Frequency dependence of ionic conductivity of electrolyte solutions
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A theory for the frequency dependence of ionic conductivity of an electrolyte solution is presented.
In this theory contributions to the conductivity from both the ion atmosphere relaxation and the
electrophoretic effects are included in a self-consistent fashion. Mode coupling theory, combined
with time-dependent density functional theory of ion atmosphere fluctuations, leads to expressions
for these two contributions at finite frequencies. These expressions need to be solved
self-consistently for the frequency dependence of the electrolyte friction and the ion conductivity at
varying ion concentrations. In the limit of low concentration, the present theory reduces exactly to
the well-known Debye—FalkenhageF) expression of the frequency-dependent electrolyte
friction when the non-Markovian effects in the ion atmosphere relaxation are ignored and in
addition the ions are considered to be pointlike. The present theory also reproduces the expressions
of the frequency-dependent conductivity derived by Chandra, Wei, and Patey when appropriate
limiting situations are considered. We have carried out detailed numerical solutions of the
self-consistent equations for concentrated solutions of a 1:1 electrolyte by using the expressions of
pair correlation functions given by Attard. Numerical results reveal that the frequency dependence
of the electrolyte friction at finite concentration can be quite different from that given by the DF
expression. With the increase of ion concentration, the dispersion of the friction is found to occur
at a higher frequency because of faster relaxation of the ion atmosphere. At low frequency, the real
part of the conductivity shows amall increasewith frequency which can be attributed to the
well-known Debye—Falkenhagen effect. At high frequency, the conductivity decreases as expected.
The extensions of the present theory to treat frequency-dependent diffusivities of charged colloid
suspensions and conductivity of a dilute polyelectrolyte solution are discussed.

I. INTRODUCTION limiting ionic conductance\y, which is determined by the
) ) ) statics and dynamics of ion—solvent interactions. Significant
The dynamics of electrolyte solutions has remained &,,4ress has been made in recent years in understanding this

gentrlelle area of research in physical chemistry for a long,ohiem. In particular, it has been pointed out that the ul-
time" Despite vigorous activity over many decades, manyasast solvation of ions observed in water and acetonitrile

fundamental problems have remained unsolved which have,, play an important role in reducing the magnitude of di-

led to recurrent attempts by theoreticians to address theMyeric friction on small rigid ions. This and other aspects
The motion of ions in an electrolyte solution is usually de-p5ye peen reviewed recently in Ref. 6. The second important
scribed by the specific conductivity) or by the equivalent  .ohem is the concentration dependence of the ionic con-
conductancetA) which is the specific conductivity divided ,ctance in the limit of small concentration, as embodied in

by thg molar conceptration of the salt. The best known exy,q Debye—Huckel-Onsager square root concentration law
pression for the equivalent conductance of an electrolyte sogien ahove. Many aspects of this law have been clarified in
lution is the Debye—Huckel-Onsager relation givertby  1ocany years and studies have been extended to higher
A(C)=Ao—(A+BAg)c, 1) _c:once_ntratiqn‘s‘.‘13 However, a fully molecular theory which
is valid at high concentrations, even for the simplest case of

. N strong electrolytes, is yet to be developed. The third impor-
when the molar concentration of the saltjs\, is the same 5 problem is the motion of ions in the presence of an

at infinite dilution of the electrolyteA and B are numerical oscillating electric field2° The last one is the subject of

constants which depend on dielectric constant, viscosity, ang,q present article. The above-mentioned list is by no means
temperature of the solution and also on charges of the iongyyhaustive.

The problem of ion motion can be naturally divided into  the motion of ions in the presence of a time-dependent
several parts. The first is the problem of understanding thgactric field is traditionally described by the frequency-
dependent specific conductivityw) wherew is the oscilla-
dElectronic mail: amalen@iitk.ac.in tion frequency of the external field. The frequency-

whereA(c) is the equivalent conductance of the electrolyte
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dependent conductivity is intimately related to the Recently Chandra, Wei, and PatégWP)'° have ad-
frequency-dependent electrolyte friction. One of the earliestiressed the problem of frequency dependence of ionic con-
studies of the frequency-dependent electrolyte friction andluctivity. These authors derived analytical expressions of
conductivity was that of Debye and Falkenhag@®F).!*  o(w) by employing a non-Markovian equation of motion of
These authors considered the dynamic effect of the relaxhe self van Hove function of a tagged ion. By employing
ation of ion atmosphere on the motion of an ion. When arexactly known short and long time constraints upon the ionic
ion moves in electrolyte solution, the atmosphere cannot imself van Hove function, these authors derived two closed-
mediately follow the motion of the central ion and becomesform expressions of the frequency-dependent conductivity
asymmetric causing a retarding effect on the motion of thdmodels | and IJ. Model | depends on an expression of the
ion. At zero frequency, this relaxation effect leads to thefrequency-dependent diffusion coefficient which ensures that
BAgyc term in Eq.(1). In presence of an oscillating field, the short time dynamics up to the second frequency moment
the central ion oscillates and the ion atmosphere gets lesd the long time dynamics of the self van Hove function are
time to relax and remains less asymmetric. As a result, thdescribed correctly. The final expression of the conductivity
effects of the asymmetry of the ion atmosphere is reduceés described by a multiple Debye fott

