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Power law mass dependence of diffusion: A mode coupling theory analysis

Sarika Bhattacharyya1 and Biman Bagchi1,2,*
1Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India

2Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
~Received 26 May 1999!

The self-diffusion coefficient of a tagged molecule is known to exhibit a weak mass dependence, especially
for solutes with size comparable to or larger than the size of the solvent molecules. Sometimes this mass
dependence can be fitted to a power law, with a small exponent, less than 0.1. This weak mass dependence has
often been considered as supportive of the hydrodynamic picture~that is, the Stokes-Einstein relation! of
diffusion rather than the kinetic theory approach, which predicts a stronger mass dependence, for example, via
the Enskog theory. Neither can explain the weak power-law mass dependence. In order to understand this, we
have carried out a mode coupling theory~MCT! analysis of diffusion. It is found that a straightforward
application of the existing mode coupling theory expressions lead to an inaccuratemass dependence—it
predicts an increase of diffusion coefficient with an increase of the mass. We find that this is because of the
inadequate description of the initial decay of the collective contributions to the friction. We have proposed a
new prescription to accurately describe the short time dynamics of the density and the current term. In addition,
we have modified the existing MCT by imposing the full self-consistency between the frequency-dependent
friction and the mean square displacement over the whole time and frequency plane. Previously the self-
consistency was performed only at the zero frequency level between the zero frequency friction and the
diffusion coefficient. With these two generalizations, the mode coupling theory is found to provide a fairly
accurate description of the mass dependence. In particular, the theory can correctly reproduce the power-law
dependence of solvent-solute diffusion ratio on solute-solvent mass ratio, observed in computer simulations of
Bearman and Jolly@Mol. Phys.44, 665 ~1981!#. Another important result is that the current mode is found to
play no significant role in determining the diffusion. Thus the hydrodynamic argument of weak mass depen-
dence has little validity for same size solute-solvent systems.

PACS number~s!: 47.10.1g, 66.10.Cb, 5.20.Dd
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I. INTRODUCTION

The self-diffusion of a tagged solute molecule in a den
liquid is a subject of intense current discussion, which, giv
the long and illustrious history of the problem, is rather s
prising. This current upsurge of interest, however, seem
be fuelled by the following factors. First, extensive compu
simulations can now be carried out that allow one to ask
seek answers of detailed dynamic type. This was not poss
before. Second, many recent experiments have been
formed that seem to probe increasingly detailed aspect
dynamics of liquids. In order to understand the questio
posed by the recent experiments, a much better underst
ing of diffusion is required. The study of diffusion can b
used not only to understand the dynamics of the solvent
also to quantify the nature of the solute-solvent interactio
@1#. Third, the interactions involved in real systems are of
much more complex than the simple Lennard-Jones ty
which are usually assumed in theoretical and simulat
studies. Thus, some of the studies have been directed to
derstand effects of specific solute-solvent interactions@2#.

The diffusion of a solute is conventionally described
the well-known Stokes-Einstein~SE! relation,

*Also at the Jawaharlal Nehru Center for Advanced Scient
Research, Jakkur, Bangalore, India. FAX: 91-80-3341683 and
80-3311310. Electronic addresses: bbagchi@sscu.iisc.ernet.in
bbagchi@hamsadvani.iisc.ernet.in
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D5kBT/CphR, ~1!

whereD is the diffusion coefficient of the solute,R the ra-
dius, andh the viscosity of the solvent. The constantC is
determined by the hydrodynamic boundary condition, be
4 for the slip and 6 for the stick boundary condition, respe
tively. As usual,kBT is the Boltzmann constant times th
temperature. In the above relation, the influence of the
namics of the solvent enters through the viscosity term wh
the effects of solute-solvent interactions are usually incor
rated within the constantC and the radiusR 2 the latter is
often varied to fit the experimental data@3#.

An important aspect of the Stokes-Einstein relation is t
the predicted diffusion does not at all depend on the mas
the solute. This is completely opposite to the kinetic theo
prediction. For example, the Enskog theory predicts a squ
root mass dependence, as given by the following express

DE5
3

8rs2g~s!
A kBT

2pm
, ~2!

wherem is the reduced mass of the solute-solvent pair,s is
the diameter of the solvent, andg(s) is the value of the
radial distribution function at contact. Equation.~2! predicts
too strong a mass dependence that is not observed in c
puter simulation and experimental studies@4#.

