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Abstract

We show that strong non–linear electron transport in the ferromagnetic insulating (FMI) state

of manganites, responsible for phenomena such as colossal electroresistance and current induced

resistance switching, can occur due to a hot electron effect. In the FMI state, which we show is

an insulator with a Coulomb gap, the temperature of the electron and lattice baths can decouple

at high input power levels, leading to heating of the electron bath. Parameters of the hot electron

effect model were independently determined via time dependence experiments and are in good

agreement with the experimental values.
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Manganites L1−xAxMnO3, where L and A are ions of a trivalent rare–earth and a divalent

metal atom respectively, are known to exhibit a colossal magnetoresistance. Manganites

also show electroresistance (ER) and related resistance state switching effects1. There is

a resurgence of interest in these materials due to the possibility of their usage in memory

devices2 based on electric (as opposed to magnetic) control of their electrical resistance.

These effects are manifestations of a strong non–linear conduction (NLC)3 in these materials,

wherein their resistance is a strong function of the bias current. NLC is generally observed

in manganites having hole concentration ‘x’ such that the ground state is insulating, e.g.,

in the charge and orbitally ordered insulating ground state observed at x ≃ 0.5, or in

the ferromagnetic insulating (FMI) state, typically observed for x
<
∼ 0.3. Though NLC

phenomena for different ranges of ‘x’ are ostensibly similar, their physical origins are likely

different. In this paper, we investigate NLC in the FMI state of manganites and suggest

a mechanism that may underly it. NLC in the FMI state is responsible for a “colossal”

electroresistance (CER) and related electric current induced resistance switching (CIRS)4,5.

We show that NLC and electronic properties in the FMI state (an insulator with a Coulomb–

gap) are intimately related. The NLC is modeled using hot electron effects, wherein exist

separate temperature scales for the electron and the phonon/lattice baths. To our knowledge,

this is the first proposal that such hot electron effects occur in manganites.

We study single crystals of two widely different manganites, La0.82Ca0.18MnO3 (LCMO18)

and Nd0.7Pb0.3MnO3 (NPMO30). As temperature T is decreased, the samples undergo

paramagnetic–ferromagnetic transitions at T = TC ≃ 165 K and ≃ 150 K respectively, and

enter their FMI states at T = TFMI ≃ 100 K and ≃ 130 K respectively (see left inset of

figure 1; the data were obtained at very low power bias). Examples of NLC data are shown

in figure 1. The strong dependence of resistivity ρ on current density j is evident. Extensive

NLC data in these samples is available4,5.

The transport in the FMI state is unique: it is activated below TFMI; however, the

FMI state is not a conventional band or Mott–Hubbard insulating state that have a gap

in the density of states (DOS) near the Fermi level EF. Low temperature heat capacity

measurements of both LCMO18 and NPMO30 reveal the presence of a finite electronic

contribution γT to the heat capacity. Such a situation can arise in a Shklovskii–Efros6

insulator with a soft–gap (Coulomb–gap) ∆CG, and indeed, we find that ρ in the FMI state

has a Shklovskii Efros variable range hopping (SE–VRH) T dependence:
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ρ = ρ′
0 exp

(

T0

T

)1/2

(1)

where, ρ′
0 = ρ0T

1/2. Here, T0 represents an energy expressed in Kelvin. In right inset of

figure 1 we show a plot of T−1/2 ln ρ versus T−1/2 for T
<
∼ TFMI to show that the ρ follow

equation 1 below TFMI. The experimentally estimated values of ρ0, T0, and ∆CG are listed

in table I. The presented values of ∆CG are in agreement with direct estimation of ∆CG by

angle resolved photoemission spectroscopy (ARPES)7.

We propose that NLC effects in manganites arise due to heating of the electrons because

of the presence of a thermal conductance, that is finite, between the electron bath and the

phonon bath. In this situation the electron bath temperature Te will get decoupled from that

of the phonon bath Tph when the power P input is large. Direct measurements of Tph have

established that during measurements using higher P, Tph does not undergo any substantial

rise (
<
∼ 5 K)4, i.e., the observed NLC cannot be due to heating of the sample because of Joule

dissipation. Within the present model, shown schematically in figure 2, the NLC effects arise

because of a heating of the electron bath. The energy exchange between the two baths is

limited by an effective thermal conductance Λe−ph, modeled empirically as Λe−ph = Λ0T
α.

