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Abstract

In this paper we report the results of electrical resistivity (1.5≤ T ≤ 300K)

and point contact spectroscopy (PCS) measurements on single crystals of

metallic sodium tungsten bronze with varying sodium content. We have shown

that the electron- phonon coupling function as measured through PCS can ex-

plain quantitatively the large temperature dependence of resistivity ρ seen in

these materials over the entire temperature range. The electron-phonon cou-

pling function shows predominately large peaks for phonon frequency range

of 30 meV ≤ ω ≤ 100 meV which match well with the calculated optical

phonons for WO6 octahedron. The integrated electron-phonon coupling con-

stant λ from this data is ≈ 0.25-0.45, depending on the Na content.
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I. INTRODUCTION

Electrical conduction in oxides, in particular, in metallic transition metal oxides is a topic

of current interest1,2. Over the last decade three classes of phenomena (namely superconduc-

tivity, colossal magnetoresistance and insulator-metal transition) have kept the oxides in the

center stage. For the high Tc cuprates even the normal state resistivity with a linear tem-

perature dependence is an unresolved issue. While the problem is most severe in the high Tc

cuprates the temperature dependence of the resistivity in the other transition metal oxides

have a number of interesting features in store. To be specific in this paper we are concerned

with normal (i.e, non-superconducting) metallic oxides which show the ρ(T) as in a metal

(i.e, dρ/dT > 0) and would like to investigate whether the temperature dependence of ρ can

be understood quantitatively. In this context two important observations are noteworthy.

First, in these oxides the resistivity even in the metallic state is quite high and second,

the magnitude of the temperature dependence of resistivity, ∆ρ(T)(= ρ(T)-ρ0, where ρ0 is

the residual resistivity) is also very high. In fact, incomparison to conventional metals and

alloys, where the ∆ρ (often ≤100µΩcm) arises from electron-acoustic phonon scattering, the

∆ρ in the metallic oxides can be considered giant. If the source of the extra ∆ρ in oxides

is scattering of electrons by phonons then it is clear that there must exist a source of large

density of phonons in these oxides. Such a contribution has been found in certain oxides.

It was shown in oxides like Ba1−xKxBiO3 (superconductor with Tc ≈17K at x ≈0.47) and

Nd1.85Ce0.15CuO4 (superconductor with Tc ≈ 22K) that the scattering from optical phonons

in these materials make a significant contribution to the temperature dependence of ρ in the

normal state3. These studies obtained the phonon data from the superconducting tunnel-

ing spectroscopy which gives the Eliashberg function α2F (ω) and used it to calculate the

resistivity. This investigation is a very good beginning in the quantitative understanding of

the temperature dependence of the resistivity of metallic oxides. This study, however, had

one big drawback. Most of the data were on polycrystalline thin film or bulk pellets. Also

the samples used for the tunneling data were not the same as those used for the resistivity
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studies. In order to improve upon this, we did a complete investigation with single crys-

talline Sodium Tungsten Bronze system (NaxWO3) and used the same sample for both the

resistivity measurement and the phonon spectra measurement from which the Eliashberg

function α2F (ω) can be obtained for calculation of the resistivity. In this investigation we

take a fresh look into the problem in order to see that the large temperature dependence

of the resistivity seen in the metallic oxides indeed arise from the electron-optical phonon

scattering. By making the investigation on a different and somewhat simple metallic oxide

system we also establish the generality of the phenomena.

Our experiment contains essentially two distinct parts: (1) measurement of the resistivity

ρ over the temperature range 1.5 < T ≤ 300K and (2) measurement of the phonon spectra

(i.e, α2F (ω)) using the technique of point contact spectroscopy done at 4.2K. We then use

the experimental phonon spectra to calculate the temperature dependence of the resistivity.

The point contact spectroscopy (PCS) was first used by Yanson4 to obtain the phonon

spectrum (PS) of conventional metals and dilute alloys from the non-linear current volt-

age characteristics of the point contact junction. This spectroscopy has the main merit

that, it can give the function α2

pcF (ω) which is simply related to the Eliashberg function

α2F(ω) (electron-phonon interaction function) for any metal including those with very weak

electron-phonon coupling. The relation between α2

pcF (ω) and α2F (ω) is essentially a factor

which depends on the geometry of the junction formed between the tip and the sample5,6 as

discussed later on. This method enables one to derive the phonon spectrum of those metals

which are not superconducting. We have thus used this technique to obtain the α2

pcF (ω)

and use this function to fit the resistivity of the metallic sodium tungsten bronzes. It must

be pointed out that this is the first time the phonon spectra is being studied using PCS

technique in this type of metallic oxides.
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II. THE SODIUM TUNGSTEN BRONZE SYSTEM