On the other hand, according to the SE relation the pr
uct Dh should remain constant for systems having partic
of the same size and studied at the same tempera

c
1-
nd
3850 © 2000 The American Physical Society
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whereas recent studies@5,6# have found that the SE relatio
does not hold when the mass of the particles are chan
Walser et al. have performed molecular dynamics~MD!
simulations of water molecules with different mass and d
ferent molecular mass distribution@5#. They have shown tha
although the viscosity increases and the diffusion decre
with mass, the product of the two does not remain const
The productDh as they find is not correlated with the mo
lecular mass, but it is correlated for those systems with
same mass distribution.

Thus neither the kinetic theory nor the hydrodynam
theory can predict the correct mass dependence of diffus
Clearly, the hydrodynamic and the kinetic theories descr
two opposite limits of diffusion. While the first one assum
the validity of the Navier-Stokes hydrodynamics at molec
lar length scales, the second one tends to describe diffu
only in terms of binary collisional dynamics. While hydro
dynamics assumes that the diffusion occurs via the coup
of the solute velocity with only the collective transverse c
rent mode of the solvent, the Enskog kinetic theory negle
coupling of the solute motion to all the hydrodynam
modes. In both these pictures the diffusion due to the st
tural relaxation of the surrounding solvent is totally n
glected. The more recent mode coupling theory seem
interpolate between the two limits and takes into account
contributions of the structural relaxation.

Mode coupling theory has already been used to und
stand the effects of varying the solute-solvent size ratioR
and also the effects of the specific solute-solvent interac
on the diffusion of a tagged solute molecule. It was fou
that a crossover from a structural relaxation dominated
fusion to the current mode dominated diffusion occurs as
solute size is increased@7#. This crossover was found to oc
cur when the solute size was about twice as big as the sol
molecules. In a separate calculation, it was found that
contrast to the hydrodynamic prediction, the nature of
solute-solvent interaction can alter the diffusion coefficie
of the solute considerably@2#. This was explained in terms o
the modification of the structure of the solvent surround
the solute. The study showed that the diffusion coeffici
decreases when the specific interaction is attractive bu
creases when this interaction is repulsive.

In this paper we extend the mode coupling theory cal
lation to study the mass dependence of tagged molecule
fusion. Here, however, the situation turned out to be qu
different. When the solute mass becomes significantly lar
than the solvent molecules, the expression for the den
contribution to friction~as used by Sjogren and Sjolander@8#
and also by Balucani and Zoppi@9#! leads to an inaccurat
result – it predicts an increase of diffusion with mass. The
reason is that the short time descriptions of both the den
and the current mode contributions to the friction were
fault. This needed to be rectified within the mode coupli
formalism. We show here that the proper way to implem
the separation of time scales between the binary dynam
and the collective dynamics is to properly remove the sh
time dynamics from the collective part. This is achieved
considering that the short time dynamics of the collect
part is represented by the free inertial motion of the sol
and the short time collective dynamics of the solvent and
the full solvent dynamics.
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In addition, we have introduced an alternative method
calculate the frequency-dependent friction self-consiste
with the mean square displacement. The self-consistenc
now imposedover the whole time and frequency plane. In
the existing works@7,2# the self-consistency was impose
only on the zero frequency friction.

The modified theory is found to provide an accurate d
scription of the dependence of the diffusion coefficient of t
solute on mass. We find a power-law mass dependence o
diffusion that is in good agreement with the simulation r
sults of Bearman and Jolly@1#. The value of the exponent w
find is equal to 0.099. The reason for the weak power-l
dependence is that the mass dependence enters la
through the binary term whose contribution is small in den
liquids. In addition, the contribution of the density ter
moves in the opposite direction when the mass is increa
thus further weakening the effects of the binary term.

The organization of the rest of the paper is the followin
Section II A deals with the theoretical formulation where w
propose a modification in the existing theory; Sec. II B pr
vides a graphical analysis of how and where the exist
theory was going wrong in describing the short time dyna
ics of the collective parts and also justifies the new propo
modification. Section III contains the numerical results a
Sec. IV concludes with a brief discussion.

II. THEORY OF DIFFUSION

A. Extensions of the mode coupling formalism

We present here the modified expressions of the m
coupling theory used in the present work.

The system studied in this paper consists of one so
molecule of massM and theN solvent molecules, each o
massm. The pair potential of the solvent-solvent pair and t
solute-solvent pair is assumed to be given by the sim
Lennard-Jones 12-6 potential

v~r !54eF S s

r D 12

2S s

r D 6G , ~3!

wheree is the energy scale of the pairwise solvent-solve
interaction,s is the diameter of both the solute and the s
vent, andr is the distance between two molecules. The s
tem is characterized by two dimensionless parameters,
duced density r* 5rs3 and reduced temperatureT*
5kBT/e.