causing a reduction of the electrolyte friction and em
hancement of the conductivigy low frequency. At high fre- o(w)= —
quency, the conductivity decreases because the ions oscillate keT a=1 1—iwD,m,/kgT’
so fast that the net ionic motion along a particular direction is ) ) )
smaller than that in the presence of a static or low frequency/N€re M. is the mass of an ion of species Model II of
field. By using a diffusion equation approach for the timeCVWP i based on a different expression of the frequency-
dependence of ion atmosphere, Debye—Falkenhagen derivagpendent diffusion coefficient which correctly describes the

the following rather unusual looking expression for theShort time dynamics up to the fourth frequency moment and
frequency-dependent electrolyte frictith. also the long time dynamics of the ionic self van Hove func-

tions. In this modelg(w) is given by?®
“\a
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where {p(0) is the zero-frequency frictiong=1/2 for a (6)
symmetric binary electrolyte and, is the relaxation time

of the ion atmosphere given by where(}, is the Einstein frequency of an ion of species

We note thatﬂi is proportional to the mean square force
1 acting on an ion. The results of CWP were compared with

LY e ——— (3)  those of molecular dynamics simulations. Their theory is ca-
(D1+D2)axp pable of predicting the Debye—Falkenhagen effect at low

Here,D, andD, are, respectively, the self-diffusion coeffi- frequency and was found to provide a reasonable description

cients of the positive and negative ions arglis the inverse of the ionic motion at high frequency when there were no ion
Debye screening length given by pairs and tightly bound solvation shells in the solutidn.

However, for many complex systems, the theory of CWP
, A4m 5 was found to be inadequate which, in part, can be attributed
DT kg T azl Palq (4 to the absence of full self-consistent calculation of the

frequency-dependent electrolyte friction in this theory. It is

where € is the static dielectric constant of the mediug),  clear that further work is needed to fully understand the ionic
andp, are, respectively, the charge of an ion and bulk num-conductivity at finite frequency.
ber density of species, kg is Boltzmann constant, antlis More recently we have developed a self-consistent
the absolute temperature. The DF theory is valid at very lowtheory of the zero-frequency conductivity which describes
concentrations. For a typical 0.001 M solution of a 1:1 saltthe ionic flow when a static field is applié&**The theory is
Tam~ 1077 s and, therefore, the dispersion of the DF friction based on a combination of the mode coupling theory and the
for such a solution is predicted to occur in the megahertz otime-dependent density functional approach and included
below gigahertz region. The electrophoretic force, on theboth ion atmosphere relaxation and electrophoretic effects.
other hand, responds at rates comparable to that of moleculahe theory correctly goes over to the well-known Debye—
velocity correlations. The velocity correlation times in solu- Huckel-OnsagetDHO) law’® in the limit of very low ion
tions are of the order of 0.1 ps and thus the dispersion of theoncentration. In addition, it remains valid in the much
electrophoretic contribution occurs at a frequency muchhigher concentration regime where the DHO limiting law
higher than gigahertz. In DF theory, the frequency depentfails completely. In the present paper, we extend the above-
dence of the electrophoretic effect is not considered. Thusnentioned theory to investigate electrolyte friction and con-
the well-known Debye-Falkenhagen effecbf increasing ductivity at finite frequencies.
conductivity with frequency arises solely from the decrease In this work, we derive self-consistent expressions for
of the friction from the ion atmosphere. Thus one immediatehe frequency-dependent electrolyte friction and the conduc-
effect of the frequency dependence is the inapplicability oftivity which incorporate the details of the static and dynamic
any form like Debye—Huckel-Onsager limiting law. ion—ion correlations and also the effects of self-motion of the
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ions. Both the ion atmosphere relaxation and the electro- . 0.0
phoretic effects are calculated at finite frequency and these Uap(r)=Ugg(r)+———, (7)
contributions are combined to obtain the frequency-
dependent friction and the conductivity. Self-consistency igvherer is the distance between the two ions arf(r) is a
essential in this problem because the dynamics of ion atmaspherically symmetric short-range interaction potential. This
sphere relaxation and the electrophoretic friction depend of0-called primitive model is well known in the studies of
the mobility of the ions themselves. And the mobility of ions Structure and dynamics of electrolyte solutiGhdhrough-
depends on the relaxation of these two effects. The abovéut this paper, we label the positive ions as species 1 and the
mentioned self-consistency also demands an inherently nofegative ions as species 2. We denote the positiprand
Markovian theory for the relaxation of the ion atmosphere. Itime (t) dependent number density of speciess p,(r,t)
is shown that the DF expression of the frequency-depende@nd its Fourier transforrp,,(k,t) is defined by
electrolyte friction can be recovered from the present micro- o
scopic theory in the limit of low ion concentration when the pa(k,t)zf dre®p,(r,1). (8
finite sizes of the ions are ignored and the collective dynam- o
ics of the ion atmosphere is described by diffusional motion.  |n this paper, we are interested in calculating the
Thus, the validity and the limitations of the DF friction be- frequency-dependent friction on a moving ion and the
comes clear from the present microscopic approach. Thgequency-dependent conductivity of the solution. For this
present theory also reproduces the expressions of thﬁjrpose, we consider a single tagged ion of chaygeThe
frequency-dependent conductivity derived by Chandra, Weivelocity of the tagged ion ig(t) at timet. Its time evolution
and Pate}’ when appropriate limiting situations are consid-can be described by the following generalized Langevin
ered. equatior?!

