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One dimensional Lennard-Jones fluids are known to exhibit an interestihtjmé (t) dependence

of the velocity correlation function. The origin of this decay is apparently not well understood. We
have studied this problem both by molecular dynamic simulations and by mode coupling theory. We
find that thist 3 decay of the velocity autocorrelation functioACF) arises from the coupling of

the tagged particle’s motion to the longitudinal current mode of the fluid. Interestingly such a decay
is intern rendered possible by the Gaussian time dependence of the coherent dynamic structure
factor at the relevant times. This is confirmed by the simulations of Lennard-Jones rods.3The
dependence is found to be dominant at low and intermediate densities. We show that the mode
coupling theory provides an accurate description of the VACF both at short and long time limits.

I. INTRODUCTION clude the existence of any “dangerous” long time tail. Ac-
The diffusi fici ¢ q lecule sh tually, Jepsehwas the first to derive the closed form expres-
e diffusion coefiicient of a tagged molecule ShowSq;q "ty the velocity autocorrelation functiofy ACF) and

stro_ng_ dependence on the dimensio_nality_ Of the SYSten}he diffusion coefficient fohard rods His study showed for
While it exists in three and one dimensions, it diverges in th<=The first time, that thdong time VACF decays ag 3, in

mtermedlatg .tWO d|n7ens.|or3r52. Thgrg IS, howe\(er, no .d'ff' contrast to thet~%2 dependence reported for the two and
culty in defining a diffusion coefficient in arbitrary dimen- . . . .
. . L N three dimensions. Lebowitz and Pertusudied the short
sions and any of the following two definitions sulffice: . . . .
time behavior of VACF and made an exponential approxi-
1 mation for VACF, i.e.,.C,(t) =exp(—2t), for theshort times

D= Itim ﬂMrz(t» (1) Haus and Ravecfiearried out the extensive molecular dy-
- namic simulations to study relaxation of an initially ordered
and array in one dimension. This study also investigated the 1/
behavior of VACF. However, none of the above studies pro-
1 (= . : . 3
D= _f dt(V(0)V(t)), 2) vides a physical explanationof the 1t° dependence of
dJo VACF at long times, of the type that exists for two and three

éiimensions.
Unlike for hard rods, no analytical solution exists for 1D
]L.J rods. Molecular dynamic$MD) simulations have re-

where(Ar?(t)) is the mean square displacement of a tagge
particle, V(t) is the velocity at timet, andd is the dimen-
sionality of the system. The reason for the divergence o

diffusion coefficient in two dimension&D) can be under- Vealed & g behavior in this system also. The computer
stood in terms of a long time tail in the decay of velocity simulations of Bishop and Berfiseem to suggest that there

time correlation function, of the forrm %2 (for two and three exists' no hydrodynamic dee in one dimensional fIUidS_'
dimension This long time tail arises from the coupling of What is meant by the nonexistence of hydrodynamic mode is
the tagged particle’s motion with transverse current flow oftNat there is no long lived collective excitation. In the one
the liquid. This gives rise to a logarithmic divergence of thedimensional dense liquids, there is a well-defined cage
mean-square displacement in 3D. fqrmed around eac_h molecule_ by its nearest neightsse
No such divergence exists for three dimensions. There i§19- 1) The relaxation of density and hence the form of the
a long time tail in this case also but its contribution to therélaxation function for the dynamic structure factdSF) is,
diffusion coefficient is negligible. Thus, one is interested totherefore, similar to the relaxation in a harmonic oscillator.
know what happens in one dimensional systems at high der.he average frequency of the oscillator is given by the Ein-
sity. One does not expect a divergence here because of ti§éein frequency. At high density, the value of this frequency
nonexistence of the transverse current mode and the decay i6f 1arge. So the relaxation at short times is in the under-
longitudinal current modérelated to the dynamic structure damped limit of momentum relaxation. In three dimensional
factor by a trivial differentiationis sufficiently fast to pre- liquids, the decay of the DSF at small wave number and long
times is usually exponential. While an exponential-like de-
JElectronic mail: bbagehi@sscu.iisc.emet.in cay eventually sets in' for one dimensional fluidg for small
YAlso at the Jawaharlal Nehru Center for Advanced Scientific Research\,’va\/e number relaxation also, this occurs at times much
Jakkur, Bangalore. longer than in 3D. For times relevant for the decay of the