The microscopic expression of the friction is given by t
following equation@8#:

z~z!5
1

kBTmVE d1, . . . ,d28@ q̂•¹ r1
v~r1

2r2!#Gs~12;1828,z!@ q̂•¹ r
18
v~r182r28!#, ~4!

where the four-point functionGs(12;1828,t8) describes the
correlated motion of the solute and the solvent particles
describes the time dependent probability that the so
moves from the position (r 18 ,p18) at t8 to position (r 1 ,p1) at
t and a solvent particle that is located at (r 28 ,p28) at t8 and the
same or some other solvent particle is found at (r 2 ,p2).
Gs(12;1828,t8) also contains information on the static co
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relation between the tagged particle and the solvent parti
through its initial valueG̃s(12;1828). z is the Laplace fre-
quency.

The mode coupling expression for the frequenc
dependent friction is given by@7,8#

1

z~z!
5

1

zD~z!1Rrr~z!
1RTT~z!, ~5!

wherezD(t) is the binary part of the friction,Rrr(t) is the
friction due to the coupling of the solute motion to the co
lective density mode of the solvent, andRTT(t) is the con-
tribution to the diffusion~inverse of friction! from the cur-
rent modes of the solvent. In writing Eq.~5!, we have
neglected the longitudinal current term, which makes a sm
contribution at the densities considered in this paper@7,8#.

The expression of the binary frictionzD(t), for different
solute-solvent mass ratio, is given by

zD~ t !5vo12
2 exp~2t2/tz

2!, ~6!

wherevo12 is now the Einstein frequency of the solute
presence of the solvent and is given by

vo12
2 5

r

3ME drg~r !¹2v~r !. ~7!

Hereg(r ) is the radial distribution function.
In Eq. ~6!, the relaxation timetz is determined from the

second derivative ofzD(t) at t50 and is given by

vo12
2 /tz

25~r/6Mm!E dr @¹a¹bv~r !#g~r !@¹a¹bv~r !#

1~1/6r!E @dq/~2p!3#gd
ab~q!@S~q!21#gd

ab~q!,

~8!

where summation over repeated indices is implied.m is the
reduced mass of the solute-solvent pair. HereS(q) is the
static structure factor. The expression forgd

ab(q) is written
as a combination of the distinct parts of the second mom
of the longitudinal and transverse current correlation fu
tions gd

l (q) andgd
t (q), respectively,

gd
ab~q!52~r/M !E dr exp~2 iq•r !g~r !¹a¹bv~r !

5q̂aq̂bgd
l ~q!1~dab2q̂aq̂b!gd

t ~q!, ~9!

wheregd
l (q)5gd

zz(q) andgd
t (q)5gd

xx(q).
Note that in Eq.~7! if the solute and the solvent mass a

both assumed to bem, we recover the expression of th
binary time scale derived by Sjogren and Sjolander for n
liquids @8#. Thus the modification does not change the e
pression of the binary part of the friction or its time scale

We modify the existing expression for the density mo
coupling term in the following way. We assume that t
binary part of the friction includes that part, whichonly con-
tributes to the rapid renormalization of the medium due t
binary collision. This means that we need to remove from
density and the current terms not only the short time mot
es

-

ll

ts
-

at
-

a
e
n

of the solute but also that of the solvent. With this assum
tion, the expression forRrr(t) for different solute-solvent
mass ratio can be written as

Rrr~ t !5
rkBT

M E @dq8/~2p!3#

3~ q̂•q̂8!2q82@c~q8!#2@Fs~q8,t !F~q8,t !

2Fo
s~q8,t !Fo~q8,t !#, ~10!

whereF0
s(q,t) and F0(q,t) denote the inertial limits of the

self-intermediate scattering function of the tagged molec
and the intermediate scattering function of the solvent,
spectively.

Similarly the expression forRTT(t) is given by

RTT~ t !5
1

rE @dq8/~2p!3#@12~ q̂•q̂8!2#

3@gd12
t ~q8!#2vo12

24@Fs~q8,t !Ctt~q8,t !

2Fo~q8,t !Ctto~q8,t !#. ~11!

Note that in the expression ofRrr(t) and RTT(t), the short
time part is now the product of the inertial motion of th
solute and the short time collective dynamics of the solve
instead of the full dynamics of the solvent.