Thermal conductances generally increase as the temperature is raised, implying α ≥ 1. The

phonon bath, in turn, is linked to the temperature controlled base through a finite thermal

conductance. However, since it is known4 that Tph remains close to the base temperature,

we ignore the finite thermal resistance between the phonons and the base. The heat flow is

thus limited by Λe−ph. Using the relation, ∆T ≡ (Te−Tph) = P/Λe−ph, we obtain a working

relation between Tph, Te, and P:

Te =

(

Tph
α+1 +

α + 1

Λ0

P

)1/α+1

(2)

The values of T0 and ρ0 being known, at fixed Tph, equations 2 and 1 together express

ρ as a function of P in terms of only two parameters, namely α and Λ0. Representative

fits to this hot electron model for LCMO18 and NPMO30 at indicated Tph are shown in

figure 2. It can be seen that the simple model based on two parameters provide good fit

to the data although there are deviations in the regimes of high power. The values of α

and Λ0 based on the hot electron model are listed in table I. We discuss below that these

parameter values can be related to experimentally determined numbers and are completely
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justifiable. In figure 2 we also plot on the right ordinate the variation of Te as a function of

P, as obtained via equation 2. It can be seen that at low power P < 10−6 W, Te is close to

Tph as expected, but at higher power, Te increases rapidly and can be substantially greater

than Tph for P > 10−3 W.

The model proposed here is in the line of similar effects in heavily doped semiconductors8

with carrier concentration near the critical regime of metal–insulator transition. This regime

is known to be dominated by localized electronic states and the conduction process is of the

Shklovskii Efros type with a ∆CG in the DOS. The key difference between the two systems

is in the scale of carrier concentrations and the scale of ∆CG. In doped semiconductors such

as Si, these effects are manifested at carrier concentrations in the range of 1017 to 1018 cm−3,

and with ∆CG ≃ 1 meV. In the present hole doped manganites, the carrier concentrations

are a few 1021 cm−3, and ∆CG is about 2 orders of magnitude larger. Due to the high value of

∆CG these effects are visible in manganites at such high temperatures ∼ 100 K, in contrast

to heavily doped semiconductors where they typically occur below 1 K.

The proposed model can be validated by an independent estimation of the two parameters

α and Λ0 to compare with the values obtained by fitting the model to the NLC data. Reliable

estimates of these parameters can be directly obtained in the following way: a relaxation

time determines the energy transfer between the two baths (electron and phonon). In the

temperature range we are working, the phonon bath heat capacity is much larger than that

of the electronic bath. (For example, even at 50 K, the electronic heat capacity Ce is not

more than 2% of the lattice heat capacity.) Thus the phonon bath acts like an infinite heat

capacity bath to the electrons and in this situation, the relaxation time τe−ph is given by:

τe−ph =
Ce

Λe−ph

(3)

Using Ce = γT, one gets τe−ph ≈ γT1−α/Λ0. γ is known from the heat capacity mea-

surements. To obtain α and Λ0 we need to know τe−ph, which is measured by a step change

experiment as described below. At a given temperature below TFMI, we increase bias cur-

rent I by a step, causing a decoupling of Tph and Te. Since Te needs a finite time to reach

equilibrium, the voltage V across the sample (which measures the resistance, which in turn

depends on Te) lags behind the current step. We measure the time for V to relax to the new

value. An example of such a voltage relaxation experiment for LCMO18 is shown in figure 3.
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The voltage evolution follows a simple exponential function with a single relaxation time,

which we argue is essentially the τe−ph: the fact that the Te changes with a finite relaxation

time when a step power is applied to the electron bath would mean that the resistance,

which is function of Te will evolve with time giving a finite response time for the voltage.

(Note: there may be two other causes for the voltage to respond with finite time: (1) a

capacitive effect, and (2) a finite thermal relaxation time for the lattice temperature to relax

to the temperature controlled bath temperature, i.e., for the sample to thermalize. The first

effect has been tested for and was found absent, and as for the second effect, reasonable

estimates as well as measurements show that this relaxation is an order of magnitude faster

than that seen in the present experiment.) Thus, the measured relaxation time is essentially

τe−ph, which was found to be have a weak temperature dependence. Since τe−ph ∼ T1−α, the

weak temperature dependence implies (α − 1) to be very small, i.e., α ≃ 1. The numerical

value of τe−ph ≃ 200 ms. These facts together yield an estimate for Λ0 ∼ 2−6×10−7 J/K2s.

