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One dimensional Lennard-Jones fluids are known to exhibit an interesting 1/t3 time ~t! dependence
of the velocity correlation function. The origin of this decay is apparently not well understood. We
have studied this problem both by molecular dynamic simulations and by mode coupling theory. We
find that thist23 decay of the velocity autocorrelation function~VACF! arises from the coupling of
the tagged particle’s motion to the longitudinal current mode of the fluid. Interestingly such a decay
is intern rendered possible by the Gaussian time dependence of the coherent dynamic structure
factor at the relevant times. This is confirmed by the simulations of Lennard-Jones rods. Thet23

dependence is found to be dominant at low and intermediate densities. We show that the mode
coupling theory provides an accurate description of the VACF both at short and long time limits.
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I. INTRODUCTION

The diffusion coefficient of a tagged molecule sho
strong dependence on the dimensionality of the syst
While it exists in three and one dimensions, it diverges in
intermediate two dimensions.1,2 There is, however, no diffi-
culty in defining a diffusion coefficient in arbitrary dimen
sions and any of the following two definitions suffice:

D5 lim
t→`

1

2dt
^Dr2~ t !& ~1!

and

D5
1

d E0

`

dt^V~0!V~ t !&, ~2!

where^Dr2(t)& is the mean square displacement of a tagg
particle,V(t) is the velocity at timet, andd is the dimen-
sionality of the system. The reason for the divergence
diffusion coefficient in two dimensions~2D! can be under-
stood in terms of a long time tail in the decay of veloc
time correlation function, of the formt2d/2 ~for two and three
dimensions!. This long time tail arises from the coupling o
the tagged particle’s motion with transverse current flow
the liquid. This gives rise to a logarithmic divergence of t
mean-square displacement in 2D.3

No such divergence exists for three dimensions. Ther
a long time tail in this case also but its contribution to t
diffusion coefficient is negligible. Thus, one is interested
know what happens in one dimensional systems at high d
sity. One does not expect a divergence here because o
nonexistence of the transverse current mode and the dec
longitudinal current mode~related to the dynamic structur
factor by a trivial differentiation! is sufficiently fast to pre-

a!Electronic mail: bbagchi@sscu.iisc.ernet.in
b!Also at the Jawaharlal Nehru Center for Advanced Scientific Resea

Jakkur, Bangalore.
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clude the existence of any ‘‘dangerous’’ long time tail. A
tually, Jepsen4 was the first to derive the closed form expre
sion for the velocity autocorrelation function~VACF! and
the diffusion coefficient forhard rods. His study showed for
the first time, that thelong time VACF decays ast23, in
contrast to thet2d/2 dependence reported for the two an
three dimensions. Lebowitz and Percus5 studied the short
time behavior of VACF and made an exponential appro
mation for VACF, i.e.,Cv(t)5exp(22t), for theshort times.
Haus and Raveche6 carried out the extensive molecular d
namic simulations to study relaxation of an initially order
array in one dimension. This study also investigated the 1t3

behavior of VACF. However, none of the above studies p
vides a physical explanationof the 1/t3 dependence of
VACF at long times, of the type that exists for two and thr
dimensions.

Unlike for hard rods, no analytical solution exists for 1
LJ rods. Molecular dynamics~MD! simulations have re-
vealed a 1/t3 behavior in this system also. The comput
simulations of Bishop and Berne7,8 seem to suggest that ther
exists no hydrodynamic mode in one dimensional flui
What is meant by the nonexistence of hydrodynamic mod
that there is no long lived collective excitation. In the o
dimensional dense liquids, there is a well-defined ca
formed around each molecule by its nearest neighbors~see
Fig. 1!. The relaxation of density and hence the form of t
relaxation function for the dynamic structure factor~DSF! is,
therefore, similar to the relaxation in a harmonic oscillat
The average frequency of the oscillator is given by the E
stein frequency. At high density, the value of this frequen
is large. So the relaxation at short times is in the und
damped limit of momentum relaxation. In three dimension
liquids, the decay of the DSF at small wave number and lo
times is usually exponential. While an exponential-like d
cay eventually sets in for one dimensional fluids for sm
wave number relaxation also, this occurs at times mu
longer than in 3D. For times relevant for the decay of t
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velocity correlation function, DSF is a Gaussian function
time.

