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A theory for the frequency dependence of ionic conductivity of an electrolyte solution is presented.
In this theory contributions to the conductivity from both the ion atmosphere relaxation and the
electrophoretic effects are included in a self-consistent fashion. Mode coupling theory, combined
with time-dependent density functional theory of ion atmosphere fluctuations, leads to expressions
for these two contributions at finite frequencies. These expressions need to be solved
self-consistently for the frequency dependence of the electrolyte friction and the ion conductivity at
varying ion concentrations. In the limit of low concentration, the present theory reduces exactly to
the well-known Debye–Falkenhagen~DF! expression of the frequency-dependent electrolyte
friction when the non-Markovian effects in the ion atmosphere relaxation are ignored and in
addition the ions are considered to be pointlike. The present theory also reproduces the expressions
of the frequency-dependent conductivity derived by Chandra, Wei, and Patey when appropriate
limiting situations are considered. We have carried out detailed numerical solutions of the
self-consistent equations for concentrated solutions of a 1:1 electrolyte by using the expressions of
pair correlation functions given by Attard. Numerical results reveal that the frequency dependence
of the electrolyte friction at finite concentration can be quite different from that given by the DF
expression. With the increase of ion concentration, the dispersion of the friction is found to occur
at a higher frequency because of faster relaxation of the ion atmosphere. At low frequency, the real
part of the conductivity shows asmall increasewith frequency which can be attributed to the
well-known Debye–Falkenhagen effect. At high frequency, the conductivity decreases as expected.
The extensions of the present theory to treat frequency-dependent diffusivities of charged colloid
suspensions and conductivity of a dilute polyelectrolyte solution are discussed.
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I. INTRODUCTION

The dynamics of electrolyte solutions has remained
central area of research in physical chemistry for a lo
time.1–6 Despite vigorous activity over many decades, ma
fundamental problems have remained unsolved which h
led to recurrent attempts by theoreticians to address th
The motion of ions in an electrolyte solution is usually d
scribed by the specific conductivity~s! or by the equivalent
conductance~L! which is the specific conductivity divided
by the molar concentration of the salt. The best known
pression for the equivalent conductance of an electrolyte
lution is the Debye–Huckel–Onsager relation given by7,8

L~c!5L02~A1BL0!Ac, ~1!

whereL(c) is the equivalent conductance of the electroly
when the molar concentration of the salt isc, L0 is the same
at infinite dilution of the electrolyte.A andB are numerical
constants which depend on dielectric constant, viscosity,
temperature of the solution and also on charges of the io

The problem of ion motion can be naturally divided in
several parts. The first is the problem of understanding

a!Electronic mail: amalen@iitk.ac.in
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limiting ionic conductanceL0 , which is determined by the
statics and dynamics of ion–solvent interactions. Signific
progress has been made in recent years in understanding
problem. In particular, it has been pointed out that the
trafast solvation of ions observed in water and acetonit
can play an important role in reducing the magnitude of
electric friction on small rigid ions. This and other aspec
have been reviewed recently in Ref. 6. The second impor
problem is the concentration dependence of the ionic c
ductance in the limit of small concentration, as embodied
the Debye–Huckel–Onsager square root concentration
given above. Many aspects of this law have been clarified
recent years and studies have been extended to hi
concentrations.9–13 However, a fully molecular theory which
is valid at high concentrations, even for the simplest case
strong electrolytes, is yet to be developed. The third imp
tant problem is the motion of ions in the presence of
oscillating electric field.14–20 The last one is the subject o
the present article. The above-mentioned list is by no me
exhaustive.

The motion of ions in the presence of a time-depend
electric field is traditionally described by the frequenc
dependent specific conductivitys~v! wherev is the oscilla-
tion frequency of the external field. The frequenc
6
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the
dependent conductivity is intimately related to t
frequency-dependent electrolyte friction. One of the earl
studies of the frequency-dependent electrolyte friction a
conductivity was that of Debye and Falkenhagen~DF!.14

These authors considered the dynamic effect of the re
ation of ion atmosphere on the motion of an ion. When
ion moves in electrolyte solution, the atmosphere cannot
mediately follow the motion of the central ion and becom
asymmetric causing a retarding effect on the motion of
ion. At zero frequency, this relaxation effect leads to t
BL0Ac term in Eq.~1!. In presence of an oscillating field
the central ion oscillates and the ion atmosphere gets
time to relax and remains less asymmetric. As a result,
effects of the asymmetry of the ion atmosphere is redu
causing a reduction of the electrolyte friction and anen-
hancement of the conductivityat low frequency. At high fre-
quency, the conductivity decreases because the ions osc
so fast that the net ionic motion along a particular direction
smaller than that in the presence of a static or low freque
field. By using a diffusion equation approach for the tim
dependence of ion atmosphere, Debye–Falkenhagen de
the following rather unusual looking expression for t
frequency-dependent electrolyte friction.14

zDF~v!5zDF~0!
11Aq

11@q~12 ivtatm!#1/2
, ~2!

where zDF(0) is the zero-frequency friction,q51/2 for a
symmetric binary electrolyte andtatm is the relaxation time
of the ion atmosphere given by

tatm5
1

~D11D2!qkD
2

. ~3!