The values of α and Λ0 determined from the fit to the data using the model (see table I)

are in good agreement with these estimates. Similar agreement was obtained for NPMO30

as well. Thus the simple model is validated by an independent experimental estimation of

parameters.

We note that the electron–phonon energy relaxation which is parameterized through a

single τe−ph, needs a finite Ce, i.e., a non–zero γ. This can only happen when the insulating

state is created by localization type phenomena, i.e., when the sample is not a band insulator.

Presumably therefore, the type of hot electron phenomena that we are proposing would need

a specific type of insulating state, and may not be applicable in other types of insulators, at

least not in the present form.

The deviation between the simple hot electron model and the experimental data at some-

what high power levels can be due to the presence of electronic inhomogeneities in the FMI

state. Tacit in the simple model analysis is an assumption of uniform dissipation of power

within the sample. This assumption is not strictly true for manganites, especially those

having compositions close to M–I phase transition boundaries, as is the case for the com-

positions studied here. The inhomogeneous conductivity can lead to inhomogeneous power

dissipation within the electron system, and thus to an inhomogeneous distribution of Te.

To summarize, we have investigated non–linear conduction in hole doped manganites

in the hole concentration region where they show a FMI state. The insulating state in
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the presence of ferromagnetic order in the hole doped manganites La0.82Ca0.18MnO3 and

Nd0.7Pb0.3MnO3 is caused by electron localization due to Coulomb interaction and the charge

transport is of the SE–VRH type. The value of the Coulomb–gap obtained from the data

are large ≃ 102 meV. We find that a simple model of electron heating can explain the data.

The increase in bias current densities, i.e., increase in input power, leads to a heating up

of the electron bath which is coupled only weakly to the phonon bath via a finite thermal

conductance. The parameters of the model, estimated through independent experiments,

were found to be close to those obtained by fitting the model to the data.
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Composition ρ0 T0 ∆CG Λ0 α

(ΩcmK−1/2) (K) (meV) (W/K1+αm)

LCMO18 5.6 × 10−6 2.5 × 104 200 2 × 10−7 1

NPMO30 1.8 × 10−2 3.9 × 103 40 2 × 10−8 1.3

TABLE I: Shklovskii–Efros transport, ρ0, T0, and Coulomb gap ∆CG, and hot electron model, Λ0

and α parameters.
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List of Figure Captions

FIG.1: Representative resistivity ρ vs current density j data at indicated fixed phonon tem-

perature Tph. Left inset: Temperature T dependent ρ. The respective TFMI’s are

indicated by arrows. Right inset: Shklovskii Efros variable range hopping transport

in the FMI state.

FIG.2: Experimentally observed variation of resistivity ρ as a function of power P for (a)

LCMO18, and (b) NPMO30, at indicated fixed phonon temperature Tph. The re-

spective fits to the hot electron model (shown inset) are also shown. Right ordinate:

calculated variation (using equation 2) of electron temperature Te as a function of P.

FIG.3: A typical voltage V relaxation profile for LCMO18 upon the application of a positive

step change in current bias I at time = 10 s, at indicated phonon temperature Tph.

The solid line is a fitted exponential decay curve used to extract the electron–phonon

relaxation time constant τe−ph. Inset: Tph dependence of τe−ph.
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FIG. 1: Representative resistivity ρ vs current density j data at indicated fixed phonon temperature

Tph. Left inset: Temperature T dependent ρ. The respective TFMI’s are indicated by arrows. Right

inset: Shklovskii Efros variable range hopping transport in the FMI state.
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FIG. 2: Experimentally observed variation of resistivity ρ as a function of power P for (a) LCMO18,

and (b) NPMO30, at indicated fixed phonon temperature Tph. The respective fits to the hot

electron model (shown inset) are also shown. Right ordinate: calculated variation (using equation 2)

of electron temperature Te as a function of P.
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FIG. 3: A typical voltage V relaxation profile for LCMO18 upon the application of a positive step

change in current bias I at time = 10 s, at indicated phonon temperature Tph. The solid line is a

fitted exponential decay curve used to extract the electron–phonon relaxation time constant τe−ph.

Inset: Tph dependence of τe−ph.
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