Numerical results show that the frequency dependence
of the electrolyte friction at finite concentration can be very v
different from that given by the DF expression. With in- ot e
crease of ion concentration, the dispersion of the friction is

where {((t) is the total friction acting on the single tagged

found to occur at a higher frequency because of faster relaﬁbn andf(t) is the so-called random force. The frequency-

ation of the ion atmosphere. Numerical results are alsg predependent friction(w) is defined as the Laplace transform

sented for the frequency dependence of the real and imag (0

nary parts of the conductivity. At low frequency, the real part~ >’

of the conductivity changes rather weakly with frequency. In I

fact, the real part shows a slight increase at low frequency {s(o)= jo dteZy(t).

which can be attributed to the Debye—Falkenhagen effect. At o o )

high frequency, the conductivity decreases because the ions 1he self-diffusion coefficienDy(w) is related to the

oscillate so fast that the net ionic motion along a particulaffiction {(w) by the following generalized Einstein

direction is smaller than that in presence of a static or lowrelation:

frequency field. The Cole—Cole plots of the conductivity re- ke T

veal a nearly Debye behavior of the conductivity dispersion Dg(w)= ?[—iaﬂr{s(w)]‘l, 11

for very dilute solutions. As the concentration is increased,

the dispersion becomes non-Debye at low frequency due tovheremy is the mass of the tagged ion. In the present work,

Debye—Falkenhagen effect. our focus will be on the calculation of the frequency-
The organization of the rest of the paper is as follows. Independent frictionys(w) and the frequency-dependent self-

Sec. Il, we present the theory and in Sec. lll, we discuss thdiffusion coefficientD4(w). Once the frequency-dependent

reduction to the Debye—Falkenhagen expression. In Sec. \self-diffusion coefficientD4(w) is known, the frequency-

we show how the conductivity expressions of CWP can bedependent conductivity(w) can be calculated by using the

recovered from the present theory. We discuss the numericéllowing generalized Nernst-Einstein relation?!

results in Sec. V. Section VI concludes with a summary and 2

a brief discussion on the exte_nsio.n.s_of the present theory to o(w)= i 2 paqiDa((‘))v (12)

treat frequency-dependent diffusivities of charged colloid KgT a=1

suspensions and conductivity of a dilute polyelectrolyte so

lution.

(t)=— fowdtzs<t—t'>vs<t'>+fs<t>, ©

(10

wherep, andg, are defined in Sec. |. We note in this con-
text that the frequency-dependent electric conductivity can,
Il THEORETICAL FORMULATION in general, be rel_ated to the _Founer t_ransform of the ele_ctnc
current—current time correlation functiéhSince the electric
We consider an electrolyte solution consisting of posi-current is a collective dynamical quantity, its time correlation
tive and negative ions immersed in a continuum solvent ofunction comprises a self part that corresponds to a summa-
dielectric constant. The ions interact through a spherically tion over the velocity autocorrelation functions of the ions
symmetric short-range potential and a long-range coulombiand a cross part involving the sum of the correlation func-
interaction potential which is scaled by the value of the di-tions of the velocities of distinct ions. The generalized
electric constant. The pair potential of interaction betweerNernst—Einstein relatiofEqg. (12)] includes only the self
two ions of chargeg, andqg is given by part and thus the cross part is ignored in the present work.



Although the importance of the cross part is smaller than the 1 1 1

self part, it may not be negligible at high ion concentranons. Lonyd ®)  LonydC=0) + Ssmyd @) (14
However, at low and moderate concentrations, the contribu-

tion of the cross part is expected to be rather small. Foivhere {sn(c=0) is the viscous friction which also in-
example, at 0.5 M concentration of aqueous NaCl solutioncludes the additional dielectric friction contribution due to
an analysis of the simulation data of self-diffusion coeffi-the polarization curreft®® and 6 () represents the
cients and conductivity reveals that the cross term reduceglectrolyte friction on the tagged ion due to coupling with the
the static conductivity by less than 5%We also note that 10N atmosphere current, which is commonly known as the
the solvent is considered to be a dielectric continuum in the&lectrophoretic effect. In the following, we calculate the fre-
present theory. At high concentrations, the molecular detail§uency dependence of the ion atmosphere contributions
of the ion—solvent and solvent—solvent correlations may bed¢smic(®) and 6{snyd ).

come important. Because of these approximations, the

tpr;etisoennt theory is limited to solutions of not too high CONCeN-y  ~.iculation of the time-dependent microscopic

o . . friction, &8¢ mic ()
The total friction acting on the tagged ion can be decom- ’

posed into two parts. The first part is due to the microscopic ~ The time-dependent microscopic electrolyte friction,
interaction of the tagged ion with the surrounding solventéds mic(t), is calculated by using the following Kirkwood
molecules and ions and the second part originates from th@rmulaZ

hydrodynamic coupling of the velocity of the tagged ion with 1

the current modes of the surrounding particles. Thus, the 5§s,mic(t):mf dr(F(r,t)F(r,0)), (15
total friction on the tagged ion can be writterfas B

where F(r,t) is the time-dependent force exerted on the
tagged ion due to its interaction with all other ions in the
1 _ 1 + 1 (13) solution. An expression foF(r,t) can be obtained from
{(0)  Lsmicd®)  Lshyd o) time-dependent density functional theory and the micro-
scopic friction can be formally expressed as an integral over
the wave vector space in the following for!