Here,D1 andD2 are, respectively, the self-diffusion coeffi
cients of the positive and negative ions andkD is the inverse
Debye screening length given by

kD
2 5

4p

ekBT (
a51

2

raqa
2, ~4!

wheree is the static dielectric constant of the medium,qa

andra are, respectively, the charge of an ion and bulk nu
ber density of speciesa, kB is Boltzmann constant, andT is
the absolute temperature. The DF theory is valid at very
concentrations. For a typical 0.001 M solution of a 1:1 s
tatm;1027 s and, therefore, the dispersion of the DF fricti
for such a solution is predicted to occur in the megahertz
below gigahertz region. The electrophoretic force, on
other hand, responds at rates comparable to that of molec
velocity correlations. The velocity correlation times in sol
tions are of the order of 0.1 ps and thus the dispersion of
electrophoretic contribution occurs at a frequency mu
higher than gigahertz. In DF theory, the frequency dep
dence of the electrophoretic effect is not considered. Th
the well-known Debye–Falkenhagen effectof increasing
conductivity with frequency arises solely from the decrea
of the friction from the ion atmosphere. Thus one immedi
effect of the frequency dependence is the inapplicability
any form like Debye–Huckel–Onsager limiting law.
st
d

x-
n
-

s
e

ss
e
d

ate
s
y

ed

-

w
t,

r
e
lar

e
h
-

s,

e
e
f

Recently Chandra, Wei, and Patey~CWP!19 have ad-
dressed the problem of frequency dependence of ionic c
ductivity. These authors derived analytical expressions
s~v! by employing a non-Markovian equation of motion
the self van Hove function of a tagged ion. By employin
exactly known short and long time constraints upon the io
self van Hove function, these authors derived two clos
form expressions of the frequency-dependent conducti
~models I and II!. Model I depends on an expression of th
frequency-dependent diffusion coefficient which ensures
the short time dynamics up to the second frequency mom
and the long time dynamics of the self van Hove function
described correctly. The final expression of the conductiv
is described by a multiple Debye form19

s~v!5
1

kBT (
a51

2 raqa
2Da

12 ivDama /kBT
, ~5!

wherema is the mass of an ion of speciesa. Model II of
CWP is based on a different expression of the frequen
dependent diffusion coefficient which correctly describes
short time dynamics up to the fourth frequency moment a
also the long time dynamics of the ionic self van Hove fun
tions. In this model,s~v! is given by19

s~v!5
1

kBT (
a51

2

raqa
2F DaVa

22 ivkBT/ma

Va
22v22 ivDaVa

2ma /kBT
G ,

~6!

whereVa is the Einstein frequency of an ion of speciesa.
We note thatVa

2 is proportional to the mean square forc
acting on an ion. The results of CWP were compared w
those of molecular dynamics simulations. Their theory is
pable of predicting the Debye–Falkenhagen effect at l
frequency and was found to provide a reasonable descrip
of the ionic motion at high frequency when there were no
pairs and tightly bound solvation shells in the solution19

However, for many complex systems, the theory of CW
was found to be inadequate which, in part, can be attribu
to the absence of full self-consistent calculation of t
frequency-dependent electrolyte friction in this theory. It
clear that further work is needed to fully understand the io
conductivity at finite frequency.

More recently we have developed a self-consist
theory of the zero-frequency conductivity which describ
the ionic flow when a static field is applied.12,13The theory is
based on a combination of the mode coupling theory and
time-dependent density functional approach and inclu
both ion atmosphere relaxation and electrophoretic effe
The theory correctly goes over to the well-known Deby
Huckel–Onsager~DHO! law7,8 in the limit of very low ion
concentration. In addition, it remains valid in the mu
higher concentration regime where the DHO limiting la
fails completely. In the present paper, we extend the abo
mentioned theory to investigate electrolyte friction and co
ductivity at finite frequencies.

In this work, we derive self-consistent expressions
the frequency-dependent electrolyte friction and the cond
tivity which incorporate the details of the static and dynam
ion–ion correlations and also the effects of self-motion of



tr
e

cy
i

m
o
s
v

no
. I
de
ro
e
m

on
-

Th
t
e

d-

nc
ry

n-
i

la
pr
a
ar
In

nc
. A
io
la
ow
e
io
ed
e

. I
th

. I
b

ric
n
y
oid
so

si
t o
ly
b

di
e

his
of

the

he
he
his

vin

d
y-
m

rk,
y-
lf-
nt

e

n-
an,
tric

on
ma-
ns
c-

ed

ork.
ions. Both the ion atmosphere relaxation and the elec
phoretic effects are calculated at finite frequency and th
contributions are combined to obtain the frequen
dependent friction and the conductivity. Self-consistency
essential in this problem because the dynamics of ion at
sphere relaxation and the electrophoretic friction depend
the mobility of the ions themselves. And the mobility of ion
depends on the relaxation of these two effects. The abo
mentioned self-consistency also demands an inherently
Markovian theory for the relaxation of the ion atmosphere
is shown that the DF expression of the frequency-depen
electrolyte friction can be recovered from the present mic
scopic theory in the limit of low ion concentration when th
finite sizes of the ions are ignored and the collective dyna
ics of the ion atmosphere is described by diffusional moti
Thus, the validity and the limitations of the DF friction be
comes clear from the present microscopic approach.
present theory also reproduces the expressions of
frequency-dependent conductivity derived by Chandra, W
and Patey19 when appropriate limiting situations are consi
ered.

Numerical results show that the frequency depende
of the electrolyte friction at finite concentration can be ve
different from that given by the DF expression. With i
crease of ion concentration, the dispersion of the friction
found to occur at a higher frequency because of faster re
ation of the ion atmosphere. Numerical results are also
sented for the frequency dependence of the real and im
nary parts of the conductivity. At low frequency, the real p
of the conductivity changes rather weakly with frequency.
fact, the real part shows a slight increase at low freque
which can be attributed to the Debye–Falkenhagen effect
high frequency, the conductivity decreases because the
oscillate so fast that the net ionic motion along a particu
direction is smaller than that in presence of a static or l
frequency field. The Cole–Cole plots of the conductivity r
veal a nearly Debye behavior of the conductivity dispers
for very dilute solutions. As the concentration is increas
the dispersion becomes non-Debye at low frequency du
Debye–Falkenhagen effect.