velocity correlation function, DSF is a Gaussian function ofhas been adjusted from run to run to obtain the required
time. density. This system behaves exactly like the point atoms

Another interesting question pertains to the fact that onglaced at a distance of dinteracting in a volume oV =L
expects a very small diffusion coefficient for a one dimen-—NI, whereL is the length of the simulation box am the
sional system with harsh short-range repulsive potential, asumber of LJ rods. Our simulations were carried out at con-
in the case of Lennard-Jones fluid. In 3D the contribution ofstant volume and energgmicrocanonical ensembleThe
longitudinal current mode to diffusion is entirely negligible, Newtonian equations of motion were numerically solved by
while the transverse current mode contributes 5—10% at highsing the Verlet algorithm with a time step equal to 0.0005
densities’ In 1D there is only the longitudinal current mode. at all the densities except in the case of very low density
Thus it is highly interesting to study the role of this mode. (p*=0.1), where we had to use a larger timestég,

Note that the study of diffusion in the one dimensional =0.002r. The cutoff range of the interaction potential was
system is not purely academic. There are evidences of or&0Oc, which is sufficient enough to ensure the short range
dimensional diffusion in many biological systems, such as anteractions in one dimension. In all the cases, the system has
long DNAs and in the case of metal surface catalytic reacbeen equilibrated up to 50000 timesteps. Simulation runs
tions. have been carried out for another 100000 production time

In this paper, we present a detailed study of diffusion insteps after the equilibration, during which the velocities and
one dimensional Lennard-Jones fluid by using mode couthe positions of the rods have been stored at each 10th step
pling theory(MCT) and MD simulations with an aim at un- for subsequent analysis. Such simulation runs were repeated
derstanding the slow decay of velocity correlation functionsthree times with different initial velocity distribution. The
at long times and also the density dependence of the diffurequired quantities has been calculated by averaging over all
sion coefficient. We have performed a fully self-consistentthe runs.
mode coupling theory calculation to obtain both the short
and long time behavior o€ ,(t). We show that MCT pro- Ill. MODE COUPLING THEORY ANALYSIS
vides a simple interpretation of thetdtlecay of the velocity
correlation function in the long time in terms of the coupling
of the tagged particle’s motion to the longitudinal current
mode of the surrounding fluid.

The organization of the rest of the paper is as follows. |
Sec. Il we present the simulation details of the system und
study. The detailed approach of MCT in the one-dimensiona]
case has been described in Sec. Ill. Demonstratioti” df

We have carried out the self-consistent mode coupling
theory study to understand the origin of the slow decay
of VACF and also to calculate the time dependent diffusion
in one dimension. In order to calculate either VACF or dif-
"fusion coefficients, we need the two particle direct correla-
on function, c(x), and the radial distribution function,
(X). Herex denotes the separation between the centers of

; N . two LJ rods. In order to make the calculations robust we
decay of VACF by mode coupling theory is given in Sec. IV. have used thgy(x) obtained from simulations. The fre-

Section V includes the discussion and comparison of th ; . . .
results obtained both by the mode coupling theory and Msauency(z) dependent velocity correlation functidd,(2) is

. : ) . . related to the frequency dependent friction by the following
simulations. We close the paper with a few conclusions mgeneralized Einstein relation
Sec. VI. '
kgT
m(z+{(2))’

) ) ) ] . where{(2) is the frequency dependent friction.