As discussed in Ref. 22, E¢13) has a simple physical
interpretation. A tagged ion diffuses by two mechanisms. kgT
The first one is by the random walk caused by its interactions 085, mic(t) = m;k f dk k’csa(k) Vpapg
with the surrounding solvent and ion molecules. The second ’
is the random walk caused by the natural currents or flows X Gp(K t)Csp(K)Fs(K,t), (16)
present in the liquid. These two contributions to diffusions
are additive, as they originate from two different types of
motions. However, the mechanisms are coupled at a dynam
level which, in this theory, enters nicely through self-
consistency mentioned earlier. Gap(k,)=(NoNg) " p(K,1)pg(—k,0)), (17
The microscopic friction is most easily analyzed by us-\ypere (---) denotes average over an equilibrium ensemble.

ing the Kirkwood's formul&® for friction which expresses it andN ; are, respectively, the number of ions of spedies
in terms of an integration over the force—force time correla-aﬁd B in the solution. We denoteG,4(k,») as the

tion function. Since the time-dependent force on the taggegequency-dependent van Hove function obtained by Laplace
ion has contributions from solvent density and polarizationygnsformation ofG s(k,t). Use of time-dependent density

fluctuations and also from ion atmosphere fluctuations, ong;nctional theory leads to the following equation for the
can decompose the total microscopic friction into a 5°|Ve”?requency-dependent van Hove functign2

contribution . mic(c=0)?*% which is assumed to be a con- _ -
stant independent of ion concentration and a concentration- Gap(K,@)=[—i0+D (0)k*]"*S,4(k)
dependent ion contributiofdls.mi(w). In the present work,

where F¢(k,t) is the self-dynamic structure factor of the
tagged ionG,4(K,t) is the ionic van Hove function defined

2
we calculate the frequency dependence of the ion contribu- %

tion to the microscopic friction. Thus, the solvent contribu- —iw+D, (0)k?

tion is not calculated in the present work. It determines the 2

ion diffusion at |nf|n|te_z dilution whose value is assumed to > 2 mCay(k)Gyﬁ(k.w). (18)
be known from experiments. y=1

The hydrodynamic contribution originates from the cou- 5 e -
pling of the ion velocity to the relevant current modes of theWhere the frequency-dependent diffusion coefficien(w)

. . . . is related to friction by Eq.(11). S,s(K)=G,z(k,t=0)
solution. Mode coupling theory directly provides an EXPreS here s (k) is the partial static structure factor between
sion of the contribution of the currents of the system to theS ecies;gnd,B S, 4(k) is related to the Fourier transform of
diffusion coefficient, that is, inverse of fricticfi-?® Since tpe air correlation functiof (K) by the following rela-
the current modes of the solution consists of both the solver}ron_p ap y 9
and ion currents, the hydrodynamic contribution to the total

friction can be expressed'@g? Sup(K)=8apt Vpupphap(K). (19)



The four coupled equationsy(8=1,2) as given by Eq. ing the parameters of the model solution and we use the
(18) can be solved analytically to obtain the following ex- solutions of Attard® for the ionic pair correlations which are
plicit results for the frequency dependence of the ionic vamuite accurate even at high concentrations.

Hove functions:

1 . o
_ + 2 B. Calculation of the hydrodynamic friction—The
Culk )= Z(k,w [{ 1@+ Da(@)kA(1=paCaok))} electrophoretic term
X Sy4(K)+D1(w)k?Vp1poC1aK)Sp(K) ], (20) ~ The ion atmosphere contribution to the hydrodynamic
friction originates from the coupling of the tagged ion veloc-
1 d S 13
_ 2 ity with the collective ion current of the systeth!*A formal
Gk 0)= Z(k, )[{ lo Do)k (1= paCar KD} expression of this friction can be derived from mode cou-
pling theory by usingp®(k)j(—k) as the relevant binary
2 [ —
X Spa(K) + Da(@)k“Vp1p2C1a(K)SpoK) ], (21) product wherep®(k) andj(k) are, respectively, the charge
density and total ion current of the solution. The hydrody-
Goukw)=s+—— Z(ko [{ io+Dy(w)k?(1—pici1(K))} namic friction is then given by
X Sp1(K) +Da(@)k*\p1paCar(K)S1(K) ], (22) 5§3h d(w) J dte' 2 2 (o p (Ri(-k)
y
Gzz(k,w)—z(k [{—i@+D1(w)k?(1—pic14(k))} X (p*(K)j(—k),p°(K)j(—k))
X (p*(K)j(—k), e p(k)j(—k"))
X Sp(K)+ Dol @)k*\p1p2Co1(K)S1a(K) ], (23) e
where Pk (=K"),pe(kj(—K"))
. X{p®(K")j(—=K"),Upy), 29
Z(k,w) =~ 0%~ 1A (KD 1(0)kS(K) + Do @)k?S1(K)] WK=K oy 29
4 whereu,, is the velocity of the tagged ion along a particular
+D1(w)Da(w)k™A(K), (24 direction(say,x) ande'“! is the time evolution operator. The
and vertices and the time correlation function in Eg9) can be
S evaluated to obtain the following formal expression for the
A(k) =[S11(K) Spa(k) = Sp(K) ] (29 hydrodynamic friction:
In deriving Egs.(20)—(25) we have also used the following kT
B