The organization of the rest of the paper is as follows
Sec. II, we present the theory and in Sec. III, we discuss
reduction to the Debye–Falkenhagen expression. In Sec
we show how the conductivity expressions of CWP can
recovered from the present theory. We discuss the nume
results in Sec. V. Section VI concludes with a summary a
a brief discussion on the extensions of the present theor
treat frequency-dependent diffusivities of charged coll
suspensions and conductivity of a dilute polyelectrolyte
lution.

II. THEORETICAL FORMULATION

We consider an electrolyte solution consisting of po
tive and negative ions immersed in a continuum solven
dielectric constante. The ions interact through a spherical
symmetric short-range potential and a long-range coulom
interaction potential which is scaled by the value of the
electric constant. The pair potential of interaction betwe
two ions of chargeqa andqb is given by
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uab~r !5uab
SR~r !1

qaqb

er
, ~7!

wherer is the distance between the two ions anduab
SR(r ) is a

spherically symmetric short-range interaction potential. T
so-called primitive model is well known in the studies
structure and dynamics of electrolyte solutions.21 Through-
out this paper, we label the positive ions as species 1 and
negative ions as species 2. We denote the position~r ! and
time ~t! dependent number density of speciesa as ra(r ,t)
and its Fourier transformra(k,t) is defined by

ra~k,t !5E
2`

`

dreik•rra~r ,t !. ~8!

In this paper, we are interested in calculating t
frequency-dependent friction on a moving ion and t
frequency-dependent conductivity of the solution. For t
purpose, we consider a single tagged ion of chargeqs . The
velocity of the tagged ion isvs(t) at timet. Its time evolution
can be described by the following generalized Lange
equation:21

]

]t
vs~ t !52E

0

`

dt zs~ t2t8!vs~ t8!1 f s~ t !, ~9!

wherezs(t) is the total friction acting on the single tagge
ion and f s(t) is the so-called random force. The frequenc
dependent frictionzs(v) is defined as the Laplace transfor
of zs(t),

zs~v!5E
0

`

dt eivtzs~ t !. ~10!

The self-diffusion coefficientDs(v) is related to the
friction zs(v) by the following generalized Einstein
relation:21

Ds~v!5
kBT

m
@2 iv1zs~v!#21, ~11!

wherems is the mass of the tagged ion. In the present wo
our focus will be on the calculation of the frequenc
dependent frictionzs(v) and the frequency-dependent se
diffusion coefficientDs(v). Once the frequency-depende
self-diffusion coefficientDs(v) is known, the frequency-
dependent conductivitys(v) can be calculated by using th
following generalized Nernst-Einstein relation;19,21

s~v!5
1

kBT (
a51

2

raqa
2Da~v!, ~12!

wherera andqa are defined in Sec. I. We note in this co
text that the frequency-dependent electric conductivity c
in general, be related to the Fourier transform of the elec
current–current time correlation function.21 Since the electric
current is a collective dynamical quantity, its time correlati
function comprises a self part that corresponds to a sum
tion over the velocity autocorrelation functions of the io
and a cross part involving the sum of the correlation fun
tions of the velocities of distinct ions. The generaliz
Nernst–Einstein relation@Eq. ~12!# includes only the self
part and thus the cross part is ignored in the present w
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Although the importance of the cross part is smaller than
self part, it may not be negligible at high ion concentratio
However, at low and moderate concentrations, the contr
tion of the cross part is expected to be rather small.
example, at 0.5 M concentration of aqueous NaCl soluti
an analysis of the simulation data of self-diffusion coe
cients and conductivity reveals that the cross term redu
the static conductivity by less than 5%.11 We also note that
the solvent is considered to be a dielectric continuum in
present theory. At high concentrations, the molecular det
of the ion–solvent and solvent–solvent correlations may
come important. Because of these approximations,
present theory is limited to solutions of not too high conce
tration.

The total friction acting on the tagged ion can be deco
posed into two parts. The first part is due to the microsco
interaction of the tagged ion with the surrounding solve
molecules and ions and the second part originates from
hydrodynamic coupling of the velocity of the tagged ion w
the current modes of the surrounding particles. Thus,
total friction on the tagged ion can be written as22

1

zs~v!
5

1

zs;mic~v!
1

1

zs;hyd~v!
. ~13!

As discussed in Ref. 22, Eq.~13! has a simple physica
interpretation. A tagged ion diffuses by two mechanism
The first one is by the random walk caused by its interacti
with the surrounding solvent and ion molecules. The sec
is the random walk caused by the natural currents or flo
present in the liquid. These two contributions to diffusio
are additive, as they originate from two different types
motions. However, the mechanisms are coupled at a dyna
level which, in this theory, enters nicely through se
consistency mentioned earlier.

The microscopic friction is most easily analyzed by u
ing the Kirkwood’s formula23 for friction which expresses i
in terms of an integration over the force–force time corre
tion function. Since the time-dependent force on the tag
ion has contributions from solvent density and polarizat
fluctuations and also from ion atmosphere fluctuations,
can decompose the total microscopic friction into a solv
contributionzs;mic(c50)24,25 which is assumed to be a con
stant independent of ion concentration and a concentrat
dependent ion contributiondzs;mic(v). In the present work,
we calculate the frequency dependence of the ion contr
tion to the microscopic friction. Thus, the solvent contrib
tion is not calculated in the present work. It determines
ion diffusion at infinite dilution whose value is assumed
be known from experiments.