The sodium tungsten bronze system, (NaxWO3), investigated in this work is a 3-

dimensional cubic perovskite oxide. The corner sharing WO6 octahedra forms a 3-

dimensional network in WO3 which is an insulator because the conduction band formed

by the overlap of oxygen 2p and W 5d orbitals is empty. On addition of Na, it contributes

one electron per Na atom and the conduction band gets filled. For x > 0.2 the system

makes a transition to a metallic state. However,the cubic structure is stabilized only for

x > 0.4. This material is very similar to ReO3 which may be the most metallic of all oxides

and in single crystalline form can be comparable to copper2. In our system for x = 0.9 the

residual resistivity, ρ0 = 3µΩcm which is more metallic than many conventional metallic

alloys. Thus varying x (and hence the electronic concentration) one can go from a good

metallic state to an insulating state. The sodium tungsten bronze system (NaxWO3) has

been well studied because of this composition driven metal-insulator transition seen in this

system7–10. This system has an additional feature that when W is substituted by Ta, the

empty 5d orbitals of Ta compensates for the electrons being introduced by Na. This reduces

the carrier density and also introduces a large disorder. One can thus see the effect of the

disorder on the resistivity much like one does in a conventional alloy. On introduction of

Tantalum in the tungsten site the chemical formula can be written as NaxTayW1−yO3.

To summarize, the tungsten bronze system used by us has three distinct advantages :

(1) the oxide is a simple oxide with a cubic structure, (2) the metallic state can be tuned

to different electron densities by changing x and (3) the Ta substitution allows a way to

introduce disorder into the system. The above three features thus gives us a good system

in which we can make a comprehensive investigation.
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III. EXPERIMENTAL DETAILS

The samples studied were single crystals of composition x=0.9, 0.75, 0.63 and one sample

with Ta substitution with composition x=0.6 and y=0.1 (x − y=0.5). The single crystals

were grown by electrochemical growth from molten bath of sodium tungstate and tungstic

oxide. Details of the sample preparation and characterization are given in the reference9,11.

We essentially followed the same technique.

The effective carrier concentration neff as a function of x or (x − y) is given by the

relation neff = (x−y)/a3

0
, where a0 (the cubic cell dimension) follows the empirical relation

a0=0.0820x+3.7845 Å12. The values of neff calculated using the above relation and that

obtained by Hall measurements13 are tabulated in table I. neff(exp) is larger in comparision

to neff(cal) by few tens of percent. In particular this discrepancy is larger for low neff . The

reason for this discrepancy (while it is not very large) can be the assumption of the free

electron formula for obtaining neff from the Hall coefficient.

The resistivity of the samples were measured from 1.5K to 300K using four probe low

frequency bridge technique15. The contacts to the samples were made by first depositing

Au and leads were attached using silver paint or silver epoxy. Pre-cleaning of the surface

before deposition of the Au is very crucial in this case. The dimension of the samples were

less than 2mm x 2mm x 0.1mm. Because of the finite size of the contacts on the sample,

the error in the measurement of the absolute resistivity is about 10%. The resistances of

the samples measured varied between 1.0mΩ-5.0Ω. We could measure the resistance value

with a precision of 5µΩ.

The point contact spectroscopy was done at 4.2K in a dipper type16 cryostat using Au

as the tip to make the point contact. The tip was formed by electrochemical etching of Au

wire using a solution of HCl, HNO3 and HF in the ratio 3:2:1. We used an ac bias of 5-10

V for etching the Au wire. The I-V characteristics of the Au-sample point contact junction

were taken by a ac modulation method. This directly gives the conductance (dI/dV) of the

junction as a function of V. The bias used were upto 125mV. The junction was in contact

5



with the liquid Helium bath at 4.2K and hence there is no possibility of temperature drifts

when the I-V characteristics were obtained. Typical junction resistances were adjusted to

the order of 5-20 Ohms using a differential screw. The surface of the samples were carefully

cleaned just before mounting the sample and were subjected to minimum exposure to the

atmosphere to avoid contamination of the surface.