Our model one dimensional simulation system consists |, mode coupling theory the full friction is decomposed
of 1000 Lennard-Jong#.J) rods placed in a row by applying jntg a short and a long time part. Short time part arises from
the periodic boundary conditions in one dimension. Initialyhe pinary collisions of tagged particle with the surrounding
velocities have been chosen from the Maxwellian velocitygqyents and the long time part originates from the correlated
distribution. The rods with the assigned velocities are thengcgjiisions. Final expression for the frequency dependent

allowed to interact through the pairwise additive Lennard-picion used to calculate both VACF and time dependent
Jones potential, given by diffusion is given by°

('_) c ('_) il m  {@=Co+f, ®)
X X where/B(z) is the binary part of the zero frequency friction,
wherei and] represents two different LJ rodsis the length  R(z) is the ring collision term, which contains the contribu-
of LJ rod ande is the well depth of the interaction potential. tions from the repeated collisions to the total friction. In 1D
In all the simulations mas@m) of the rods scaled to unity. we can replace the ring collision term in the above expres-
The reduced parameters being used in simulations for thsion by
length, tim mperature and th nsity are=x/I
A T ke, iy — i rospocivaly. Thetme {217 Ru(2)+ 28 @R(2) + 2 @R (212%(2). (©
dependent diffusiom(t) is scaled byl?/r. The above expression is similar to that of 8Bbut with the

We have studied a wide range of densities starting fromabsence of the term that contains the contribution from trans-
a lower densityp* =0.1 to a maximum op*=0.9 at a re- verse current to the total friction. In the above expression
duced temperatur@* =1.0. Length of the simulation box R,,(z) contains the coupling to the density and is given by

Ci(2)= 4

II. SYSTEM AND SIMULATION DETAILS

Vij(X):4E




pkgT sameFg(q,t) can be found in detail elsewheteWe skip
Rop(D)=—1 J [dq'/(2m)]a' 4 c(q’)]? the calculational details of all the above quantities, simply
because the expressions for these quantities remains the same
X[F5(q’,t)—F3(a’,t)IF(q’,1), (7) except for the terms that include the dimensionality.

. . : The self-consistent iterative scheme has been applied for
c(q) is the Fourier transform o€(x). Ry (z) contains the the calculation ofF5(q,t) in the following fashion. The full

longitudinal current whileR,, includes the coupling of den- . ~. L : S
. o P . friction appearing inC,(z) expressionEq. (4)] is initially
sity and longitudinal current, which can be expressed by the Y B . S
: . . . . : feplaced by its binary par°(z) as a first approximation.
following expressions in one dimension by following the

similar procedure used in 389 and ResultlngC,_J(z) is Laplape inverted .to get,(t) which is
then used in the following expression to get mean square
displacement:

R, (t)= 1fd'/2
||()——; [dq'/(2m)]

t
_ <sz(t)>=2f Cy(n)(t—7)dr (14
X[ v4(a")+(paPimB)c(q’) Pwg * 0
X[F(q',t)=F°(q’,H)]C,(q’.t) (8) the MSD S0 obtained is used as_input in the following self-
g dynamic structure factor expression
an
o g% (Ax%(1))
Rp.(t)=—f [da'/(2m)]c(q’)

which essentially is used to calculd®g,(t),R; (t) and thus

X[ y4(q) +(pa?mB)c(q’) Jwg 2 [(t). The resulting total friction is used to calculate new
d C,(t), which again is used to determine MSD and ti4(s .
x[FS(q’,t)—FO(q’,t)]&F(q’,t), (99  The above iterative scheme has been continued until the

C,(t) obtained from two consecutive steps completely over-

wherey)(q) is the distinct part of the second moment of thelaps. The above scheme providesCa(t) fully consistent

longitudinal current correlation function, which is given by With the frequency dependent frictidf. ' _
the following equation: The longitudinal current correlation functio@,(q,t), is

related to the dynamic structure factor by the following ex-

? (10) pression:

I, n__ P d
Yd(Q)——af dXCOS{qX)g(X)d—sz(X)

2 d2
and oy is the well-known Einstein frequency in 1D and is ~ C1(4.0)=— ?WF(QJ)- (16)
iven b
g y , It is important to note that at sufficiently long times the only
d ignificant contribution to the integral of E¢B) arises from
2 P as significant contribution to the integral o arises fro
wo—mfdxg(x)dxzv(x). 1D small wave numbers. Note that the only existing current

mode is the longitudinal one and is directly related to the

B . . . . . .
£"(t) is the binary part of the friction whose expression 'SF(q,t) through the above equation.

given by

B =wdexp —t%/72). (12)
. . . . . IV. LONG TIME BEHAVIOR OF VACF
The relaxation timer, is determined from the second deriva-

tive of the above expression fgF(t), which is given by the It can be shown from Eqg4)—(8), that the long time
following equation, behavior of VACF is determined by the longitudinal current
5 ’ 5 term R (t). This also follows from simple but elegant treat-
“’_g: sz dxd—zv(x)g(x)d—zv(x) ment of Gaskell and Miller who considered the coupling of
77 3m dx dx the tagged particle velocity with current modes of the liqlid.
1 The expression oR;(t) is given by Eq.(8).
| | imi i
+ _f dg yh(a)(S(q)— 1) yi(a) (13 In the limit of smallq (long wavelengththe following
4mp limiting condition holds:
the st_atic_structure factoS(q)_, appearing i_n the _above ex- [yh(q’)+(pq2/m,8)c(q’)]2 40
pression is calculated by using the one-dimensional Fourier v 1. (17)

transform of the radial distribution function. The Fourier @

transformed two particle direct correlation functiofq) is  Thus, at the long times, the time dependenceCpft) and
obtained through the well-known Ornstein—Zernike henceR; (t) can be expressed as
relation??

Calculational procedure of all the dynamical variables Cv(t)%Rll(t)~f dq’ FS(q’,t)Ci(q’,t). (18
appearing in the above expressions namely the dynamic
structure factorF(q,t) and its inertial parfqy(q,t), the self-  The long time behavior of the integrand in the above equa-
dynamic structure factdf®(q,t), and the inertial part of the tion is determined b{,(q,t). Now C(q,t) is determined by
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FIG. 1. The simulated two particle radial distribution functig(x) is plot- t

ted against the separation of the rods at various densiti€$atl.0. Rapid FIG. 2. Normalized VACF obtained from simulations is plotted against the
disappearance of the second and higher solvation shells with decreasingduced time at various densitiesTdt=1.0. The lines from top to bottom
density is clearly evident from the figure. The lines marked\py8, andC represent the case wigt =0.1, 0.3, 0.4, 0.6, 0.82, and 0.9, respectively.
correspond to the densitigg =0.82, 0.6, and 0.3, respectively.

X

V. RESULTS AND DISCUSSION

the intermediate scattering function as given by ELf). As explained earlier the structure of one dimensional
When Eq.(16) is substituted in the above equation, we get system changes drastically even for the mild changes in den-

I sity. In Fig. 1, we have plotted the simulated radial distribu-

tion functiong(x) at various densities to show the effect of

R”(t)%f dqWF(q,t). (19 changes in density on the structure of the 1D fluid.
Figure 2 shows the effect of density on VACF in 1D. All

The important point now to note is that in 1D hard rods,the features observed in the figure can be explained in terms
F(q,t) decays mostly as a Gaussian function of time. Atof the local structure. At high densities there exists a nega-

small q decay,F(q,t) can be given as tive region in VACF, which arises due to the “backscatter-
ing.” Apart from the high density case, at intermediate and
F(q,t)~exp —ag’t?), (200 low densities, the pronounced slow long time decay of