The hydrodynamic contribution originates from the co
pling of the ion velocity to the relevant current modes of t
solution. Mode coupling theory directly provides an expre
sion of the contribution of the currents of the system to
diffusion coefficient, that is, inverse of friction.26–28 Since
the current modes of the solution consists of both the solv
and ion currents, the hydrodynamic contribution to the to
friction can be expressed as12,13
e
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zs;hyd~v!
5

1

zs;hyd~c50!
1

1

dzs;hyd~v!
, ~14!

where zs;hyd(c50) is the viscous friction which also in-
cludes the additional dielectric friction contribution due
the polarization current29,30 and dzs;hyd(v) represents the
electrolyte friction on the tagged ion due to coupling with th
ion atmosphere current, which is commonly known as t
electrophoretic effect. In the following, we calculate the fr
quency dependence of the ion atmosphere contributi
dzs;mic(v) anddzs;hyd(v).

A. Calculation of the time-dependent microscopic
friction, dzs ,mic „t …

The time-dependent microscopic electrolyte frictio
dzs,mic(t), is calculated by using the following Kirkwood
formula:23

dzs,mic~ t !5
1

3kBT E dr ^F~r ,t !F~r ,0!&, ~15!

where F(r ,t) is the time-dependent force exerted on t
tagged ion due to its interaction with all other ions in th
solution. An expression forF(r ,t) can be obtained from
time-dependent density functional theory and the mic
scopic friction can be formally expressed as an integral o
the wave vector space in the following form:13,31

dzs,mic~ t !5
kBT

3~2p!3 (
a,b

E dk k2csa~k!Ararb

3Gab~k,t !csb~k!Fs~k,t !, ~16!

where Fs(k,t) is the self-dynamic structure factor of th
tagged ion.Gab(k,t) is the ionic van Hove function defined
by

Gab~k,t !5~NaNb!21/2^ra~k,t !rb~2k,0!&, ~17!

where ^¯& denotes average over an equilibrium ensemb
Na andNb are, respectively, the number of ions of speciesa
and b in the solution. We denoteGab(k,v) as the
frequency-dependent van Hove function obtained by Lapl
transformation ofGab(k,t). Use of time-dependent densit
functional theory leads to the following equation for th
frequency-dependent van Hove function:13,32

Gab~k,v!5@2 iv1Da~v!k2#21Sab~k!

1
Da~v!k2

2 iv1Da~v!k2

3 (
g51

2

Arargcag~k!Ggb~k,v!, ~18!

where the frequency-dependent diffusion coefficientDa(v)
is related to friction by Eq.~11!. Sab(k)5Gab(k,t50)
where Sab(k) is the partial static structure factor betwee
speciesa andb. Sab(k) is related to the Fourier transform o
the pair correlation functionhab(k) by the following rela-
tion:

Sab~k!5dab1Ararb hab~k!. ~19!
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The four coupled equations (a,b51,2) as given by Eq.
~18! can be solved analytically to obtain the following e
plicit results for the frequency dependence of the ionic v
Hove functions:

G11~k,v!5
1

Z~k,v!
@$2 iv1D2~v!k2~12r2c22~k!!%

3S11~k!1D1~v!k2Ar1r2c12~k!S21~k!#, ~20!

G12~k,v!5
1

Z~k,v!
@$2 iv1D2~v!k2~12r2c22~k!!%

3S12~k!1D1~v!k2Ar1r2c12~k!S22~k!#, ~21!

G21~k,v!5
1

Z~k,v!
@$2 iv1D1~v!k2~12r1c11~k!!%

3S21~k!1D2~v!k2Ar1r2c21~k!S11~k!#, ~22!

G22~k,v!5
1

Z~k,v!
@$2 iv1D1~v!k2~12r1c11~k!!%

3S22~k!1D2~v!k2Ar1r2c21~k!S12~k!#, ~23!

where

Z~k,v!52v22 ivD~k!@D1~v!k2S22~k!1D2~v!k2S11~k!#

1D1~v!D2~v!k4D~k!, ~24!

and

D~k!5@S11~k!S22~k!2S12~k!2#21. ~25!

In deriving Eqs.~20!–~25! we have also used the followin
relation betweencab(k) and Sab(k) for a two-component
system:

12r1c11~k!5D~k!S22, ~26!

Ar1r2c12~k!5D~k!S12~k!, ~27!

and a similar relation betweenc22(k) andS11(k). These re-
lations can be derived from the Ornstein–Zernike equati
relating the direct and the pair correlation functions.21 We
note that the time dependence of the van Hove functions
be obtained through Laplace inverse transformation. T
Laplace transform of the self-dynamic structure factor of
tagged ion can be described by

Fs~k,v!5
1

2 iv1Ds~v!k2
, ~28!

whereDs(v) is the frequency-dependent self-diffusion coe
ficient of the tagged ion. We still require the solutions of t
static structure factors and the direct correlation functions
the calculation of the microscopic electrolyte friction. W
note that the direct correlation functions are related to
static structure factors by Eqs.~26! and ~27! and the static
structure factors are related to the pair correlation functi
by Eq. ~19!. Thus, we require the solutions of the pair co
relation functions for the calculation of the quantitiesSab(k)
andcsa(k). We need to specify the nature of the short-ran
interaction between ions for this purpose. We consider
ions to be charged hard spheres with their diameters bec
n
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ing the parameters of the model solution and we use
solutions of Attard33 for the ionic pair correlations which ar
quite accurate even at high concentrations.

