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The concentration dependence of the transport properties (i.e., the conductivity and the viscosity) of an
electrolyte solution has been a subject of lively debate for a very long time. The foundation for understanding
the transport properties of electrolyte solutions was laid down by Debye, Huckel, Onsager, and Falkenhagen
who derived several limiting laws valid at low ion concentration. These classical laws have been rederived
several times, although their extension to concentrated solutions has proven to be very difficult. We discuss
a new microscopic approach toward understanding the transport laws of electrochemistry. This new approach
is based on the general ideas of the mode coupling theory. We show that the mode coupling theory approach
is appropriate in the present case because concentration effects arise from collective variables (like charge
density and current) which are treated correctly by the mode coupling theory. The new theory can describe
the crossover from the low to high concentration seamlessly. Our study yields microscopic expressions of
both conductivity and viscosity in terms of static and dynamic structure factors of the charge and number
densities of the electrolyte solution. The celebrated expressions of Debye, Huckel, and Onsager for static
conductance, of Debye and Falkenhagen for frequency dependent electrolyte friction, and of Falkenhagen for
the viscosity follow exactly from the present microscopic theory in the limit of very low ion concentration.
Recently derived microscopic expressions of Chandra, Wei, and Patey for the frequency dependent conductivity
can also be derived from the present scheme. The present theory is a self-consistent theory. For conductance,
the agreement of the present theory with experimental results is satisfactory even up to one molar concentration.
For viscosity, the theory seems to give the right trend and suggests directions for further improvement to
explain the myriad of unexplained behavior known for a long time.

1. Introduction

The clasical transport laws and theories of electrochemistry
have been widely applied to understand the effects of ion
concentration on the diffusion of ions, ionic conductivity, and
the viscosity of electrolytes.1-11 The most celebrated among
these is the Debye-Huckel-Onsager (DHO) law which predicts
a square root concentration dependence of the ion conduc-
tance.12-13 There are two other laws which are often discussed
in the literature. One of these is the Debye-Falkenhagen (DF)
theory of the frequency dependence of ionic conductivity.14 One
often refers to Debye-Falkenhagen effect as the anomalous rise
of conductivity with frequency at low frequencies which follows
from the Debye-Falkenhagen theory. Another well-known
theory is the Falkenhagen-Onsager-Fuoss (FOF) theory of the
concentration dependence of the excess viscosity of ionic
solutions.15,16This theory correctly explains the rise of viscosity
with concentration in the limit ofVery low ion concentration.

The classical derivations of these transport laws were highly
nontrivial, often involving astute use of electrohydrodynamics
and irreversible thermodynamicssthe classic 1932 article by
Onsager and Fuoss16 is a case in point. Not only have these

laws been hailed as the intellectual triumphs of the last century,
they have also been tremendously successful in explaining
concentration dependence of conductance at low ion concentra-
tion. However, these laws are certainly not perfect. They are
valid only at low ion concentration and are applicable for
strongly dissociative salt solutions such as NaCl and KCl in
water. Both the successes and the limitations of these classical
theories can be traced back to the basic conceptual framework
on which they are based. This conceptual framework has two
basic ingredients. First, the solvent is treated as a structureless
continuum with a given static dielectric constant and viscosity.
Second, there exists an ion atmosphere of net opposite charge
around each ion due to ion attraction. The radius of this ion
atmosphere is the Debye length (λD) which has an inverse square
root concentration dependence. The validity of the classical laws
is crucially dependent on the value of the Debye length. When
the Debye length is much larger than the molecular lengths (such
as the radius of ions), then the classical description where the
solvent is treated as adielectric continuumis valid. The
equilibrium theories based on this assumption are often referred
to as ion attraction theory or the Debye-Huckel (DH) theory.17