IV. RESULTS

A. Resistivity

Figure 1 shows the resistivity of the samples as a function of temperature over the entire

temperature range. The temperature dependence of the resistivity is like a metal and dρ/dT

> 0. It can be seen that the resistivity varies by a large amount by changing the value of

x. In particular the Ta substitution can lead to a big jump in ρ. The value of the residual

resistivity are given in table I. The residual resistivies of the samples agree well with the

pervious reported values8,13. In figure 2 we show the variation of ρ(4.2K) as a function of

x (for x > 0.5) obtained by other investigators14 on single crystals and data obtained from

our single crystals. For samples with x≤0.6 the residual resistivity generally varies within a

factor of 2 depending on the extent of disorder. The exact value of ρ(4.2)K, however does

not affect our experiement or the conclusions.

The temperature dependence till 300K (i.e, ∆ρ(300K)) for the low resistivity samples

are nearly 15-25 µΩ cm. While for the Ta substituted sample this can be as large as 88 µΩ

cm. There is an interesting anomaly to the trend at x=0.75 so that the room temperature

resistivity of this sample is actually lower than that of the x=0.9 sample. This arises because

of partial ordering of Na atoms as has been seen previously13. We will see that this also

affects ∆ρ(300K). A detailed discussion on this issue is beyond the scope of the paper.

Using a free electron model we estimate the mean free path at the two temperatures. The

elastic mean free path l0 as well as the in-elastic mean free path lin at 300K (giving rise

6



to ∆ρ(300K)) are shown in the table I. The elastic mean free path varies strongly as x is

varied and for the Ta-substituted sample l0/a0 ≈2. For the most metallic sample (x=0.9),

l0/a0 ≈ 145. Thus in the range of the composition studied, the electrons are not on the

verge of localisation. Most importantly we are in a position to assess the strength of inelastic

scattering quantified by l−1

in in the presence of varied l0 while keeping the system chemically

unaltered. In comparision to variation of l0 with x the variation of lin is not that severe.

Interestingly the Na ordering in x=0.75 leads to a drastic increase in lin.

B. Point Contact Spectra

In figure 3 as an example we show the second derivative d2I/dV2 obtained from an

experimental dI/dV-V curve for x=0.75. We also show the dI/dV curve for the sake of

completeness. Here dI/dV decreases as —V— is increased and it is a sign of ”metallic”

point contact. The voltage axis directly gives the phonon energy in eV and as stated earlier

d2I/dV2 gives a measure of the phonon density of states. Essentially d2I/dV2 arises from

inelastic scattering of electrons by the phonons. For the other samples the curves were

similar and we donot show them to avoid over crowding of data. As a comparison we show

that data taken on Au (figure 3(a) inset) which acts as reference to show the differences in

the PS of the two classes of metals. For conventional metals the maximum phonon energy is

often < 20 meV. For oxides there is a large density of phonons at energies beyond 20 meV.

It will be our attempt to see whether the phonons seen in the point contact spectroscopy can

give rise to the necessary electron-phonon scattering so that the temperature dependence

of the resistivity can be explained. This requires a qualitative analysis of the experimental

PCS data to obtain the spectral function α2

pcF (ω). It is important to note that the thermal

smearing (≈3kBT=1 meV at 4.2K) is much small compared to the phonon energies which

are relevant for our work. As a result we will not apply any correction to our experimentally

obtained spectra and treat them as essentially the zero temperature spectra.
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V. ANALYSIS AND DISCUSSION

A. Analysis of Point Contact Spectroscopy data

The phonon spectrum can be obtained from the second derivative of the I-V character-

istics of the point contacts from the relation17

d2I

dV 2
= −

2πe3

h̄
ΩeffN(0)F(eV ) (1)

where F(eV ) is the spectral function related to the strength of the inelastic interaction which

gives rise to the features in d2I/dV2, Ωeff is an effective volume of phonon generation within

which the inelastic scattering takes place, N(0) is the density of states at the fermilevel.

When phonons cause the inelastic scattering F(eV ) = α2

pcF (ω) which is related to the

Eliashberg function α2F (ω) by a form factor6. In the measurement of this electron-phonon

interaction by means of point contact, there is a considerable background which is due to

the scattering due to non-equilibrium phonons. Taking this into account the final expression

used for obtaining the α2

pcF (ω) is given by

d2I

dV 2
= const ×



α2

pcF (eV ) + κ

eV
∫

0

α2

pcF (ǫ)

ǫ
dǫ



 (2)