B. Calculation of the hydrodynamic friction—The
electrophoretic term

The ion atmosphere contribution to the hydrodynam
friction originates from the coupling of the tagged ion velo
ity with the collective ion current of the system.12,13A formal
expression of this friction can be derived from mode co
pling theory by usingrc(k) j (2k) as the relevant binary
product whererc(k) and j (k) are, respectively, the charg
density and total ion current of the solution. The hydrod
namic friction is then given by

kBT

dzs,hyd~v!
5E

0

`

dt eivt(
k

(
k8

^u0x ,rc~k!j ~2k!&

3^rc~k!j ~2k!,rc~k!j ~2k!&21

3^rc~k!j ~2k!,eiLtrc~k8!j ~2k8!&

3^rc~k8!j ~2k8!,rc~k8!j ~2k8!&21

3^rc~k8!j ~2k8!,u0x&, ~29!

whereu0x is the velocity of the tagged ion along a particul
direction~say,x! andeiLt is the time evolution operator. Th
vertices and the time correlation function in Eq.~29! can be
evaluated to obtain the following formal expression for t
hydrodynamic friction:

kBT

dzs,hyd~v!
5

1

3p2N
E

0

`

dt eivtE dk k2@q11r1q1h11~k!

1r2q2h12~k!#2(
ab

Ararbqaqb

3@Fsa~k,t !dab1ArarbGab
d ~k,t !#

3F(
ab

Ararbqaqb$dab1Ararbhab~k!%G22

3@CL~k,t !12CT~k,t !#, ~30!

whereN is the total number of ions in the solution.Fsa(k,t)
is the self van Hove function of an ion of speciesa, and
Gab

d (k,t) is the so-called distinct van Hove function betwe
speciesa andb. CL(k,t) andCT(k,t) are, respectively, the
longitudinal and the transverse current correlation functio
of the ions. The decay of the longitudinal current occurs a
much faster time scale than that of the transverse curre21

For nonpolar liquids, it is known that the contribution of th
longitudinal current to zero and low frequency friction
negligible ~less than 5%! compared to the transvers
term.26,27 Therefore, the contribution of the longitudinal cu
rent relaxation to the hydrodynamic friction is expected to
important only at very high frequency and we have ignore
in the present calculations. We also note that it is the tra
verse part which leads to the Stokes–Einstein relation
nonpolar molecules.27 For electrolytes, the transverse ter
leads to the electrophoretic term of Debye–Huckel.13 In the
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present work, we also assume a symmetric binary electro
with ions of equal size such thath11(k)5h22(k). Equation
~30! then simplifies to

kBT

dzs,hyd~v!
5

2

3p2rN E
0

`

dt eivtE dk k2Fs~k,t !CT~k,t !

1
2

3p2rN E
0

`

dt eivtE dk k2@r1G11
d ~k,t !

2r2G12
d ~k,t !#CT~k,t !, ~31!

wherer is the total ion density of the solution. We note th
the first term on the right-hand side of Eq.~31! gives the ion
contribution to the usual Stokes~or viscous! friction and the
second term represents the so-called electrophoretic fric
In the following calculations, we will focus on the electro
phoretic friction only because it is the most important hyd
dynamic contribution to the total ionic friction. We also no
that the relaxation of the transverse velocity correlation fu
tion occurs much faster than the distinct van Hove functio
so thatG11

d (k,t) and G12
d (k,t) in Eq. ~31! can be approxi-

mated by their zero time valuesh11(k) and h12(k), respec-
tively. Since the transverse current does not couple with d
sity relaxation, its relaxation can be described quite well
an exponential function with a relaxation time inversely p
portional to the shear viscosity of the medium as follows

CT~k,t !5
NkBT

2m
e2hk2t/rm. ~32!

We note that the decay of the transverse ionic curren
given by Eq.~32! is different from that of the pure solvent i
the sense that the viscosity which appears in Eq.~32! is
concentration dependent. In the numerical calculations, h
ever, the viscosity is taken as an input parameter. We n
substitute Eq.~32! in Eq. ~31! to obtain the following simple
expression for the frequency-dependent electrophoretic
tion:

kBT

dzs,hyd~v!
5

kBT

3p2rm
E

0

`

dt eivtE dk k2@r1h11~k!

2r2h12~k!#e2hk2t/rm. ~33!

We have solved Eqs.~16! and ~33! for the microscopic
and the electrophoretic frictions iteratively to obtain the se
consistent results of the frequency-dependent electrolyte
tion at varying concentrations. The results of frequen
dependent friction are then used to calculate the freque
dependent ion diffusion and conductivity by using Eqs.~11!
and ~12!, respectively.

III. DERIVATION OF DEBYE–FALKENHAGEN FORM
OF FREQUENCY-DEPENDENT FRICTION

In this section we identify the limiting conditions unde
which the present theory reduces to the well-known Deby
Falkenhagen expression@Eq. ~2!# of the frequency-dependen
electrolyte friction. We note that in Debye–Falkenhag
theory, the frequency dependence of only the ion atmosp
relaxation contribution is considered and that of the elec
te

t
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phoretic term is ignored. Accordingly, we consider only t
microscopic electrolyte friction as given by Eq.~16! and re-
write it in the following form:

dzs,mic~ t !5
kBT

3~2p!3 E dk k2@Cs~k!#@G~k,t !#

3@Cs~k!#†Fs~k,t !, ~34!

where@Cs(k)# is a row matrix defined by

@Cs~k!#5@Ar1cs1~k!Ar2cs2~k!#, ~35!

and @Cs(k)#† is the transpose of@Cs(k)#. @G(k,t)# is the
232 van Hove function matrix with elementsGab(k,t),
a,b51,2. Clearly, @G(k,t)# becomes the structure facto
matrix @S(k)# at t50. We assume that the ions are point io
and use Debye–Huckel~DH! theory34 of ion–ion pair corre-
lations. The ion–ion partial structure factor is then given

Sab~k!5da,b2
4pqaqbArarb

ekBT

1

k21kD
2

, ~36!

where the inverse Debye screening lengthkD is defined by
Eq. ~4!. The ion–ion direct correlation function for the poin
ions in DH theory can be obtained by combining Eqs.~26!
and ~27! and ~36! and it is given by

cab~k!52
4pqaqb

ekBT

1

k2
. ~37!