relation betweerc,;(k) and S,4(k) for a two-component

_ ! fmdtei‘”tfdkkz[ + hy(k)
322N Jo Q171 p101N11

system: 0Ls hyd @)
1—pici(K)=A(K)S,,, 26
Pl (10522 (29 +P2Q2h12(k)]zzﬁ VPaPsUals
Vp1p2C12(K) = A(K)Spo(K), (27)
[ d
and a similar relation betweeasy,(k) andS;4(k). These re- X[FsalkD) 8apt VpapsGap(kit)]

lations can be derived from the Ornstein—Zernike equations -
relating the direct and the pair correlation functidhaVe X| 2 VPP pdalpl Sapt Vpapshas(K)}
note that the time dependence of the van Hove functions can B

be obtained through Laplace inverse transformation. The X[C(k,t)+2CT(k,t)], (30
Laplace transform of the self-dynamic structure factor of the
tagged ion can be described by

whereN is the total number of ions in the solutiofg,(k,t)
|s the self van Hove function of an ion of species and
1 B(k t) is the so-called distinct van Hove function between
Fo(k,w)= —————, (28)  speciesa and 8. CH(k,t) andCT(k,t) are, respectively, the
—iw+Dg(w)k
longitudinal and the transverse current correlation functions
whereD(w) is the frequency-dependent self-diffusion coef- of the ions. The decay of the longitudinal current occurs at a
ficient of the tagged ion. We still require the solutions of themuch faster time scale than that of the transverse cuttent.
static structure factors and the direct correlation functions foFor nonpolar liquids, it is known that the contribution of the
the calculation of the microscopic electrolyte friction. We longitudinal current to zero and low frequency friction is
note that the direct correlation functions are related to thaegligible (less than 5% compared to the transverse
static structure factors by Eq&26) and (27) and the static term?2®2” Therefore, the contribution of the longitudinal cur-
structure factors are related to the pair correlation functionsent relaxation to the hydrodynamic friction is expected to be
by Eq. (19). Thus, we require the solutions of the pair cor- important only at very high frequency and we have ignored it
relation functions for the calculation of the quantiti&g;(k) in the present calculations. We also note that it is the trans-
andcg, (k). We need to specify the nature of the short-rangeverse part which leads to the Stokes—Einstein relation for
interaction between ions for this purpose. We consider th@onpolar molecule$’ For electrolytes, the transverse term
ions to be charged hard spheres with their diameters beconeads to the electrophoretic term of Debye—HucRdh the



present work, we also assume a symmetric binary electrolytphoretic term is ignored. Accordingly, we consider only the
with ions of equal size such that (k) =h,,(k). Equation  microscopic electrolyte friction as given by Ed.6) and re-

(30) then simplifies to write it in the following form:
kBT _ 2 - i ot T — kBT 2
o = 3t Jo U AREOCTRD ot~ g [ KILCOTGD]
2 ° X[Cs(k)]F4(k 1), (34)
—— | dte“| dkK¥[p,Gi(kt
" 3a%N fo ¢ f LeaGille) where[C4(k)] is a row matrix defined by
~p2GikDICT(k ), (31) [C(k)]=[Vp1Csi(K) VpaCe(K)], (35

wherep is the total ion density of the solution. We note thatand[C4(k)]" is the transpose dfC(k)]. [G(k,t)] is the
the first term on the right-hand side of E81) gives the ion 2x2 van Hove function matrix with elements ,4(k,t),
contribution to the usual Stokéer viscous friction and the  «,8=1,2. Clearly,[G(k,t)] becomes the structure factor
second term represents the so-called electrophoretic frictiomnatrix [ S(k)] att=0. We assume that the ions are point ions
In the following calculations, we will focus on the electro- and use Debye—HuckéDH) theory** of ion—ion pair corre-

phoretic friction only because it is the most important hydro-lations. The ion—ion partial structure factor is then given by
dynamic contribution to the total ionic friction. We also note

that the relaxation of the transverse velocity correlation func- S, (k)= 5, 4— 4mQ.0pVpapp 1
tion occurs much faster than the distinct van Hove functions B «p ekgT K2+ k3’
S0 thatG‘il(k,t) and G‘fz(k,t) in Eq. (31) can be approxi- . ) _ _
mated by their zero time valués; (k) andh,,(K), respec- Where the inverse De_bye screening Iengm.ls defined by_
tively. Since the transverse current does not couple with derf=d- (4)- The ion—ion direct correlation function for the point
sity relaxation, its relaxation can be described quite well bylonS in DH theory can be obtained by combining EG)
an exponential function with a relaxation time inversely pro-and(27) and(36) and it is given by
portional to the shear viscosity of the medium as follows: 4

anqﬁ 1

EkBT k2 ’

(36)

NKaT Cap(K)=— (37
CT(k,t)= —5 e 7o, (32
o We next assume that the relaxation of the ionic van
We note that the decay of the transverse ionic current agjgve functions is described by diffusional motion. That is,

the sense that the viscosity which appears in &) is  and replace it by its zero-frequency valDe, and solve the
concentration dependent. In the numerical calculations, howesyitant equation in the time domain to obtain

ever, the viscosity is taken as an input parameter. We next

substitute Eq(32) in Eq. (31) to obtain the following simple [G(k,H)]=[S(k)]exp —[DIK*[S(k)] ™). (38)
gxpression for the frequency-dependent electrophoretic fricnere [D] is the diagonal matrix of self-diffusion coeffi-
tion: cients. When Eqs(36)—(38) are substituted in Eq34), the
KeT keT (= resultant integral over the wave vectorcan be evaluated
5 = f dt e"”‘f dk K[ p1hyq(k) analytically’> and the final result of the time-dependent mi-
Cshyd @) 37%pm Jo croscopic electrolyte friction is given by
— pahyak)Je” e, (33) Q2 [ e Dbt 2
K / 2

