India for the support received as a Senior Research Fellow.

References

[1] See e.g., Perspectives in Supersymmetry, ed. G.L. Kane, World Scientific (1998); Theory

and Phenomenology of Sparticles: M. Drees, R.M. Godbole and P. Roy, World Scientific,

Singapore (2005).

[2] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones and

D. Zaritsky, arXiv:astro-ph/0608407.

[3] S. Edelman et al, Review of Particle Properties, Phys. Lett. B592, 1 (2004).

[4] See e.g., Higgs Boson Theory and Phenomenology: M. Carena and H.E. Haber, Prog.

Part. Nucl. Phys. 50, 63 (2003).

[5] N. Arkani-Hamed and S. Dimopoulos, JHEP 0506, 073 (2005); G.F. Giudice and A.

Romanino, Nucl. Phys. B699, 65 (2004).

[6] U. Chattopadhyay and P. Nath, Phys. Rev. D 66, 093001 (2002).

[7] A. Masiero, S. Profumo and P. Ullio, Nucl. Phys. B 712, 86 (2005).

[8] N. Arkani-Hamed, A. Delgado and G. F. Giudice, Nucl. Phys. B 741, 108 (2006).

[9] J.L. Feng, K.T. Matchev and F. Wilczek, Phys. Rev. D63, 045024 (2001).

[10] U. Chattopadhyay, D. Choudhury, M. Drees, P. Konar and D. P. Roy, Phys. Lett. B

632, 114 (2006).

16



[11] D. N. Spergel et al., arXiv:astro-ph/0603449.

[12] L. Randall and R. Sundrum, Nucl. Phys. B557, 79 (1999).

[13] G.F. Giudice, M.A. Luty, H. Murayama, and R. Rattazzi, J. High Energy Phys. 12,

027 (1998).

[14] T. Gherghetta, G.F. Giudice, and J.D. Wells, Nucl. Phys. B559, 27 (1999).

[15] J. D. Wells, Phys. Rev. D 71, 015013 (2005).

[16] A. Brignole, L. E. Ibanez and C. Munoz, Nucl. Phys. B 422, 125 (1994) [Erratum-ibid.

B 436, 747 (1995)]; J. A. Casas, A. Lleyda and C. Munoz, Phys. Lett. B 380, 59 (1996).

[17] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Commun. 174,

577 (2006) [arXiv:hep-ph/0405253].

[18] P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke and E. A. Baltz, JCAP 0407,

008 (2004).

[19] S. Profumo (Private communication)

[20] A. Djouadi, J. L. Kneur and G. Moultaka, arXiv:hep-ph/0211331.

[21] P. Salati, Phys. Lett. B571, 121(2003); F. Rosati, Phys. Lett. B570, 5(2003).

[22] T. Nihei, N. Okada and O. Seto, Phys. Rev. D 73, 063518 (2006); N. Okada and O. Seto,

Phys. Rev. D 70, 083531 (2004).

[23] B. Murakami and J.D. Wells, Phys. Rev. D64, 015001 (2001); T. Moroi and L. Randall,

Nucl. Phys. B570, 455(2000); W.B. Lin, D.H. Huang, X. Zhang and R.H. Brandenburger,

Phys. Rev. Lett. 86, 954 (2001); M. Fujii and K. Hamaguchi, Phys. Lett. B525, 143

(2002).

[24] H. Baer, J. K. Mizukoshi and X. Tata, Phys. Lett. B 488, 367 (2000).

[25] Physics at the CLIC Multi-TeV Linear Collider: CLIC Physics Working Group,

[arXiv:hep-ph/0412251].

17



[26] C.H. Chen, M. Drees and J.F. Gunion, Phys. Rev. Lett. 76, 2002(1996) [arXiv:hep-

ph/9512230]; Phys. Rev. D55, 330,(1997) [arXiv:hep-ph/9607421]; Addendum/Erratum

[arXiv:hep-ph/9902309].

[27] OPAL Collab., G.A. Abbiendi et al., Eur. Phys. J. C29, 479(2003).

[28] M. Drees and R.M. Godbole, Z. Phys. C59, 591 (1993) [arXiv:hep-ph/9203219].

[29] See e.g., Physics Interplay of the LHC and the ILC: LHC/LC study group, arXiv:hep-

ph/0410364.

[30] J. Hisano, S. Matsumoto, M. M. Nojiri and O. Saito, Phys. Rev. D 71, 063528 (2005).

[31] D. M. Pierce, J. A. Bagger, K. T. Matchev and R. J. Zhang, Nucl. Phys. B 491, 3

(1997); H. C. Cheng, B. A. Dobrescu and K. T. Matchev, Nucl. Phys. B 543, 47 (1999).

[32] M. Drees and R.M. Godbole, Phys. Rev. Lett. 67, 1189 (1991).

[33] J. Hisano, S. Matsumoto, M. M. Nojiri and O. Saito, Phys. Rev. D 71, 015007 (2005).

[34] L. Bergstrom, P. Ullio and J.H. Buckley, Astropart Phys. 9, 137 (1998) [astro–

ph/9712318]; P. Ullio and L. Bergstrom, Phys. Rev. D57, 1962 (1998).

[35] J.F. Navarro, C.S. Frenk and S.D.M. White, Astrophys. J. 462, 563 (1996) and 490,

493 (1997).

[36] J. Diemand, B. Moore and J. Stadel, Mon. Not. Roy. Astron. Soc. 353, 624 (2004)

[arXiv:astro-ph/0402267]; B. Moore et al., Astrophys. J. 524, L19 (1999).

[37] A. Burkert, Astrophys. J. 447, L25 (1995).

[38] B. Thomas, Phys. Rev. D 72, 023519 (2005).

[39] Y. Mambrini, C. Munoz, E. Nezri and F. Prada, JCAP 0601, 010 (2006).

[40] L. Bergstrom, T. Bringmann, M. Eriksson and M. Gustafsson, Phys. Rev. Lett. 95,

241301 (2005).

[41] F. Aharonian et al. [The HESS Collaboration], Astron. Astrophys. 425, L13 (2004)

[arXiv:astro-ph/0408145].

18



[42] D. Grasso and L. Maccione, Astropart. Phys. 24, 273 (2005) [arXiv:astro-ph/0504323].

[43] G. Zaharijas and D. Hooper, Phys. Rev. D 73, 103501 (2006).

[44] J. Hisano, S. Matsumoto and M. M. Nojiri, Phys. Rev. Lett. 92, 031303 (2004).

[45] J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, arXiv:hep-ph/0610249.

[46] J. Hisano, S. Matsumoto, O. Saito and M. Senami, Phys. Rev. D 73, 055004 (2006).

19