We next assume that the relaxation of the ionic v
Hove functions is described by diffusional motion. That
we ignore the frequency dependence ofDa(v) in Eq. ~18!
and replace it by its zero-frequency valueDa and solve the
resultant equation in the time domain to obtain

@G~k,t !#5@S~k!#exp~2@D#k2t@S~k!#21!. ~38!

where @D# is the diagonal matrix of self-diffusion coeffi
cients. When Eqs.~36!–~38! are substituted in Eq.~34!, the
resultant integral over the wave vectork can be evaluated
analytically35 and the final result of the time-dependent m
croscopic electrolyte friction is given by

zs,mic~ t !5
qs

2kD
2

3e F e2DkD
2 t

A2pDt
1kDeDkD

2 t$F~A2kD
2 Dt !21%G ,

~39!

whereF(x) is the error function and it is assumed that
ions have the same diffusion coefficientD. We note that Eq.
~39! of time-dependent electrolyte friction becomes identi
with the one derived by de Leonet al.35 when the diffusion
coefficientD in the right-hand side of Eq.~39! is replaced by
D0, which is the value of the ion diffusion coefficient in th
limit of infinite dilution.

The Laplace transform of Eq.~39! can be carried out
analytically36 to obtain the following expression of th
frequency-dependent friction:

zs;mic~v!5
qs

2k

6eD

1

11
1

&
@12 iv/Dk2#1/2

. ~40!
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The zero-frequency microscopic electrolyte friction is giv
by13

zs;mic~0!5
qs

2k

6eD
~22& !, ~41!

We next substitute Eq.~41! in Eq. ~40! and rewrite the re-
sultant expression of the frequency-dependent friction in
following form:

zs;mic~v!5zs;mic~0!
11Aq

11Aq@12 ivtatm#1/2
, ~42!

where q and tatm are defined in Sec. I. Equation~42! is
identical to the DF expression@Eq. ~2!#. Thus, it is clear from
the above-mentioned analysis that the present microsc
theory reduces to the DF theory in the limit of low ion co
centration when finite sizes of the ions are ignored, elec
phoretic effects are not included, and the collective dynam
of the ion atmosphere relaxation is described by diffus
motion.

It may be noted that the DF theory incorporates the cr
dynamical coupling of ions at the level of ion atmosphe
relaxation~or the ionic van Hove functions! and not at the
level of ionic velocity or current relaxation. Thus, the D
expression of ion atmosphere friction does not include
effects of the so-called current cross terms. The DF exp
sion is treated as the limiting expression of ion atmosph
friction when current cross terms are ignored and it is sho
that the present microscopic theory correctly goes ove
this limiting expression at the limit of very low ion concen
tration. Also, the contribution of the cross correlation is e
pected to be minimal at very low ion concentration where
DF theory is valid.

IV. DERIVATION OF THE CONDUCTIVITY
EXPRESSIONS OF CHANDRA, WEI, AND PATEY

In this section we describe how the CWP expressions
the frequency-dependent conductivity can be recovered f
the present theory. To recover the expression of model I@Eq.
~5!#, we ignore the frequency dependence ofzs(v) in Eq.
~11! and replace it by the zero-frequency valuezs so that

Ds~v!5
kBT

ms

1

2 iv1zs
5

Ds

12 ivDsms /kBT
, ~43!

where, in deriving the second equality, we have used
Einstein relationzs5kBT/Dsms . On combining Eq.~43!
with the Nernst–Einstein relation@Eq. ~12!#, one gets Eq.
~5!, which is the CWP model I expression of the frequenc
dependent conductivity. Thus, in this limiting case, the f
quency dependence of the conductivity originates entir
from the inertial effects. Also, whenD15D2 andm15m2 ,
the frequency dependence of the conductivity is described
a simple Debye form,19

s~v!5
s

12 ivDm/kBT
, ~44!

wheres is the conductivity at zero frequency. We note th
the simple Debye form has been used in the literature a
empirical expression fors~v!.15
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To recover the expression of model II@Eq. ~6!#, we ig-
nore the hydrodynamic effects so thatzs(t)5zs;mic(t) and
we write the total friction as

zs~ t !5
1

3kBT E dr ^F~r ,t !F~r ,0!&, ~45!

whereF(r ,t) is the total force~including the solvent contri-
bution! acting on the tagged ion at timet. Clearly,zs(t50)
is described by the zero-time force–force correlation

zs~ t50!5
1

3kBT E dr ^F~r ,0!F~r ,0!&5Vs
2, ~46!

whereVs is the Einstein frequency21 of the tagged ion. We
next assume an exponential decay ofzs(t) so that

zs~ t !5Vs
2e2t/ts. ~47!

where relaxation timets can be eliminated in favor of the
diffusion coefficientDs by using the above-described Ein
stein relation and the resultant expression after Laplace tr
formation gives

zs~v!5
Vs

2

2 iv1DsmsVs
2/kBT

. ~48!

Equation~48!, on combining with Eqs.~11! and ~12!, gives
Eq. ~6!, which is the CWP model II expression fors~v!.
Thus, in this model, the frequency dependence of conduc
ity originates from both the inertial and the non-Markovia
effects. We also note that although the hydrodynamic effe
such as electrophoretic contributions are not explicitly
cluded in this model, such effects can be implicitly includ
to some extent by using proper experimental values of
zero-frequency diffusion coefficients.