We have solved Eqg16) and(33) for the microscopic Lsmie) = 3¢ W+KD6D PHP(V2rpDt) — 1} |,

and the electrophoretic frictions iteratively to obtain the self- (39)

consistent results of the frequency-dependent electrolyte fric- ) ) o
tion at varying concentrations. The results of frequencyWhere®(x) is the error function and it is assumed that all
dependent friction are then used to calculate the frequencyons have the same diffusion coefficiédt We note that Eq.

dependent ion diffusion and conductivity by using EG) (39 of time-dependent electrolyte friction becomes identical
and (12), respectively. with the one derived by de Leocet al3® when the diffusion

coefficientD in the right-hand side of Eq39) is replaced by
DY, which is the value of the ion diffusion coefficient in the
IIl. DERIVATION OF DEBYE-FALKENHAGEN FORM limit of infinite dilution.
OF FREQUENCY-DEPENDENT FRICTION The Laplace transform of Eq39) can be carried out
analytically’® to obtain the following expression of the

In this section we identify the limiting conditions under i
frequency-dependent friction:

which the present theory reduces to the well-known Debye
Falkenhagen expressipBEq. (2)] of the frequency-dependent aZk 1

electrolyte friction. We note that in Debye—Falkenhagen — {smic®)= g5 1 : (40
theory, the frequency dependence of only the ion atmosphere 1+—[1-iw/Dx?]¥2

relaxation contribution is considered and that of the electro- 2




The zero-frequency microscopic electrolyte friction is given To recover the expression of model[Eq. (6)], we ig-

by'? nore the hydrodynamic effects so thalt) = {sm(t) and
o2 we write the total friction as
Lsmid 0)= g5 (2-2), (41) 1
§s(t)=—j dr(F(r,t)F(r,0)), (45
3kaT

We next substitute Eq41) in Eq. (40) and rewrite the re-
sultant expression of the frequency-dependent friction in thavhereF(r,t) is the total force(including the solvent contri-
following form: bution) acting on the tagged ion at tinteClearly, {(t=0)
N is described by the zero-time force—force correlation
q

gs;mic(w)zgs;mic(o) 1+\Fq[1_iw7_atm]1/2’

where g and 7, are defined in Sec. |. Equatio@2) is
identical to the DF expressiqiq. (2)]. Thus, it is clear from
the above-mentioned analysis that the present microscop
theory reduces to the DF theory in the limit of low ion con- L()=02% s, (47)
centration when finite sizes of the ions are ignored, electro- . . - .
phoretic effects are not included, and the collective dynamicg\'here relaxation timers can be eliminated in favor of the

of the ion atmosphere relaxation is described by diffusivedIfoSIOn coefficientD; by using the above-described Ein-

stein relation and the resultant expression after Laplace trans-

(42 1 _ 02
gs(t_o)_wfdr<F(r,0)F(r,0)>—QS, (46)

where ), is the Einstein frequenéy of the tagged ion. We
p:ext assume an exponential decay/gft) so that

motion. ; .
It may be noted that the DF theory incorporates the Crosgormatlon gives
dynamical coupling of ions at the level of ion atmosphere Qg
relaxation(or the ionic van Hove functionsand not at the {(w)= (48)

level of ionic velocity or current relaxation. Thus, the DF _'w+DSmSQ§/kBT

expression of ion atmosphere friction does not include thequation(48), on combining with Egs(11) and(12), gives
effects of the so-called current cross terms. The DF expressq. (6), which is the CWP model Il expression for(w).

sion is treated as the limiting expression of ion atmospherghus, in this model, the frequency dependence of conductiv-
friction when current cross terms are ignored and it is shownty originates from both the inertial and the non-Markovian
that the present microscopic theory correctly goes over teffects. We also note that although the hydrodynamic effects
this limiting expression at the limit of very low ion concen- such as electrophoretic contributions are not explicitly in-
tration. Also, the contribution of the cross correlation is ex-cluded in this model, such effects can be implicitly included
pected to be minimal at very low ion concentration where thep some extent by using proper experimental values of the
DF theory is valid. zero-frequency diffusion coefficients.