There have been several attempts to derive and extend the
limiting transport laws to higher concentrations from micro-
scopic point of view. Friedman18 was thefirst to derive the
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limiting law of conductance from the time correlation function
formalism at microscopic level. The correlation function ap-
proach was also employed by Resibois4 to derive the limiting
law of conductance. The most notable among the studies at
higher concentrations is the work of Friedman and co-work-
ers19,20 and of Blum and co-workers.21-23 In the former
approach, the motion of an ion is described as a Brownian
particle in the force-field of other ions of the system. The force-
field is described in terms of ionic pair correlation functions. A
dynamical theory at Smoluchowski level is used to calculate
the transport properties at finite ion concentration. In the
approach of Blum and co-workers, one uses the formal
expressions of the transport properties derived earlier by Onsager
and Fuoss16 by using the continuity equation approach. These
authors provided explicit expressions for the calculation of
transport properties as functions of the equilibrium ionic pair
correlation functions which are now available from the modern
statistical mechanical theory of ionic solutions. Also, the
difference between the self-diffusion and the conductivity was
explicitly taken into account in the later work by Turq et al.22,23

Expressions derived in both the approaches reduce to the DHO
law in the limit of low concentration. Also, these theories do
considerably better than the original DHO expression at higher
concentrations. Much less effort has been devoted to understand
the frequency dependence of conductance or the concentration
dependence of viscosity.

Computer simulation is a complementary method to study
transport phenomena in ionic solutions. Among the simulation
techniques, the method of molecular dynamics (MD)24 allows
us to study the structural and dynamical properties of both ions
and solvent molecules at Born-Oppenheimer level of descrip-
tion. This technique has been used to study self-diffusion and
conductivity of simple model solutions such as ions in Stock-
mayer liquid25,26 and also of more realistic solutions such as
NaCl, KCl, and ZnBr2 in water at finite concentrations.27-29

However, the implementation of this technique for ionic
solutions is computationally very costly because of the multi-
plicity of components, the long-range nature of ionic interac-
tions, and the very long run that is required to obtain statistically
meaningful averages. This is why a great majority of the
simulation studies have used techniques of stochastic simula-
tions.24 In these methods, the solution can be treated at the
McMillan-Mayer level of description9 where solvent particles
are not considered explicitly: they are represented by a dielectric
continuum and the solute particles interact through solvent
averaged potentials. Brownian Dynamics (BD) and Langevin
Dynamics (LD) are the two most often used stochastic simula-
tion methods that have been employed to calculate the self-
diffusion and conductance of various aqueous ionic solutions.30-32

Reasonably good agreement has been found with experimental
results for diffusion and conductance. The study of the frequency
dependence of conductivity has also been carried out for model
ionic solutions.25,26,33These studies also showed the breakdown
of Debye-Huckel and Debye-Huckel-Onsager classical laws
at finite concentrations. To the best of our knowledge, no
simulation study has yet been carried out to calculate the
viscosity of ionic solutions.

Certainly one valuable lesson to be learned from the above
studies of diffusion and conductance is that the dielectric
continuum model itself may be trusted up to concentration as
high as 1 M solution; the original DHO law breaks down even
at 0.01 M. However, this relative success of the dielectric
continuum model may be limited only to the calculation of
diffusion and conductance and might not be extendable to other

transport properties, like the viscosity. In addition, there are
several aspects of the earlier theoretical approaches which
require further improvement. Most importantly, these theories
are not self-consistentsa limitation which must be removed
before one can treat higher concentrations.

Recently, we have been able to derive all the three above-
mentioned classical transport laws using the basic concepts of
mode coupling theory and the time dependent density functional
theory.34-37 The resulting expression for the ionic conductance
involves the dynamic structure factors and the current-current
correlation functions of the ions. In fact, the ion atmosphere
term is shown to correspond to the relaxation of dynamic
structure factors of the ions and the electrophoretic term to the
time correlation function involving the charge density and the
current terms. When microscopic expressions are evaluated,
agreement (at least) at par with the earlier theories are found
for the electrolyte conductance. This approach also provides
microscopic expressions for the frequency dependence of ionic
conductivity and for the ionic contribution to the viscosity of
an electrolyte solution.

The objective of this Article is to summarize and discuss the
mode coupling theory approach to the transport properties of
electrolyte solutions. The organization of the rest of the Article
is as follows. In the next section, we discuss the elements of
the mode coupling theory which shall be used here. Section 3
contains discussion of the zero frequency conductance and
derivation of the DHO law. Section 4 contains the discussion
of the frequency dependent conductivity and the Debye-
Falkenhagen effect. Section 5 summarizes the work on the
concentration dependence of viscosity. Numerical results of the
electrolyte friction, conductivity and viscosity are discussed in
section 6. Section 7 presents a discussion of a full microscopic
theory. Section 8 concludes with a discussion of the future
problems.