V. NUMERICAL RESULTS AND DISCUSSION

We present numerical results of the frequency dep
dence of friction and conductivity for solutions of varyin
ion concentration. In the numerical calculations, all ions
the solutions are assumed to be of equal diameters and
equal massm for simplicity. The solutions are considered
be of a symmetric salt such that the charge of each pos
ion is q1 and that of each negative ion is2q1 and r15r2

and alsoD15D2 . The solutions can be completely specifie
by specifying the values of the reduced chargeq1*
5Aq1

2/kBTs, the reduced ion densityr1* 5r1s3, and the
dielectric constante. The values ofe and q1* for all the
solutions are 80 and 14.1, respectively. The abo
mentioned value of the reduced charge corresponds to
charge of a univalent ion of diameter 2.82 Å atT5298 K.

In the numerical calculations, the self-consistent eq
tions of the microscopic and electrophoretic frictions a
solved iteratively. We first calculate the zero-frequency el
trolyte friction and the zero-frequency diffusion coefficie
D. This zero-frequency diffusion coefficient is then used
the initial guess for the frequency-dependent diffusion co
ficient D(v) and we calculate the frequency-dependent io
van Hove @Eqs. ~20!–~23!# and self van Hove@Eq. ~28!#
functions. The time dependence of these van Hove functi
are then calculated through numerical inverse Laplace tra
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formation. This leads to the calculation of the tim
dependent microscopic frictionzs;mic(t) @Eq. ~16!#, which is
then numerically Laplace transformed to obtainzs;mic(v).
The electrophoretic friction is calculated from Eq.~33!.
These two frequency-dependent frictions are then comb
to obtain the new values ofD(v) from Eq. ~11!. The entire
process is repeated several times until convergence
achieved.

We decompose the frequency-dependent microsc
electrolyte friction into its real and imaginary parts as fo
lows:

dzs;mic~v!5dzs;mic8 ~v!1 idzs;mic9 ~v!. ~49!

Similar decomposition is also made for the electrophore
friction and the conductivity functions as these are all co
plex quantities at finite frequencies. In Figs. 1~a! and 1~b!,
we have shown the frequency dependence of the real
imaginary parts of the microscopic electrolyte friction f
r1* 50.000 135. The above-mentioned value of the redu
ion density corresponds to a 0.01 M solution fors52.8 Å.
Thus, this solution corresponds to 0.01 M solution of a
electrolyte at room temperature. The corresponding res
for a 0.1 molar solution are shown in Figs. 2~a! and 2~b!. The
values of the friction at different frequencies are normaliz
by its zero-frequency value and the reduced frequencyv*
5vs2/D. In the present calculations, we have usedh
58.9531023 g cm21 s21, D052.031025 cm2 s21 and m
540 amu whereD0 is the ionic diffusion coefficient at infi-

FIG. 1. The frequency dependence of the~a! real and~b! imaginary parts of
the microscopic electrolyte friction on an ion in a 0.01 M solution of a 1
electrolyte. The solid and the dashed curves represent, respectively, th
sults of the present theory and of Debye–Falkenhagen expression@Eq. ~2!#.
d
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ic
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nite dilution. In Figs. 1 and 2, the results of DF friction@Eq.
~2!# are also included for comparison. At low concentrati
and at low frequency, the results of the present theory
found to be quite close to the DF results. However, at h
concentration, the results of the present theory show sig
cant departure from the DF results, especially at high f
quency. Also, with increase of ion concentration, the disp
sion of the electrolyte friction is found to occur at a high
frequency because of faster relaxation of the ion atmosph

In Fig. 3, we have shown the frequency dependence
the electrophoretic term for the 0.1 M solution. The disp

re-

FIG. 2. The frequency dependence of the~a! real and~b! imaginary parts of
the microscopic electrolyte friction on an ion in a 0.1 M solution. T
different curves are as in Fig. 1.

FIG. 3. The frequency dependence of the electrophoretic friction on an
in a 0.1 M solution. The solid and the dashed curves represent, respect
the real and the imaginary parts.
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ions,
sion of the electrophoretic contribution is seen to occur a
much higher frequency as one would expect. In fact, a
noticeable change in the electrophoretic term is found o
above v* 5103, which corresponds to a frequency we
above the gigahertz region. The dispersion of the solv
contribution to the ionic friction, which is assumed to be
constant in the present calculations, is also expected to o
in this frequency domain. The solvent contribution, being
larger effect, may dominate the dispersion of the total io
friction at such high frequencies.

The results of the frequency dependence of real
imaginary parts of the ion conductivity are shown in Fig
4~a! and 4~b! for the 0.01 and 0.1 M solutions. The ion
charges are the same as in Fig. 1. The real part shows a s
increase at low frequency and then it decreases at high
quency as one would expect. The initial increase at low
quency can be attributed to the Debye–Falkenhagen effe
is seen that the primary dispersion of the conductivity occ
at a much higher frequency than that of the microscopic e
trolyte friction. The dispersion of the microscopic electroly
friction is primarily determined by the inverse relaxatio
time of the ion atmosphere. The frequency dependence o
conductivity, on the other hand, is determined by t
frequency-dependent diffusion coefficientD(v). The pri-
mary dispersion ofD(v) occurs at a much higher frequenc
than that of the electrolyte friction because of the presenc
2 iv term in the generalized Einstein relation@Eq. ~11!#

FIG. 4. The frequency dependence of the~a! real and~b! imaginary parts of
the conductivity of solutions of a 1:1 electrolyte. The dashed and the s
curves correspond to the 0.01 and 0.1 M solutions, respectively.
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which connects the diffusion coefficient to the friction
finite frequencies.