Another interesting question pertains to the fact that o
expects a very small diffusion coefficient for a one dime
sional system with harsh short-range repulsive potential
in the case of Lennard-Jones fluid. In 3D the contribution
longitudinal current mode to diffusion is entirely negligibl
while the transverse current mode contributes 5–10% at h
densities.9 In 1D there is only the longitudinal current mod
Thus it is highly interesting to study the role of this mode

Note that the study of diffusion in the one dimension
system is not purely academic. There are evidences of
dimensional diffusion in many biological systems, such a
long DNAs and in the case of metal surface catalytic re
tions.

In this paper, we present a detailed study of diffusion
one dimensional Lennard-Jones fluid by using mode c
pling theory~MCT! and MD simulations with an aim at un
derstanding the slow decay of velocity correlation functio
at long times and also the density dependence of the d
sion coefficient. We have performed a fully self-consiste
mode coupling theory calculation to obtain both the sh
and long time behavior ofCv(t). We show that MCT pro-
vides a simple interpretation of the 1/t3 decay of the velocity
correlation function in the long time in terms of the couplin
of the tagged particle’s motion to the longitudinal curre
mode of the surrounding fluid.

The organization of the rest of the paper is as follows
Sec. II we present the simulation details of the system un
study. The detailed approach of MCT in the one-dimensio
case has been described in Sec. III. Demonstration oft23

decay of VACF by mode coupling theory is given in Sec. I
Section V includes the discussion and comparison of
results obtained both by the mode coupling theory and M
simulations. We close the paper with a few conclusions
Sec. VI.

II. SYSTEM AND SIMULATION DETAILS

Our model one dimensional simulation system cons
of 1000 Lennard-Jones~LJ! rods placed in a row by applying
the periodic boundary conditions in one dimension. Init
velocities have been chosen from the Maxwellian veloc
distribution. The rods with the assigned velocities are th
allowed to interact through the pairwise additive Lenna
Jones potential, given by

Vi j ~x!54eF S l

xD 12

2S l

xD 6G , ~3!

wherei and j represents two different LJ rods,l is the length
of LJ rod ande is the well depth of the interaction potentia
In all the simulations mass~m! of the rods scaled to unity
The reduced parameters being used in simulations for
length, time, temperature and the density arex* 5x/ l , t
5A(m/e) l , T* 5kBT/e, andr* 5r l , respectively. The time
dependent diffusionD(t) is scaled byl 2/t.

We have studied a wide range of densities starting fr
a lower densityr* 50.1 to a maximum ofr* 50.9 at a re-
duced temperatureT* 51.0. Length of the simulation box
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has been adjusted from run to run to obtain the requi
density. This system behaves exactly like the point ato
placed at a distance of 1/r interacting in a volume ofV5L
2Nl, whereL is the length of the simulation box andN, the
number of LJ rods. Our simulations were carried out at c
stant volume and energy~microcanonical ensemble!. The
Newtonian equations of motion were numerically solved
using the Verlet algorithm with a time step equal to 0.000t
at all the densities except in the case of very low dens
(r* 50.1), where we had to use a larger timestep,Dt
50.002t. The cutoff range of the interaction potential wa
6.0s, which is sufficient enough to ensure the short ran
interactions in one dimension. In all the cases, the system
been equilibrated up to 50 000 timesteps. Simulation r
have been carried out for another 100 000 production t
steps after the equilibration, during which the velocities a
the positions of the rods have been stored at each 10th
for subsequent analysis. Such simulation runs were repe
three times with different initial velocity distribution. Th
required quantities has been calculated by averaging ove
the runs.

III. MODE COUPLING THEORY ANALYSIS

We have carried out the self-consistent mode coupl
theory study to understand the origin of the slowt23 decay
of VACF and also to calculate the time dependent diffus
in one dimension. In order to calculate either VACF or d
fusion coefficients, we need the two particle direct corre
tion function, c(x), and the radial distribution function
g(x). Herex denotes the separation between the center
two LJ rods. In order to make the calculations robust
have used theg(x) obtained from simulations. The fre
quency~z! dependent velocity correlation functionCv(z) is
related to the frequency dependent friction by the followi
generalized Einstein relation,

Cv~z!5
kBT

m~z1z~z!!
, ~4!

wherez(z) is the frequency dependent friction.
In mode coupling theory the full friction is decompose

into a short and a long time part. Short time part arises fr
the binary collisions of tagged particle with the surroundi
solvents and the long time part originates from the correla
recollisions. Final expression for the frequency depend
friction used to calculate both VACF and time depende
diffusion is given by10

z~z!5zB~z!1zR~z!, ~5!

wherezB(z) is the binary part of the zero frequency friction
zR(z) is the ring collision term, which contains the contrib
tions from the repeated collisions to the total friction. In 1
we can replace the ring collision term in the above expr
sion by

zR~z!5Rrr~z!12zB~z!Rr l~z!1zB~z!Rll ~z!zB~z!. ~6!