In the case of a heterocontact the spectrum is given by the sum of phonon spectrum (PS)

in both the electrodes18. We have used Au as one of the electrodes and the PS of Au has

features between 10 and 17 meV (see inset of figure 3(a)). By subtracting the PS of Au

one can easily identify the PS of the other electrode. The value of the constant (const)

depends on the regime (ballistic or diffusive) we are working in and this is characterized

by the Knudsen number K ≡ l0/r, where r is the diameter of the contact region17. For

hetero-junctions like ours where electrons in one electrode (like Au) have a very large mean

free path, the l0 of the electrons in the electrode with higher ρ0 limits the Knudsen number

K. In table II the relevant junction parameters are given. Thus the most metallic samples

with K >1 (x=0.9 and 0.75) lie in the ballistic regime, the x=0.63 sample with K ∼ 1 is in

the transition regime and the Ta substituted sample with K ≪ 1 lies in the diffusive regime.
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The difference between the two cases comes in the effective volume of the contact Ωeff

in which the inelastic scattering takes place and which contributes to the non-linearity in

the I-V characteristics17. For x = 0.63 and x=0.6;y=0.1 samples, the necessary corrections

were applied to take into account that the point contacts were diffusive. In the case of the

ballistic regime, the volume Ωeff = 8r3/3 and in the diffusive case Ωeff = πr2l0/4, where l0

is the elastic mean free path of the electron. All the relevant numbers of the point contact

junctions are given in Table II. Eqn. 2 was used to obtain the α2

pcF (ω). The constant κ

was determined using the fact that the observed spectrum coincides with the background

function for eV > h̄ωmax
18. ωmax was chosen to be 125 meV. The above integral equation

has been inverted to obtain the α2

pcF (ω) which will be the total of the contributions from

both the electrodes. Since α2

pcF (ω) is independent of the contact details, we have subtracted

the PS of the Au from this data which contributes a small peak at ω ≈ 10meV and 17meV

as shown in the inset of figure 3(a). The resultant is the phonon spectra of the sample

alone. In figure 4(a) we have plotted the phonon spectra obtained by inverting the d2I/dV2

data for x=0.9, 0.75, and 0.63. The curves have been shifted for the sake of clarity. It can

be seen that there are distinct features at energies between 40-80 meV. We were able to

resolve the spectrum into 6 major peaks by using peak analysis tools. For one spectrum

the contributions are marked by dotted lines and peak positions by arrows. The frequencies

where the peaks occur were essentially unchanged when we vary x, but there was a small

but distinct increase in the spectral weights of the peaks. In figure 4(b) we have shown the

spectral weights (α2

pcF (ω)) of some of the peaks marked in figure 4(a) for x=0.9, 0.75 and

0.63. The peaks 4 and 6 show a constant increase as a function of x but peaks 2 and 5 show

a dip at x=0.75. This sudden decrease at x=0.75 leads to lower electron-phonon coupling

constant and thus can be related to the low ∆ρ value observed for this composition (see

table I).

Before making any mathematical analysis we would first like to establish that the tem-

perature dependence of resistivity ∆ρ(T) or the inelastic mean free path lin really arises from

the phonons particularly from those in the spectra beyond 20meV. For most conventional
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metals the strongest contribution of the phonon spectrum comes from phonons within ω ≤

20meV. The oxides thus differ from the conventional metals in the fact that a large density

of vibrational states extend upto 100meV. The electron phonon coupling constant λ is given

by5

λ = 2

ωmax
∫

0

α2F (ω)

ω
dω (3)

From the experimental curve we obtain α2

pcF (ω). We can connect α2F (ω) and α2

pcF (ω) by

a factor G (α2

pcF (ω) = Gα2F (ω)). The factor G depends on the contact characteristics and

it can be calculated knowing the mean free path l0 and the contact dimension r6. For the

ballastic regime the value is a constant G = 0.25. For the diffusive regime the value is given

by the relation G = ((K-1)/2K)+(1/4K2)×ln(1+2K). The values obtained for our samples

are given in Table II. Using this corrected α2F (ω), we can obtain the value of λ. If the

inelastic scattering of electrons arise from the phonons then l−1

in (which is a measure of the

scattering strength) should increase monotonically with λ. In figure 5 we plot l−1

in (300K)

as a function of λ. This clearly brings out that l−1

in is indeed closely related to λ. This

confirms that the source of the inelastic scattering are the phonons in particular those with

ω > 20meV which have a very large spectral weight in the range ω ≈ 40-80 meV. The value

of λ for weak coupling metals like Cu, Na etc. is ≈ 0.15. For strong coupling Pb, λ = 1.34.