Sometimes the experimental results of the frequen
dependent conductivity are analyzed in terms of the so-ca
Cole–Cole plots where the imaginary part of the conduc
ity is plotted against the real part at different frequenci
Such Cole–Cole plots for the two solutions are shown in F
5. Significant non-Debye behavior is observed at higher
concentration. This is not unexpected as the Debye form
s~v! @Eq. ~44!# is valid only in limiting situations as dis-
cussed in Sec. V and, in general, the dispersion of the c
ductivity shows a more complex behavior.

VI. SUMMARY AND CONCLUSIONS

We have presented a self-consistent theory of
frequency-dependent friction on a moving ion and the c
ductivity of electrolyte solutions. The theory is based on
combination of the mode coupling theory and tim
dependent density functional approach and it incorpora
the details of the static and dynamic ion–ion correlations a
also the effects of self-motion of the ions. Both the ion
mosphere relaxation and the electrophoretic effects are
cluded which are now frequency dependent and the resul
the two effects are combined to obtain the frequen
dependent electrolyte friction and the conductivity. It
shown that the present theory correctly reduces to the w
known Debye–Falkenhagen expression of the frequen
dependent electrolyte friction in the limit of very low io
concentration. It is also shown how the expressions of
frequency-dependent conductivity derived earlier by Ch
dra, Wei, and Patey19 can be recovered from the prese
theory. Numerical results are obtained for the real and ima
nary parts of the friction and the conductivity at various fr
quencies. It is found that at high concentration the freque
dependence of the friction can be quite different from th
given by the Debye–Falkenhagen expression. With incre
of concentration, the dispersion of the electrolyte friction
found to occur at a higher frequency because of faster re
ation of the ion atmosphere. The real part of the conductiv
is found to change rather weakly at low frequency. In fact

id

FIG. 5. The Cole–Cole plots of the frequency-dependent conductivity.
imginary part is plotted against the real part calculated at different frequ
cies. The dashed and the solid curves are for 0.01 and 0.1 M solut
respectively. The dotted curve represents the simple Debye behavior.
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low concentration, a slight increase of the real part of
conductivity is observed at low frequency which can be
tributed to the so-called Debye–Falkenhagen effect. The
persion of the conductivity is found to occur at a mu
higher frequency than that of the ion atmosphere fricti
Also, significant non-Debye behavior is observed in t
Cole–Cole plots of the conductivity of concentrated so
tions.

The theory of the frequency-dependent conductivity
veloped here can be used to study the dynamics of m
interesting chemical phenomena such as solva
dynamics,37–40dielectric relaxation,5,41,42and chemical reac
tions in electrolyte solutions.43–46In all these chemical prob
lems, the motion of ions in response to a time-depend
electric field or to a changing charge distribution inside
solution plays an important role and the theory develop
here can be applied or generalized to study such proble
Also, in the present theory, the solvent is considered to b
dielectric continuum. Thus, although the present theory
corporates the static and dynamic ion–ion correlations
the screening effects, the molecular details of the io
solvent and solvent–solvent correlations are missing. A
since the conductivity is calculated by using the generali
Nernst–Einstein relation@Eq. ~12!#, the dynamical cross cor
relations between velocities of distinct ions or the collect
effects in the current–current correlation are not included
the present theory. Because of these approximations,
present theory is limited to solutions of not too high conce
tration ~say, less than 0.1 M!. In fact, recent computer simu
lations have shown that for highly concentrated solutions,
dynamic ion–solvent correlations and the cross velocity c
relations are responsible for much of the complex beha
of the conductivity at finite frequencies.19 Thus, it would
certainly be worthwhile to generalize the present se
consistent theory to include the molecularity of the solv
and also the collective effects in the current-current corre
tion.

The theoretical formulation developed here, and in o
previous work, can be extended to understand some asp
of the conductivity of dilute polyelectrolyte solutions. This
a problem where dynamical cross correlations can be ra
important. The large polyion, with very low mobility, ca
exert considerable amount of friction on the more mob
counterions and can in fact lead to a partial immobilizat
of those counterions which are in the proximity of the po
ion. This immobilization occurs as a consequence of
slow decay of the polyion–counterion cross-correlation fu
tion. Note that this immobilization or the quenching of m
tion of the counterions is mostly dynamical in origin and
different from the more traditional static view of the ‘‘Man
ning condensation.’’47 Another problem of interest is th
diffusion of charged colloids. While a detailed treatment o
tagged ion is still difficult because of the inhomogeneity,
average behavior can be obtained by following the proced
outlined in this paper. The basic aspect of the problem ca
captured in the following fashion. The force on a counter
due to the polyion at a distancer from the polyelectrolyte
center of mass can be given by
e
-
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F,~r ,t !5kBT¹E dr8cic~r2r 8!drc~r 8,t !

1kBT¹E dr8ci j ~r2r 8!dr j~r 8,t !, ~50!

wherecci(r ,t) is the colloid-ion direct correlation function
drc(r 8,t) is the density fluctuation of the colloids,ci j is the
ion–ion direct correlation function, anddr j (r 8,t) is the fluc-
tuation in the density of ion typej. Equation~50! naturally
leads to an expression for the friction which depends on
dynamic structure factor of the colloids. A similar expressi
can be written for the friction on the colloids which wou
involve the dynamic structure factor of the ions. These eq
tions need to be solved self-consistently. While this meth
is well-known, one can carry out such detailed calculatio
now with the availability of the desired pair and direct co
relation functions. In this context, we note the work of Le
et al.35 where similar equations have been derived for
time-dependent friction on a charged colloidal particle fro
an approach of contracted description through general
Langevin equation.48 The resultant equations were, howeve
solved without incorporating the inherent self-consisten
required in the problem. It would certainly be worthwhile
carry out full self-consistent calculations of the frequenc
dependent friction on such charged macroparticles. Work
these areas is in progress.
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