IV. DERIVATION OF THE CONDUCTIVITY V. NUMERICAL RESULTS AND DISCUSSION
EXPRESSIONS OF CHANDRA, WEI, AND PATEY .
We present numerical results of the frequency depen-

In this section we describe how the CWP expressions ofience of friction and conductivity for solutions of varying
the frequency-dependent conductivity can be recovered fronpn concentration. In the numerical calculations, all ions of
the present theory. To recover the expression of mopYll  the solutions are assumed to be of equal diametemd
(5)], we ignore the frequency dependence{gfw) in EQ.  equal massn for simplicity. The solutions are considered to

(11) and replace it by the zero-frequency valfieso that be of a symmetric salt such that the charge of each positive
keT 1 D ion is gq; and that of each negative ion isq; and p;=p»
Dyw)= (43 and alsaD;=D,. The solutions can be completely specified

Mg —lotis 1=ioDms/keT by specifying the values of the reduced chargg

where, in deriving the second equality, we have used th&\/qzllkBTO', the reduced ion density} =p,0°, and the
Einstein relation{s=kgT/Dsms. On combining EqQ.(43)  dielectric constante. The values ofe and g¥ for all the
with the Nernst-Einstein relatiofEq. (12)], one gets Eq. solutions are 80 and 14.1, respectively. The above-
(5), which is the CWP model | expression of the frequency-mentioned value of the reduced charge corresponds to the
dependent conductivity. Thus, in this limiting case, the fre-charge of a univalent ion of diameter 2.82 ATat 298 K.
quency dependence of the conductivity originates entirely  In the numerical calculations, the self-consistent equa-
from the inertial effects. Also, wheB,;=D, andm;=m,,  tions of the microscopic and electrophoretic frictions are
the frequency dependence of the conductivity is described byolved iteratively. We first calculate the zero-frequency elec-
a simple Debye form? trolyte friction and the zero-frequency diffusion coefficient
o D. This zero-frequency diffusion coefficient is then used as
T ioDmkoT’ (44)  the initial guess for the frequency-dependent diffusion coef-
B ficientD(w) and we calculate the frequency-dependent ionic
whereo is the conductivity at zero frequency. We note thatvan Hove[Egs. (20)—(23)] and self van HovdEq. (28)]
the simple Debye form has been used in the literature as dunctions. The time dependence of these van Hove functions
empirical expression foo(w).'® are then calculated through numerical inverse Laplace trans-

o(w)=
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FIG. 1. The frequency dependence of thereal and(b) imaginary parts of  FIG. 2. The frequency dependence of thereal and(b) imaginary parts of
the microscopic electrolyte friction on an ion in a 0.01 M solution of a 1:1 the microscopic electrolyte friction on an ion in a 0.1 M solution. The
electrolyte. The solid and the dashed curves represent, respectively, the rgifferent curves are as in Fig. 1.

sults of the present theory and of Debye—Falkenhagen exprd&sio(?)].

nite dilution. In Figs. 1 and 2, the results of DF frictipBg.

formation. This leads to the calculation of the time- ;)] are also included for comparison. At low concentration
dependent microscopic frictiofy; mic(t) [Eq. (16)], whichis a4 at Jow frequency, the results of the present theory are

then numerically L,ap'?c"?‘ trahsformed to obtdific(w). found to be quite close to the DF results. However, at high
The electrophoretic friction is calculated from E(®B3).  oncentration, the results of the present theory show signifi-
These two frequency-dependent frictions are then combineg, ¢ departure from the DF results, especially at high fre-
to obtain the new values @(w) from Eq.(11). The entire 4 ,0ncy Also, with increase of ion concentration, the disper-
process is repeated several times until convergence i§on of the electrolyte friction is found to occur at a higher

achieved. _ frequency because of faster relaxation of the ion atmosphere.
We decompose the frequency-dependent microscopic | Fig. 3, we have shown the frequency dependence of

electrolyte friction into its real and imaginary parts as fol- 4 electrophoretic term for the 0.1 M solution. The disper-
lows:

S simic @) = 8L il @) +1 L% el ). (49) o
Similar decomposition is also made for the electrophoretic
friction and the conductivity functions as these are all com- = 0.8
" . . . 3
plex quantities at finite frequencies. In Figga)land 1b), <
we have shown the frequency dependence of the real and R o-6-
imaginary parts of the microscopic electrolyte friction for "é
p: =0.000135. The above-mentioned value of the reduced S o4l
ion density corresponds to a 0.01 M solution for=2.8 A. £
Thus, this solution corresponds to 0.01 M solution of a 1:1 :g“ o2k T T T
electrolyte at room temperature. The corresponding results /7
for a 0.1 molar solution are shown in FiggaRand 2b). The 0.0 , . . .
values of the friction at different frequencies are normalized 00 20 40 60 80 100
by its zero-frequency value and the reduced frequanty w*x10°

— 2 i
wo’/D. 1n the present calculations, we have used FIG. 3. The frequency dependence of the electrophoretic friction on an ion

— -3 —1a-1 0_ -5 —1
=8.95<10 “gcm _S ) D - 2.Q>< lp cn? S' . and .m ) in a 0.1 M solution. The solid and the dashed curves represent, respectively,
=40 amu whereD? is the ionic diffusion coefficient at infi- the real and the imaginary parts.
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. 0.6f
;3 S which connects the diffusion coefficient to the friction at
b 0.4 AN finite frequencies.
;' TSl Sometimes the experimental results of the frequency-
o2H  TTeTT dependent conductivity are analyzed in terms of the so-called
B Cole—Cole plots where the imaginary part of the conductiv-
0-0 ! . , . ity is plotted against the real part at different frequencies.
00 20 40 60 80 100 Such Cole—Cole plots for the two solutions are shown in Fig.
w*x10” 5. Significant non-Debye behavior is observed at higher ion

FIG. 4. The frequency dependence of taereal and(b) imaginary parts of concentration. ThIS 'S_ not un?Xp_eC_t?d as. the_Debye fo.rm of

the conductivity of solutions of a 1:1 electrolyte. The dashed and the solid7(w) [Eq. (44)] is valid only in limiting situations as dis-

curves correspond to the 0.01 and 0.1 M solutions, respectively. cussed in Sec. V and, in general, the dispersion of the con-
ductivity shows a more complex behavior.