The above expression is similar to that of 3D10,9 but with the
absence of the term that contains the contribution from tra
verse current to the total friction. In the above express
Rrr(z) contains the coupling to the density and is given b
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Rrr~ t !5
rkBT

m E @dq8/~2p!#q82@c~q8!#2

3@Fs~q8,t !2F0
s~q8,t !#F~q8,t !, ~7!

c(q) is the Fourier transform ofc(x). Rll (z) contains the
longitudinal current whileRr l includes the coupling of den
sity and longitudinal current, which can be expressed by
following expressions in one dimension by following th
similar procedure used in 3D,10,11 and

Rll ~ t !52
1

r E @dq8/~2p!#

3@gd
l ~q8!1~rq2/mb!c~q8!#2v0

24

3@Fs~q8,t !2F0~q8,t !#Cl~q8,t ! ~8!

and

Rr l~ t !52E @dq8/~2p!#c~q8!

3@gd
l ~q!1~rq2/mb!c~q8!#v0

22

3@Fs~q8,t !2F0~q8,t !#
d

dt
F~q8,t !, ~9!

wheregd
l (q) is the distinct part of the second moment of t

longitudinal current correlation function, which is given b
the following equation:

gd
l ~q!52

r

m E dx cos~qx!g~x!
d2

dx2 v~x! ~10!

and v0 is the well-known Einstein frequency in 1D and
given by

v0
25

r

m E dx g~x!
d2

dx2 v~x!. ~11!

zB(t) is the binary part of the friction whose expression
given by

zB~ t !5v0
2 exp~2t2/tz

2!. ~12!

The relaxation timetz is determined from the second deriv
tive of the above expression forzB(t), which is given by the
following equation,

v0
2

tz
2 5

r

3m2 E dx
d2

dx2 v~x!g~x!
d2

dx2 v~x!

1
1

4pr E dq gd
l ~q!~S~q!21!gd

l ~q! ~13!

the static structure factor,S(q), appearing in the above ex
pression is calculated by using the one-dimensional Fou
transform of the radial distribution function. The Fouri
transformed two particle direct correlation functionc(q) is
obtained through the well-known Ornstein–Zerni
relation.12

Calculational procedure of all the dynamical variab
appearing in the above expressions namely the dyna
structure factor,F(q,t) and its inertial partF0(q,t), the self-
dynamic structure factorFs(q,t), and the inertial part of the
e

er

ic

sameF0
s(q,t) can be found in detail elsewhere.11 We skip

the calculational details of all the above quantities, sim
because the expressions for these quantities remains the
except for the terms that include the dimensionality.

The self-consistent iterative scheme has been applied
the calculation ofFs(q,t) in the following fashion. The full
friction appearing inCv(z) expression@Eq. ~4!# is initially
replaced by its binary part,zB(z) as a first approximation
ResultingCv(z) is Laplace inverted to getCv(t) which is
then used in the following expression to get mean squ
displacement:

^Dx2~ t !&52E
0

t

Cv~t!~ t2t!dt ~14!

the MSD so obtained is used as input in the following se
dynamic structure factor expression

Fs~q,t !5expS 2
q2^Dx2~ t !&

2 D , ~15!

which essentially is used to calculateRrr(t),Rll (t) and thus
z(t). The resulting total friction is used to calculate ne
Cv(t), which again is used to determine MSD and thusz(t).
The above iterative scheme has been continued until
Cv(t) obtained from two consecutive steps completely ov
laps. The above scheme provides aCv(t) fully consistent
with the frequency dependent friction.13

The longitudinal current correlation function,Cl(q,t), is
related to the dynamic structure factor by the following e
pression:

Cl~q,t !52
m2

q2

d2

dt2
F~q,t !. ~16!

It is important to note that at sufficiently long times the on
significant contribution to the integral of Eq.~8! arises from
small wave numbers. Note that the only existing curre
mode is the longitudinal one and is directly related to t
F(q,t) through the above equation.

IV. LONG TIME BEHAVIOR OF VACF

It can be shown from Eqs.~4!–~8!, that the long time
behavior of VACF is determined by the longitudinal curre
term Rll (t). This also follows from simple but elegant trea
ment of Gaskell and Miller who considered the coupling
the tagged particle velocity with current modes of the liqui9

The expression ofRll (t) is given by Eq.~8!.
In the limit of small q ~long wavelength! the following

limiting condition holds:

@gd
l ~q8!1~rq2/mb!c~q8!#2

v4 ——→
q→0

1. ~17!