VACF has been observed. It is difficult either to study or to

wherea is a constant.
As already mentioned, the Gaussian decay@f,t) at

small wave numbers at large density is a manifestation of the 0.04
well-defined cage around each molecule. Thus, the relaxation
of density remains nearly elastic for sufficiently long times.
It is further assumed that on the time scale of decay of
F(q,t), the relaxation of the self-ternk,¢(q,t) is negligible.
By making this Gaussian ansatz fe(q,t) and substituting
Ci(q,t) in Eq. (8), we get the following expression for the
longitudinal current:

2

m
Ri(t)~ ——, (21
! 2\/;pt3
which simply shows that in the long times longitudinal cur- T T
rent goes as$ °. 1 09 08 07 06 05
Note that the two essential ingredients of the above deri- t'3/tc'3

vation is the contribution of the longitudinal current term and

the Gaussian decay of the intermediate scattering functiorkIG. 3. The long time tails o€, (t) obtained from simulations are plotted

The above derivation is by no means rigorous, but numericai9ainst (c/t)® at various densities at* =1.0.tis the reduced time ang}

calculations verify both the above reasons as the origin Of‘ the time at which the long time tail &,(t) started approaching zero.The
-3 . ifferent symbols from top to bottom represent tBgt) at reduced densi-

t™° time dependence of VACF. As demonstrated latefijes 0.3, 0.4, 0.6, and 0.82, respectively. The figure shows the dominance of

F(q,t) decays as Gaussidim time) at smallq. t~3 decay inC,(t) at low and intermediate densities.
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FIG. 4. The intermediate scattering functidf(g,t), obtained from simu-
lations, is plotted against the time at an intermediate density0.6 and
T*=1.0 at a low wave vector value afl=0.1206. Symbols show the
simulation results and the full line is the Gaussian fit. This figure clearly
demonstrates the Gaussian behavioF (d,t) in theq—0 limit.

D(t)

FIG. 5. The time dependent diffusio®(t)) obtained from the simulated
C,(t) is plotted against the reduced time at various densiti€E*at 1.0.

The curves from top to bottom represent i) for the different densities,
namelyp*=0.1, 0.3, 0.4, 0.6, and 0.82.

D(t)

kgT [t
—J C,(m)dr.
m Jo

The result, the density dependence of time dependent diffu-
sion in 1D, is shown in Fig. 5. This figure clearly shows the
existence of the diffusion coefficient in 1D. Even at high
densities there exists a small but nonvanishing diffusion co-
efficient.

Normalized VACF obtained from self-consistent mode

(22)

coupling theory has been plotted in Fig. 6, against the time at
a medium densitp* = 0.6 andT* = 1.0. Here, we have com-

pared the simulatedC,(t) with the C,(t) obtained from

MCT. In Fig. 7, we compared th€,(t)’s at a lower density
extract the interesting information from the long time tail of p* =0.4. Similar results have been obtained at other densi-
C,(t) at high densities due to the presence of both the nega-

tive region and the huge oscillations. To overcome this dif-
ficulty we have studied a wide range of densities.

In Fig. 3 the long time tail of VACF is plotted after an
initial decay. This figure clearly shows the® behavior of
C,(t) in the long time over a wide range of densities. This

decay is more dominant, at low and intermediate densities.
This can be attributed to the disappearance of local structure

and the existence of positive tail @,(t) over a longer time.
On the other hand, the existence of long time tail will be

suppressed at higher densities due to the presence of the

negative region and the oscillations over a longer time which
masks the 1# decay of VACF in the long time.