The oxide superconductors mentioned in section I have a λ of about 1.0. Comparing the

values of λ obtained in our samples, we can say that the electron-phonon coupling strength

is weak to intermediate (≈ 0.2-0.4). In the next section we make a quantitative evaluation

of ρ from the phonon data and compare it with the experiment.

B. Analysis of resistivity using the PCS

The temperature dependence of the resistivity ∆ρ(T) can be calculated using the formula

derived by Ziman, in terms of the α2

trF(ω) (electron-phonon transport coupling function)5

∆ρ(T ) =
16π2

ω2
pkBT

×

ωmax
∫

0

h̄ωα2

trF (ω)

(exp[h̄ω/kBT ] − 1)(1 − exp[−h̄ω/kBT ])
dω (4)
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where ωp is the plasma frequency. The transport coupling function differs from the Eliash-

berg function α2F (ω) only by a factor analogous to the relation between α2

pcF (ω) and

α2F (ω). Work by Allen and co-workers19 provides a basis for using α2F (ω) instead of

α2

trF (ω) in the above formula. We thus replace α2

trF (ω) by α2F (ω) in eqn.4. As mentioned

in the previous section, α2F (ω) = (1/G)α2

pcF (ω), hence using the value of G given in table

II, we can evaluate the temperature dependence of the resistivity using eqn 4. The only

unknown parameter in eqn 4 is the plasma frequency ωp which we use as a fit parameter.

The resistivity obtained for the samples, were fitted using the above relation for the

temperature dependent part. The fit are given in figure 6(a)-(d). The maximum fit error are

given in table III. It is interesting to see that the data can be fitted with the experimental

α2

pcF (ω) over the whole temperature range for all the samples. The maximum fit error

≤ ±0.5%. The fit error was random and showed no systematic deviation either at low T or

high T. The fit thus can be considered excellent because the only free parameter available

is the plasma frequency ωp which appears as a multiplicative factor only. The prefactor ωp

obtained in the above relation from the ρ data is listed in table III (ωp(exp)). The table also

contains the values of ωp as observed experimentally by electron energy loss spectroscopy

(LEELS) which we call ωp(obs)20.

For all the samples the value of ωp obtained from the resistivity data ωp(exp) (eqn 4)

and that obtained from LEELS ωp(obs) agree to better than 20% -30%. We think that this

is a very good agreement given the fact that they are obtained from two widely different

techniques. There is, however, a systematic difference. ωp(exp) is always lower than ωp(obs).

One reason for this could be that while ωp(exp) is obtained from the bulk measurements,

ωp(obs) is obtained from the surface sensitive LEELS. In these materials the Na has a

tendency to diffuse to the surface. This makes the surface somewhat Na rich compared to

the bulk and thus the neff at the surface can be somewhat larger than that in the bulk. We

feel this makes ωp(obs) systematically larger than ωp(exp).

For the sake of completeness we would like to investigate whether instead of analysing

ρ(T) using the complete phonon spectra we use a discrete frequency approach. In this case
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we take a Bloch-Gruneisun type of electron-acoustic phonon interaction characterized by

a Debye temperature θD
22 and an electron-optic phonon contribution characterized by a

temperature θE
23. The resulting ρ is given by

ρ(T ) = ρ0 + A
(

T

θD

)5
θD/T
∫

0

x5

(ex − 1)(1 − e−x)
+ B

θE

T
sinh2(θE/2T )

−1

(5)

Results of such a fit is given in the table IV. A typical fit shown in figure 7 for x=0.9 sample.

For comparison we have plotted the fit error obtained using eqns 4 and 5 in figure 8. It is

clear that eqn 5 can be used to fit the ρ vs T curve but the extent of agreement is poorer

compared to that obtained from eqn 4. The value of θD obtained is close to what one expects

for these oxides. From the specific heat data21 on these materials the values of θD are ≈ 300

- 400K. The value of kBθE ≈ 55 - 80 meV. This corresponds very well to some of the peaks

in the phonon spectrum (figure 4a).

Though the values of θD and θE are reasonable, the resistivity can definitely be better

explained by the complete phonon spectrum rather than assuming the above expression 5

to be valid.

C. Effect of Ta substitution

It can be seen from figure 1 that even a small (10%) substitution of W by Ta leads to a

large change in ρ(T). Between the x=0.63 and x=0.6 y=0.1 samples, neff differ by ≈ 20%.