Equations.~10! and~11! are presented here as alternati
solutions. Several other prescriptions for subtracting
short time dynamics have been used in the past@8–11#.
While we have not analyzed all of them in detail, the pr
scriptions used by Sjogren and Sjolander@8#, by Balucani
and Zoppi@9# and also by us earlier@7#, lead to an inaccurate
mass dependence of the self-diffusion coefficient, as
cussed in the Introduction.

In Eqs.~10! and ~11!, c(q) is the two-particle direct cor-
relation in the wave number~q! space that is obtained from
the HMSA scheme@12#, which has also been used to obta
the radial distribution functions required to calculate the
nary time constant and the vertex functions.F(q,t) is the
intermediate scattering factor andCtt(q,t) is the current au-
tocorrelation function of the solvent. The expression and
calculation details of the above mentioned dynamical va
ables are given elsewhere@7#. Since both are pure solven
properties the mass that enters in the calculation is the
vent mass.

The other solvent dynamical variables required to cal
late the density and current mode contributions are the in
tial part of the intermediate scattering functionFo(q,t) given
by

Fo~q,t !5S~q!expS 2
q2t2

2mS~q! D ~12!

and the inertial part of the the current autocorrelation fu
tion Ctto(q,t) given by

Ctto~q,t !5
kBT

m
expS 2

v t
2~q!t2

2 D , ~13!
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wherev t
2(q) is the second moment of the transverse curr

correlation function@7,8#.
The solute dynamical variables required to calculate

density and current contribution are the inertial part of
self-intermediate structure factorFo

s(q,t) given by

Fo
s~q,t !5expS 2

kBT

M

q2t2

2 D ~14!

and the self-intermediate structure factorFs(q,t). Assuming
Gaussian approximation the expression forFs(q,t) can be
written as

Fs~q,t !5expS 2
q2^Dr 2~ t !&

6 D , ~15!

where^Dr 2(t)& is the mean square displacement~MSD! that
can be obtained from the time dependent velocity autoco
lation function ~VACF!, Cv(t), through the following ex-
pression:

^Dr 2~ t !&52E
0

t

dtCv~t!~ t2t!. ~16!

The time dependent VACF is obtained by numerica
Laplace inverting the frequency-dependent velocity autoc
relation function, which is related to the frequenc
dependent friction through the following generalized E
stein relation:

Cv~z!5
kBT

M @z1z~z!#
. ~17!

Thus in this scheme the frequency-dependent friction
been calculated self-consistently with the MSD.

The self-consistency is implemented through the follo
ing iterative scheme. First, the VACF is obtained from E
~17! by replacing the total frequency-dependent frictionz(z)
by its binary partzD(z). The VACF thus obtained is used t
calculate the MSD through Eq.~16!. Now this MSD is used
to calculateRrr(t) andRTT(t) and thusz(z). This total fric-
tion is used to calculate the next VACF, which again is us
to determine MSD and thusz(z). This iterative process is
continued until the VACF obtained from two consecuti
steps overlap.

Once the VACF is obtained self-consistently, the diff
sion coefficientD is calculated using the following relatio
between the diffusion coefficient and the time dependent
locity autocorrelation function,

D5 1
3 E

0

`

dtCv~t!. ~18!

Note that in the above expressions, the mass of the so
enters in a complex fashion. First, it enters in the bin
friction—even here the contribution is more complex th
what was envisaged in the Enskog theory. The mass
enters in the collective contributions.
t

e
e

e-

r-

-

s

-
.

d

e-

te
y

so

B. Proper description of the short time dynamics in the
collective mode contributions

As discussed in Sec. II A the standard prescription of
short time dynamics of the collective modes is erroneo
Although for the same mass, the absolute value of the f
tion is not affected, this error becomes transparent when
mass of the solute is significantly larger than that of t
solvent molecules.

In order to have a pictorial understanding of the time sc
argument presented we do the following analysis. Let us
call that in the mode coupling theory formalism, one needs
subtract the binary contribution from the collective term
This is because at very short times~when terms of the orde
t2 are only important!, only the binary term is relevant. Ac
cording to the existing prescriptions, this can be achieved
subtracting the free inertial motion from the self-dynam
structure term, that is, instead ofFs(k,t), we should have
Fs(k,t)2Fo

s(k,t) multiplying the rest of the integrand, bot
in the density and in the current mode contributions. T
time scale in the binary part given by Eq.~8! is determined
by both the mass of the solute and the solvent and s
effective mass enters the calculation it is mostly the mas
the lighter particle that determinestz . On the other hand, the
time scale of the decay ofFo

s(k,t) is determined only by the
mass of the solute. When the mass of the solute beco
very large then the time scale ofFo

s(k,t) becomes much
larger compared to that of the binary time scale.