Thus, at the long times, the time dependence ofCv(t) and
henceRll (t) can be expressed as

Cv~ t !'Rll ~ t !;E dq8 Fs~q8,t !Cl~q8,t !. ~18!

The long time behavior of the integrand in the above eq
tion is determined byCl(q,t). Now Cl(q,t) is determined by
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the intermediate scattering function as given by Eq.~16!.
When Eq.~16! is substituted in the above equation, we g

Rll ~ t !'E dq
d2

dt2
F~q,t !. ~19!

The important point now to note is that in 1D hard rod
F(q,t) decays mostly as a Gaussian function of time.
small q decay,F(q,t) can be given as

F~q,t !'exp~2aq2t2!, ~20!

wherea is a constant.
As already mentioned, the Gaussian decay ofF(q,t) at

small wave numbers at large density is a manifestation of
well-defined cage around each molecule. Thus, the relaxa
of density remains nearly elastic for sufficiently long time
It is further assumed that on the time scale of decay
F(q,t), the relaxation of the self-term,Fs(q,t) is negligible.
By making this Gaussian ansatz forF(q,t) and substituting
Cl(q,t) in Eq. ~8!, we get the following expression for th
longitudinal current:

Rll ~ t !'
m2

2Aprt3
, ~21!

which simply shows that in the long times longitudinal cu
rent goes ast23.

Note that the two essential ingredients of the above d
vation is the contribution of the longitudinal current term a
the Gaussian decay of the intermediate scattering funct
The above derivation is by no means rigorous, but numer
calculations verify both the above reasons as the origin
t23 time dependence of VACF. As demonstrated la
F(q,t) decays as Gaussian~in time! at smallq.

FIG. 1. The simulated two particle radial distribution function,g(x) is plot-
ted against the separation of the rods at various densities atT* 51.0. Rapid
disappearance of the second and higher solvation shells with decre
density is clearly evident from the figure. The lines marked byA, B, andC
correspond to the densitiesr* 50.82, 0.6, and 0.3, respectively.
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V. RESULTS AND DISCUSSION

As explained earlier the structure of one dimensio
system changes drastically even for the mild changes in d
sity. In Fig. 1, we have plotted the simulated radial distrib
tion functiong(x) at various densities to show the effect
changes in density on the structure of the 1D fluid.

Figure 2 shows the effect of density on VACF in 1D. A
the features observed in the figure can be explained in te
of the local structure. At high densities there exists a ne
tive region in VACF, which arises due to the ‘‘backscatte
ing.’’ Apart from the high density case, at intermediate a
low densities, the pronounced slow long time decay
VACF has been observed. It is difficult either to study or

ing
FIG. 2. Normalized VACF obtained from simulations is plotted against
reduced time at various densities atT* 51.0. The lines from top to bottom
represent the case withr* 50.1, 0.3, 0.4, 0.6, 0.82, and 0.9, respectively

FIG. 3. The long time tails ofCv(t) obtained from simulations are plotte
against (tc /t)3 at various densities atT* 51.0. t is the reduced time andtc

is the time at which the long time tail ofCv(t) started approaching zero. Th
different symbols from top to bottom represent theCv(t) at reduced densi-
ties 0.3, 0.4, 0.6, and 0.82, respectively. The figure shows the dominan
t23 decay inCv(t) at low and intermediate densities.
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extract the interesting information from the long time tail
Cv(t) at high densities due to the presence of both the ne
tive region and the huge oscillations. To overcome this d
ficulty we have studied a wide range of densities.

In Fig. 3 the long time tail of VACF is plotted after a
initial decay. This figure clearly shows thet23 behavior of
Cv(t) in the long time over a wide range of densities. Th
decay is more dominant, at low and intermediate densit
This can be attributed to the disappearance of local struc
and the existence of positive tail inCv(t) over a longer time.
On the other hand, the existence of long time tail will
suppressed at higher densities due to the presence o
negative region and the oscillations over a longer time wh
masks the 1/t3 decay of VACF in the long time.

In Fig. 4, the normalized dynamic structure fact
F(q,t)/S(q) is plotted at a small wave vector value,ql
50.1206, in the time domain where the VACF shows p
nouncedt23 decay. Circles show the simulated values a
the full line is the Gaussian fit. As seen from the figu
F(q,t) is a Gaussian function of time in theq→0 limit. This
is an important observation since it provides the key to
physical origin for the slow decay ofCv(t).