But the change in ρ0 is by a factor of more than 6 and that in ∆ρ(300K) by a factor of

nearly 2. The empty Ta orbitals at random sites thus act as a strong source of disorder in

the system leading to substantial electron scattering which brings down the elastic mean free

path l0 to just twice the cubic unit cell dimension. The comparision of x=0.63 and x=0.6

y=0.1 sample will thus be like comparing a ”metal” and a ”substitutional alloy”.

Our concern in this paper is the temperature dependent part ∆ρ(300K) which changes

by nearly a factor of 2 and the inelastic mean free path lin(300K) which is also quite small

(≈ 27Å) in the Ta substituted samples. We would like to see whether the changes to α2F (ω)
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brought forward by Ta substitution can also explain the temperature dependent part. This

is an important test of our work that the ∆ρ(300K) can be quantitatively explained by the

observed α2F (ω) even when there is large substitutional disorder and the elastic mean free

path is very small.

In figure 8 we show the α2

phF (ω) for the two samples. Ta has very similar mass as W. In

the region ω ≈40 - 60 meV there is a large enhancement of α2F (ω) and the peaks have moved

towards higher ω. The enhancement of the α2

phF (ω) in the region ω ≈ 40 - 60 meV makes

the λ go up by a factor of 1.5. This causes the lin to go down by a factor of 1.75. Thus we see

that the resistivity enhancement ∆ρ(T) can be explained by the enhancement of electron-

phonon interaction in the Ta substituted sample. This can be put into a simple description

that whenever a large change occurs in the phonon spectrum a comparable change is also

seen in the inelastic mean free path. Our above extensive analysis quantitatively establishes

the fact that the temperature dependence of ρ in these oxides can be explained by the

electron-phonon interaction. These modes mostly occur in the range 40 - 100 meV. We next

discuss the origin of these modes and establish that they are optic modes.

D. The optic modes

WO3 is a polar crystal which has a basis consisting of differently charged ions. When Na

is added, the empty conduction band is filled but the polar basis lattice remains unchanged.

NaxWO3 can be considered as a polar metal, which we can define as polar substance (WO3)

with a partially filled conduction band. The structure of the WO3 (ReO3 structure), is a

vacant structure, where the oxygen ions can oscillate with large amplitudes (lower energy).

The frequency of this oscillations correspond to the optical modes of the lattice vibrations. In

a polar crystal, the optical vibrations are accompanied by a displacement and a deformation

potential leading to polarisation. The total polarisation leads to a displacement which causes

a strong coupling between the electrons and the optical phonons24. The optical mode in WO3

corresponds to a temperature of 600K or 50 meV25. As Na is doped into the system, the Na
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occupies the vacant space and the amplitude of the oscillation of the oxygen ions decreases.

This increases the energy corresponding to the oscillations. This shifts the spectral weight

of the different peaks towards higher values of ω (see figure 4a). The phonon frequencies of

NaxWO3 mostly arise from the WO6 octahedra and thus are similar to WO3. The phonon

dispersions in WO3 has been calculated24 and we use this as an identification guide to our

experimental spectra. In WO3 the highest calculated acoustic mode frequencies (at the zone

boundary) is ≈ 25 meV. The lowest peak in α2F (ω) occuring below 30 meV (i.e, peak #1)

is likely to arise from the acoustic phonons. The lowest calculated optical mode frequency

(at zone center) ≈ 33 meV. Thus all the peaks of α2F (ω) for ω > 30 meV are from optical

phonons. At the zone center the calculated phonon frequencies are 33 meV and 77 meV for

ω < 100 meV. At the zone boundary, the phonon frequencies are calculated to be around

ω ≈ 55, 75, 85, 115 meV where the exact position depends on the symmetry directions.

The calculation of electron-phonon interaction parameters show that it is wave vector (q)

dependent and also symmetry dependent24. The resulting α2F (ω) will have to be determined

by an integration of all q using the phonon dispersion curve. Such a calculation is beyond

the scope of this paper. We only note that in most symmetry directions the calculated

electron-phonon interaction parameters reaches a high value for qπ/a0 > 0.5 - 0.75. As a

result peaks in α2F (ω) are expected to occur for values of phonon frequencies intermediate

between those calculated for the zone center (q=0) and zone boundaries (qπ/a0=1). We find

that the observed peaks in α2F (ω) indeed occur between these limits. Also the splitting into

longitudinal and transverse optical modes leads to a maximum of 5 distinct frequencies in

the range 30meV< ω <100meV. This also matches with our observation. This establishes

clearly that the peaks in α2F (ω) indeed are related to the indentifiable optical phonon

frequencies of the WO3 structure. In insulating WO3 the electron-optical phonon coupling

is quite strong due to the polar nature of the material. However, on introduction of Na as x

increases the material becomes conducting which leads to screening of the interaction which

reduces the electron-optical phonon coupling.