That the existing MCT decomposition indeed leads to
serious problem is shown in Fig. 1, where we comp
Fs(k,t)2Fo

s(k,t) with the dynamic structure factorF(k,t),
as a function of time for different mass ratios. It can be se
from this figure that for massive solutes, diffusion is coupl
to solvent dynamicsonly at longer times, which is clearly

FIG. 1. The normalized intermediate scattering function of
solvent and the self-intermediate scattering functions~taking out the
inertial part! of the solute for two different solute-solvent ma
ratios are plotted against reduced time. The solid line represent
intermediate scattering function of the solvent, the long dashed
represents the self-intermediate scattering function of the solute
M /m51.0 and the short dashed line represents the same forM /m
53.0. The plots are atr* 50.844 andT* 50.728. The time is
scaled bytsc5Ams2/kBT.
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unrealistic. According to our definition, the short time d
namics of the collective part is now given by the product
the inertial part of the solute dynamics to the inertial part
the solvent dynamics and not to the full solvent dynami
Thus the time scale of decay of the short time dynamics
the collective parts that is Fo

s(q,t)Fo(q,t) and
Fo

s(q,t)Ctto(q,t) will be determined by both the mass of th
solute and the solvent and mostly by the mass of the lig
particle as in the case of the binary term.

III. RESULTS

With the above mentioned modifications properly defi
ing the short time dynamics of the collective terms and a
incorporating the self-consistency between the frequen
dependent friction and the mean square displacement
the whole frequency and time plane, we have calculated
mass dependence of the solute diffusion atr!50.844 and
T!50.728.

According to mode coupling theory formalism, the bina
term is expected to make a contribution in the short tim
The density term that renormalizes the binary friction is e
pected to contribute in the intermediate time regime and
current term in the long time regime. Thus the three differ
terms in the expression of the friction/diffusion have diffe
ent time scales. This is demonstrated in Fig. 2 by plotting
normalized~the maximum of the respective terms! time de-
pendent contribution from the binary and the density term
the friction and the contribution from the current term to t
diffusion, for solute-solvent mass ratio 1. The oscillati
present in the current mode contribution is due to the os
lation in the current autocorrelation function. The long tim
tail in the current mode contribution becomes more pro
nent at lower density and higher temperature. The bin
collision time is found to be 126 fs.

FIG. 2. The normalized contribution from the binary collisio
and the density term to the friction and the current term to
diffusion are plotted against reduced time. The solid line repres
the time dependent binary term@zD(t)#, the long dashed line the
time dependent density term@Rrr(t)#, and the short dashed line th
time dependent current term@RTT(t)#. The plots are atr* 50.844
andT* 50.728. The time is scaled bytsc5Ams2/kBT. The friction
is scaled bytsc

21 .
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Note that Fig. 2 has been plotted with normalized fun
tions in order to emphasize the time scales. The abso
value of the zero time friction is quite large. For example,
neat liquid, it is equal to 358.2~in the unit of tsc

22) at the
densityr* 50.85 andT* 50.73. The maximum value of the
density term is about 10% of this value~near 40! while that
of the transverse current term is only about 3% of the z
time friction value. The contribution of the longitudinal cu
rent term is much less and is not shown in the figure. T
above numbers of course change when the mass of the s
is changed, but the contribution of the transverse curr
term increases slightly with mass.

The main result of this work is that the self-diffusion c
efficient of the solute is found to have a weak mass dep
dence. The diffusion is found to decrease as the mass o
solute is increased. In Fig. 3, we have plotted both the bin
and density term contribution to the total zero frequency fr
tion against the mass ratio. We find that the current te
contribution remains small and almost unaltered over
whole range of solute-solvent mass ratio studied in this
ticle.