Time dependent diffusion (D(t)) shows the approach t
long time diffusion.D(t) can be expressed as

FIG. 4. The intermediate scattering function,F(q,t), obtained from simu-
lations, is plotted against the time at an intermediate densityr* 50.6 and
T* 51.0 at a low wave vector value ofql50.1206. Symbols show the
simulation results and the full line is the Gaussian fit. This figure clea
demonstrates the Gaussian behavior ofF(q,t) in the q→0 limit.
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D~ t !5
kBT

m E
0

t

Cv~t!dt. ~22!

The result, the density dependence of time dependent d
sion in 1D, is shown in Fig. 5. This figure clearly shows t
existence of the diffusion coefficient in 1D. Even at hig
densities there exists a small but nonvanishing diffusion
efficient.

Normalized VACF obtained from self-consistent mo
coupling theory has been plotted in Fig. 6, against the tim
a medium densityr* 50.6 andT* 51.0. Here, we have com
pared the simulatedCv(t) with the Cv(t) obtained from
MCT. In Fig. 7, we compared theCv(t)’s at a lower density
r* 50.4. Similar results have been obtained at other de

y

FIG. 5. The time dependent diffusion (D(t)) obtained from the simulated
Cv(t) is plotted against the reduced time at various densities atT* 51.0.
The curves from top to bottom represent theD(t) for the different densities,
namelyr* 50.1, 0.3, 0.4, 0.6, and 0.82.

FIG. 6. Cv(t) obtained from the MCT and from the MD simulations hav
been plotted against the reduced time atr* 50.6 andT* 51.0. Symbols
show the simulatedCv(t) and the full line represents theCv(t) obtained by
MCT.
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ties. As seen from the figures the theory is in good agreem
with the simulation results both at short and long times. N
ertheless, the agreement is somewhat poorer in case of
density. This is expected since at low densities the frict
itself develops a negative region, which slows down the
cay of MCT Cv(t). This negative region is not captured
the Gaussian approximation employed for bare frict
(z(t)). Hence, to get the better agreement at low densi
one needs to add thet4 term in the binary friction expression

It is interesting to note that despite the existence of lo
time tails ofCv(t), we can still have a well-defined diffusio
coefficient. We find that the decay of the longitudinal curre
mode is sufficiently fast to preclude the existence of ‘‘da
gerous’’ long time tails of VACF, there by avoiding the d
vergence of diffusion in one dimension.

The agreement of the MCT results with the simulatio
supports our explanation that the long timet23 decay of
Cv(t) arises from the coupling of the tagged particle’s m
tion with the longitudinal current of the surrounding fluid. T
strengthen our argument we have also calculated the co
cient multiplying the t23 tail, which is equal to 0.050 26
from the MCT and 0.065 97 from simulations. Given t
uncertainties in the simulations and in theg(x) which is also
obtained from simulations, this agreement can be regarde
satisfactory.

For hard rods Lebowitz and Percus gave an exact
pression for the diffusion coefficient,5,4

D5
~12r l !

A~2pbm!r
, ~23!

where l is the hard rod length. We find that such a relati
for the density dependence holds good in case of LJ rods
In Fig. 8 we have plotted the simulatedD against (1
2rl)/r. Symbols show the simulatedD values and the
straight line is the linear fit. From the figure we can see
clear linear dependence ofD over the whole density range

FIG. 7. Cv(t) obtained from the MCT and from the MD simulations ha
been plotted against the reduced time atr* 50.4 andT* 51.0. Symbols
show the simulatedCv(t) and the full line represents theCv(t) obtained by
MCT.
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VI. CONCLUSION

We have carried out self-consistent mode coupl
theory calculation and also molecular dynamic simulations
understand both the origin of the long time decay ofCv(t)
and also the density dependence of time dependent diffu
in the one dimensional Lennard-Jones system.

We found that in the low wave vector limit the dynam
structure factor is a Gaussian function of time. This inte
gives rise to at23 decay of the longitudinal current correla
tion function. We have showed that thet23 decay in velocity
correlation arises from the coupling of the tagged particl
motion to the longitudinal current mode of the fluid in th
long time. We find that the decay of longitudinal current
sufficient faster to avoid any divergence in the diffusio
Even at high densities there exists a small but nonvanish
value of diffusion. We have observed that the existing ex
solution for hard rods can be applied to LJ systems to
scribe the density dependence of diffusion over a wide d
sity range.
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FIG. 8. Simulated diffusion coefficient is plotted against (12r l )/r at all
the densities mentioned in Fig. 4. Symbols show the simulatedD values and
the straight line is the linear fit.
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