The Ta substitution in place of W leads to an increase in the α2F (ω) for ω lying in
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the range 40-60 meV. The α2F (ω) remains unaltered in the other frequency range. This is

rather interesting and allows us to draw some interesting conclusions. The phonon dispersion

calculations show that the lowest optical phonon branches describe a displacement field in

which the W(or Ta) atom moves in one direction and the oxygen atoms move in the other

direction. This leads to a large dipole moment and large electron-lattice coupling. This will

therefore depend strongly on the charge on the W-site and the screening associated with the

atomic charges. When Ta is substituted for W, there is a hole on the W-site. This reduces

significantly the screening and the coupling constant is strongly enhanced. This explains the

increase in the value of the λ in the case of Ta substituted sample (x=0.6 y=0.1) compared

to the x=0.63 sample.

VI. CONCLUSION

In this paper we have brought out the role of optical phonon modes of simple perovskite

oxides in the resistivity. The phonon spectra, better still the electron-phonon spectral fre-

quencies were directly measured by point contact spectroscopy. We find that, there are

distinct phonon modes at enegies between 40-80 meV in the phonon spectrum (α2F (ω)) ob-

tained using point contact spectroscopy. Using this phonon spectrum we are able to explain

the temperature dependence of resistivity of the metallic sodium tungsten bronzes. We have

obtained the values of λ the electron-phonon coupling constant. Comparing this with the

values obtained for other conventional metals and superconductors, we can conclude that

the electron-phonon interaction in this system is in the weak coupling limit. It may not

induce superconductivity but this has significant influence on the temperature dependence

of resistivity. The paper is quantitative and clearly shows that the large temperature de-

pendence of ρ seen in these class of oxides essentially arises from interaction with optical

phonons.

15



REFERENCES

1 A.K.Raychaudhuri, Advances in Phys. 44, 21 (1995) and references therein.

2 ”Electronic Conduction in oxides” by N.Tsuda et. al., Springer-Verlag (1990)

3 N.Tralshawala, J.F. Zasadzinski, L. Coffey, W.Gai, M.Romalis, Q.Huang, R.Vaglio and

K.E.Gray, Phys. Rev B, 51, 3812 (1995)

4 Yanson I.K., Sov. Phys. JETP 39, 506 (1974), Sov. Phys. Solid State 16, 2337, (1975)

5 ”The Electron-Phonon interaction in metals” by G.Grimvall, North Holland, Amsterdam

(1981)

6 I.K.Yanson, I.O.Kulik and A.G.Batrak, Jl. Low Temp. Phys. 42, 527 (1981)

7 ”The metallic and non-metallic states of matter” by P.P.Edwards and C.N.R.Rao, Taylor

and Francis (1985).

8 P.A.Lightsey, D.A.Lilienfeld and D.F.Holcomb, Phys. Rev. B., 14, 4730 (1976)

9 M.A.Dubson and D.F.Holcomb, Phys. Rev. B, 32, 1955 (1985)

10 A.K.Raychaudhuri, Phys.Rev. B, 44, 8572 (1991)

11 P.A.Lighsey, Phys. Rev B 8, 3586 (1973)

12 B.W.Brown and E.Banks, Phys. Rev. 84, 609 (1951)

13 L.D.Muhlestein and G.C.Danielson, Phys. Rev..158, 825 (1967)

14 L.D.Ellerbeck, H.R.Shanks, P.H.Sidles and G.C.Danielson, Jl. Chem. Phys. 35, 298 (1961)

15 S.Banerjee and A.K.Raychaudhuri, Phys. Rev. B 50, 8195 (1994)

16 H.Srikanth and A.K.Raychaudhuri, Cryogenics. 31, 421 (1991)

17 A.M.Duif, A.G.M.Jansen, and P.Wyder, Jl. Phys. Condens. Matter, 1, 3157 (1989) and

references therein.