In Fig. 4, the normalized dynamic structure factor
F(q,t)/S(q) is plotted at a small wave vector valug)
=0.1206, in the time domain where the VACF shows pro-
nouncedt 3 decay. Circles show the simulated values and
the full line is the Gaussian fit. As seen from the figure,
F(q,t) is a Gaussian function of time in tlie— 0 limit. This
is an important observation since it provides the key to the
physical origin for the slow decay @, (t).
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FIG. 6. C,(t) obtained from the MCT and from the MD simulations have
been plotted against the reduced timep&t=0.6 andT*=1.0. Symbols

Time dependent diffusion{(t)) shows the approach to ghoy the simulate, (t) and the full line represents @, (t) obtained by

long time diffusion.D(t) can be expressed as

MCT.
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FIG. 7. C,(t) obtained from the MCT and from the MD simulations have ]
been plotted against the reduced timep&t=0.4 andT* =1.0. Symbols ®
show the simulate€,(t) and the full line represents tt@,(t) obtained by 0.5 -
MCT.
0.0 1
ties. As seen from the figures the theory is in good agreement
T T

with the simulation results both at short and long times. Nev- (') ' 5 ' 4'1 ' é ' g 10
ertheless, the agreement is somewhat poorer in case of low

density. This is expected since at low densities the friction (I-p)ip

itself develops a negapve reglpn, Wh'_Ch SIOWS down the _deTZIG. 8. Simulated diffusion coefficient is plotted against-(al)/p at all
cay of MCT C,(t). This negative region is not captured in the densities mentioned in Fig. 4. Symbols show the simulBtedlues and
the Gaussian approximation employed for bare frictionthe straight line is the linear fit.

(£(1)). Hence, to get the better agreement at low densities
one needs to add thé term in the binary friction expression.
It is interesting to note that despite the existence of longvl. CONCLUSION

time tails ofC,(t), we can still have a well-defined diffusion We have carried out self-consistent mode coupling

coefnc!ent. V\_/e_ find that the decay of the Ion.gltudlnal Cl‘J‘rremtheory calculation and also molecular dynamic simulations to
mode is sufficiently fast to preclude the existence of dan'understand both the origin of the long time decayGyft)
gerous Ionfgdt_:c;ne.tallls of VAdC_:F, thgre by avoiding the di- 54 4150 the density dependence of time dependent diffusion
vergence ot dittusion In one dimension. . . ___in the one dimensional Lennard-Jones system.

The agreement of Fhe MCT results W'Fh _”;e simulations We found that in the low wave vector limit the dynamic
supports_ our explanation that the long tirne de_cay, of structure factor is a Gaussian function of time. This intern
C, () arises from the coupling of the tagged particle’s MO-gives rise to &3 decay of the longitudinal current correla-

tion with the longitudinal current of the surrounding fluid. To tion function. We have showed that the® decay in velocity
strengthen our argument we have also calculated the coeff

. ltiolvi het-2 tail. which i | Correlation arises from the coupling of the tagged particle’s
cient multiplying thet = tail, whic IS equa to O'.OSO 26 motion to the longitudinal current mode of the fluid in the
from the MCT and 0.06597 from simulations. Given the

inties in the simulati di hich is al long time. We find that the decay of longitudinal current is
uncertainties in the simulations and in #éx) which is also sufficient faster to avoid any divergence in the diffusion.

obtglned from simulations, this agreement can be regarded #en at high densities there exists a small but nonvanishing
satisfactory. ) value of diffusion. We have observed that the existing exact

F(_)r hard rods_ Le‘?o""'tz ar_ld_ Percus gave an exact ®XSolution for hard rods can be applied to LJ systems to de-
pression for the diffusion coefficieft, scribe the density dependence of diffusion over a wide den-

(1—pl) sity range.
D= —, (23
V(2mBm)p

wherel is the hard rod length. We find that such a reIation'A‘CK’\K)WLEDG'vIENTS
for the density dependence holds good in case of LJ rods too. We thank S. Bhattacharyya, R. K. Murarka, and Dr. R.
In Fig. 8 we have plotted the simulateB against (1  Aldrin Denny for helpful discussions. This work was sup-
—pl)/p. Symbols show the simulate® values and the ported in parts by grants from DST, India and CSIR, India.
straight line is the linear fit. From the figure we can see &G.S. thanks CSIR, New Delhi, India, for a Research Fellow-
clear linear dependence bf over the whole density range. ship.
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