. . . . . VI. SUMMARY AND CONCLUSIONS
sion of the electrophoretic contribution is seen to occur at a

much higher frequency as one would expect. In fact, any We have presented a self-consistent theory of the
noticeable change in the electrophoretic term is found onlfrequency-dependent friction on a moving ion and the con-
above w* =10°, which corresponds to a frequency well ductivity of electrolyte solutions. The theory is based on a
above the gigahertz region. The dispersion of the solventombination of the mode coupling theory and time-
contribution to the ionic friction, which is assumed to be adependent density functional approach and it incorporates
constant in the present calculations, is also expected to occtine details of the static and dynamic ion—ion correlations and
in this frequency domain. The solvent contribution, being aalso the effects of self-motion of the ions. Both the ion at-
larger effect, may dominate the dispersion of the total ionionosphere relaxation and the electrophoretic effects are in-
friction at such high frequencies. cluded which are now frequency dependent and the results of
The results of the frequency dependence of real anthe two effects are combined to obtain the frequency-
imaginary parts of the ion conductivity are shown in Figs.dependent electrolyte friction and the conductivity. It is
4(a) and 4b) for the 0.01 and 0.1 M solutions. The ionic shown that the present theory correctly reduces to the well-
charges are the same as in Fig. 1. The real part shows a sligkiown Debye—Falkenhagen expression of the frequency-
increase at low frequency and then it decreases at high fralependent electrolyte friction in the limit of very low ion
guency as one would expect. The initial increase at low freconcentration. It is also shown how the expressions of the
guency can be attributed to the Debye—Falkenhagen effect. ftequency-dependent conductivity derived earlier by Chan-
is seen that the primary dispersion of the conductivity occursira, Wei, and Patéy can be recovered from the present
at a much higher frequency than that of the microscopic electheory. Numerical results are obtained for the real and imagi-
trolyte friction. The dispersion of the microscopic electrolyte nary parts of the friction and the conductivity at various fre-
friction is primarily determined by the inverse relaxation quencies. It is found that at high concentration the frequency
time of the ion atmosphere. The frequency dependence of theiependence of the friction can be quite different from that
conductivity, on the other hand, is determined by thegiven by the Debye—Falkenhagen expression. With increase
frequency-dependent diffusion coefficiebt(w). The pri-  of concentration, the dispersion of the electrolyte friction is
mary dispersion oD (w) occurs at a much higher frequency found to occur at a higher frequency because of faster relax-
than that of the electrolyte friction because of the presence dtion of the ion atmosphere. The real part of the conductivity
—iw term in the generalized Einstein relatigkq. (11)] is found to change rather weakly at low frequency. In fact, at



low concentration, a slight increase of the real part of the ) ) )

conductivity is observed at low frequency which can be at- F*(r't):kBTVf dr'cic(r—r")dpc(r',t)

tributed to the so-called Debye—Falkenhagen effect. The dis-

pfersion of the conductivity is fouqd to occur at a mgch +kBTVf dr'cy(r—r")8p;(r',1), (50)
higher frequency than that of the ion atmosphere friction.

Also, significant non-Debye behavior is observed in theyherec(r,t) is the colloid-ion direct correlation function,
Qole—CoIe plots of the conductivity of concentrated solu-s, (1’ t) is the density fluctuation of the colloidsy; is the
tions. ion—ion direct correlation function, anp;(r’,t) is the fluc-
The theory of the frequency-dependent conductivity detuation in the density of ion typg Equation(50) naturally
veloped here can be used to study the dynamics of manigads to an expression for the friction which depends on the
interesting  chemical phenomena such as solvatioglynamic structure factor of the colloids. A similar expression
dynamics’’~*°dielectric relaxatiorr;**?and chemical reac- can be written for the friction on the colloids which would
tions in electrolyte solution®=*6In all these chemical prob- involve the dynamic structure factor of the ions. These equa-
lems, the motion of ions in response to a time-dependentions need to be solved self-consistently. While this method
electric field or to a changing charge distribution inside theis well-known, one can carry out such detailed calculations
solution plays an important role and the theory developediow with the availability of the desired pair and direct cor-
here can be applied or generalized to study such problemselation functions. In this context, we note the work of Leon
Also, in the present theory, the solvent is considered to be @t al®> where similar equations have been derived for the
dielectric continuum. Thus, although the present theory intime-dependent friction on a charged colloidal particle from
corporates the static and dynamic ion—ion correlations anén approach of contracted description through generalized
the screening effects, the molecular details of the ion-Langevin equatiofi® The resultant equations were, however,
solvent and solvent—solvent correlations are missing. Alsosolved without incorporating the inherent self-consistency
since the conductivity is calculated by using the generalizedequired in the problem. It would certainly be worthwhile to
Nernst—Einstein relatiofEq. (12)], the dynamical cross cor- Ccarry out full self-consistent calculations of the frequency-
relations between velocities of distinct ions or the collectivedependent friction on such charged macroparticles. Work in

effects in the current—current correlation are not included ifh€se areas is in progress.
the present theory. Because of these approximations, the
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