16



18 R.I.Shekhter and I.O.Kulik, Sov. Jl. Low Temp. Phys 9, 22 (1983)

19 P.B.Allen, T.P.Beaulac, F.S.Khan, W.H.Butler, F.J.Pinski and J.C.Swihart, Phys. Rev

B, 34 4331, (1986)

20 M.D.Hill and R.G.Egdell, Jl. Phys. C. Solid State Phys., 16, 6205 (1983)

21 F.C.Zumsteg, Phys. Rev. B., 14, 1406, (1976)

22 ”Electrons and Phonons”, by J.M.Ziman (Clarendon, Oxford) (1960)

23 D.Howarth and E. Sondheimer, Proc. Roy. Soc. (London) A219, 53 (1953)

24 R. Salchow, R. Libmann and J. Appel, Jl. Phys. Chem. Solids, 44, 245 (1983)

25 B.L.Crowder and M.J.Sienko, Jl. Chem. Phys. 38, 1576 (1963)

17



FIGURE CAPTIONS

Figure 1 Resistivity of the NaxTayW1−yO3 samples.

Figure 2 ρ4.2K values obtained from our investigation and Ellerbeck et.al.14

Figure 3 Point contact spectra. (a)d2I/dV2 for x=0.75 obtained at T=4.2K. Inset shows

the Phonon spectra of Au. (b) dI/dV obtained by modulation technique for the same sample

(R0 ≈ 5Ω).

Figure 4 (a) The point contact electron-phonon interaction function α2

pcF (ω) obtained

using eqn 2. The peaks have been marked following the multiple peaks analysis. (b) The

spectral intensity of some of the peaks as a function of composition x.

Figure 5 The inverse of inelastic mean free path at 300K (l−1

in ) as a function of the electron

phonon coupling strength (λ).

Figure 6(a-d) The fit to the resistivity using eqn.4 for the samples. The only fit parameter

is ωp tabulated in table II.

Figure 7 (a)Fit to the resistivity using eqn.5 for x=0.9 sample. (b) Fit error (%) for the

two fitting schemes ((a) eqn.4 and (b)eqn.5 for x=0.9 sample.

Figure 8 α2F (ω) for x=0.63 and x=0.6;y=0.1 samples. The difference in the spectral

intensities clearly indicate greater electron-phonon interaction strength (characterized by λ)

for the Ta substituted sample.
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TABLE I

Composition neff (calc) neff (exp)13 ρ0 ∆ρ(300K) l0 lin(300K)

x y /cm3 /cm3 µΩ cm µΩ cm Å Å

0.9 - 1.57×1022 1.95×1022 3.20 25.3 550 70

0.75 - 1.32×1022 1.60×1022 6.95 15.3 288 130

0.63 - 1.12×1022 1.49×1022 47.01 42.0 45 47

0.6 0.1 8.91×1021 1.18×1022 330.10 88.0 7.5 27

TABLE II

Composition R† K‡ G∗ r♭

x y Ω Å

0.9 - 5.0 5.0 0.25 110

0.75 - 3.0 1.7 0.25 134

0.63 - 15.0 0.5 0.19 90

0.6 0.1 18 0.09 0.053 83

† : Junction resistance

‡ : Knudsen number

∗ : Correction evaluated using expressions from ref[6]

♭ : Contact dimension calculated using r = (4ρl/3πR)1/2 for Ballastic regime

and Wexler’s interpolation formula for the diffusive regime. (ρ and l are of the

sample, since the contact resistance is limited by the sample because of it higher

resistivity).
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TABLE III

Composition ωp(exp) ωp(obs)20 Fit error

eV eV

x=0.90 2.58 3.14 ± 0.4%

x=0.75 2.83 3.02 ± 0.4%

x=0.63 2.23 2.97 ± 0.5%

x=0.6 y=0.1 2.13 2.77 ± 0.3%

TABLE IV

Composition ρ0 A B θD θE Fit error

µΩ cm µΩ cm µΩ cm K K

x=0.90 3.17 74.55 16.94 356.4 916.6 ± 4.0%

x=0.75 7.00 42.37 7.09 334.6 756.1 ± 2.5%

x=0.63 47.05 67.21 18.62 252.4 645.7 ± 2.5%

x=0.6 y=0.1 330.14 296.19 33.94 328.2 855.2 ± 1.5%
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TABLE CAPTIONS

Table I The important parameters obtained from the transport measurements.

Table II Parameters from the point contact junctions for all the samples used in calcu-

lating the true α2F (ω).

Table III Comparision of plasma frequencies obtained by our method and LEELS20

along with the maximum fit error obtained using eqn.4 to fit the resistivity.

Table IV Parameters obtained from the fit of resistivity to eqn 5.
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