The same plot also shows that the binary part of the f
tion increases slowly and monotonically with the solu
mass. On the other hand, the density term is first found
decrease for solutes almost twice as massive as the so
and then it increases with the mass of the solute. The rea
behind this initial decrease of the density term with the m
of the solute is the following. The maximum contributio
from the density term to the total friction occurs aroundqs
52p. Now the time scale of the short time collective motio
of the solventFo(q,t) is larger than the time scale of th
inertial motion of the solute of the same mass at this wa
number. As we increase the mass of the solute, the time s
of its inertial motion increases and thusFo(q,t)Fo

s(q,t) in-
creases till the time scale of the inertial motion of the sol
becomes larger than the time scale of the short time col

e
ts

FIG. 3. The total friction~represented by solid line!, the binary
contribution to the friction~represented by long dashed line!, and
the density contribution to the friction~represented by the shor
dashed line! are plotted against the solute-solvent mass ratio atr*
50.844 andT* 50.728. The friction is scaled bytsc

21 .
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tive dynamics of the solvent. We find that till the solut
solvent mass ratio is below 2, the inertial time scale of
solute remains smaller andFo(q,t)Fo

s(q,t) increases with
the mass of the solute. Now the increase in the prod
Fo(q,t)Fo

s(q,t) decreases the contribution from the dens
term. Thus we find that the contribution from the dens
term initially decreases with the solute-solvent mass ra
and then increases with it. Though the density term decre
initially we find that the total friction always increases wi
the mass of the solute. The initial increase being a li
slower due to the opposite effect of the solute mass on
density and the binary term.

The most interesting result obtained from this study is
power-law dependence of the solute diffusion on mass as
also been observed in computer simulation studies@1#. The
power-law dependence is clearly manifested in Fig. 4 wh
we have plotted lnD1 /D2 against lnM/m, whereD1 is the
diffusion of the solvent andD2 is the diffusion of the solute
The slope of the line is 0.099. This implies a weak ma
dependence of the solute diffusion, in agreement with
MD simulation results.

IV. CONCLUSION

Let us first summarize the main results of this paper.
show that the existing MCT prescription leads to inaccur
results, showing an increase in the diffusion value as
mass of the solute is increased. We traced back this prob
to the erroneous description of the short time dynamics in
density and current mode contribution to the total frictio
We show that according to the existing theory although
time scale of decay of the binary term is determined by b
mass of the solute and the solvent, the time scale of the s
time dynamics of the collective terms were given by the f
solute motion and the full dynamics of the solvent. For m

FIG. 4. lne D1 /D2 vs lne M/m is plotted atr* 50.844 andT*
50.728, whereD1 is the self-diffusion of the solvent, andD2 that
of the solute.M andm are the masses of the solute and the solve
respectively. The slope of the straight line is 0.099. The plot sho
a power-law mass dependence of the solute diffusion. The slop
the plot suggests that this mass dependence is weak.
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sive solutes this leads to coupling of the solute dynamics
the density and current of the solventonly at longer time,
which is clearly unrealistic. We have proposed a modific
tion of the existing MCT where now the short time dynami
of collective term is given by the free inertial motion of th
solute and the short time collective motion of the solve
Thus the time scale of the short time dynamics of the coll
tive part is now determined by either the time scale of
free inertial motion of the solute or the time scale of t
collective short time dynamics of the solvent, whichever b
ing smaller. This is in accord with the binary time scale. W
have also introduced a self-consistent way of calculating
frequency-dependent friction with the mean square displa
ment. The self-consistency introduced in the previous wo
were only between the zero frequency friction and the dif
sion coefficient. This alternative method takes care of int
ducing the self-consistency over the whole time and f
quency plane.

After modifying the existing MCT we have calculated th
mass dependence of the solute diffusion. The solute diffus
shows a weak mass dependence. We find a power-law
pendence of the solute diffusion on mass that is in acc
with the existing computer simulation results@1#.

What is the origin of the weak power-law dependence
diffusion on the mass? This dependence comes mostly f
the binary, that is, short time dynamics. Since the contri
tion of the binary term to the total friction is about 30–40
in the liquid, the dependence on mass is naturally wea
than the prediction of the kinetic theory. Another importa
factor is that the density term first decreases with the incre
of mass, although it increases later. Thus, for small chan
of mass~a factor of 2 or so!, the increase of friction from the
binary term will partly be cancelled by the decrease from
density term. However, the negligibly small contributio
from the current implies that the hydrodynamic logic
weak mass dependence is not valid.

The predictions from the mode coupling theory could
tested against molecular dynamics simulations. The mod
cations of the mode coupling theory proposed here should
useful in the study of other problems. Another importa
problem in this area is the much stronger mass depend
of the viscosity, observed in simulations@5#. The same effect
is observed between ordinary and heavy water whose un
standing is still awaited. As the difference between water a
heavy water can at least partly be modelled by using a
ferent interaction energy parametere, one can attribute this
anomaly partly to the dynamics and partly to the statics.
hope to address these problems in future.
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