2. Mode Coupling Theory Approach to Electrochemistry

The mode coupling theory (MCT) was originally developed
to explain the dramatic decrease in the values of the transport
properties near the critical point. More recently, it has been used
(with mixed success) to describe the anomalous dynamics in
the supercooled liquid near the glass transition.38,39 While the
basic idea behind the latter development is somewhat different
from the former one, the structure of the theory has remained
essentially the same. MCT is the natural framework to use for
describing the transport phenomena of electrolyte solutions
because here one is interested in the effects of collective
dynamics such as ion atmosphere relaxation on the single
particle properties. For applications to electrolytes, one needs
to identify the slow variables which control the dynamics. In
an electrolyte solution at not too high concentration, these slow
variables are the charge density and the ion current. It is the
charge density and the current which give rise to the square
root concentration dependence of the conductance and the
viscosity through ionic pair correlation functions at low
concentration. Actually, the relevant length in the problem is
still the Debye length whose inverse goes to zero as the square
root of concentration of the ions.

At low concentration, ionic conductance is essentially driven
by the self-diffusion of the ions. The latter is a single particle
property in the sense that this property can be measured by
following the motion of a single tagged ion. However, this single
particle motion is intimately connected to the collective, many-
body dynamics of the surrounding liquid and this coupling
between the collective and the single particle motion makes the
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calculation of self-diffusion coefficient of a tagged solute an
extremely difficult problem.40 One traditional approach has been
to relate the friction on the ion to the viscosity of the medium,
combined with the use of the exact Einstein relation between
diffusion and friction.38 The radius of the ion has often been
used as a fit parameter. Although this method had some
numerical success, the use of hydrodynamics for small particles
has been shown to be seriously flawed on fundamental ground.41

The mode coupling theory provides a systematic way to treat
this coupling between the single particle and the collective
dynamics. There are several different approaches to this theory
and all of them lead essentially to the same equations. The main
idea is to express the friction on the tagged molecule (here ion)
in terms of the relevant time correlation functions. For example,
diffusion of a molecule should be coupled to density fluctuations
which are responsible for relaxation of the surrounding cage
and also to the current modes which contribute to the random
motion of the molecule via the natural currents present in the
liquid. Under some general approximations, the diffusion of a
tagged molecule can be written asD ) Dmic + Dhyd

42 where
Dmic denotes the microscopic contribution to diffusion which
consists of a bare term and the collective density term andDhyd

is the hydrodynamic part which contains the contribution from
the current modes.

The mode coupling theory has been constructed here con-
sidering only the collective ionic modes as the slow variables.
This approach is valid at low ion concentration where the solvent
modes relax much faster than the ionic modes. An extension of
this approach has been discussed in section 7.

The hall mark of any mode coupling theory is a self-consistent
calculation of the transport properties and the time correlation
functions. For example, the contribution of the density term to
diffusion itself depends on the self-diffusion coefficient. One
eventually has a “mode coupling necklace” where all the terms
are connected to each other, often by nonlinear equations. These
equations are to be solved self-consistently. In the present work,
MCT will be used to calculate the frequency dependent ionic
friction and the self-diffusion coefficients. From the self-
diffusion coefficients, we will calculate the conductance and
the frequency dependent conductivity. As we will see in section
5, MCT also provides an expression for the ionic contribution
to the viscosity in terms of the static and dynamic charge density
structure factors of the solution.

3. The Total Electrolyte Friction and Limiting Ionic
Conductance

In the limit of very low but finite ion concentration, the
conductance is described by the well-known Debye-Huckel-
Onsager limiting law12,13

where ΛR is the conductance of the ionic speciesR at
concentrationcR andΛR

0 is the conductance at infinite dilution
which is obtained by extrapolating the concentration to zero.
A and B are the two constants which are determined by the
properties of the ions and the medium.

In this section, we will calculate the conductance from a
microscopic calculation of the electrolyte friction. We start with
the following generalized Langevin equation for time evolution
of the velocity of a single tagged ion of chargeqs

38

whereús(t) is the total friction acting on the single tagged ion
and fs(t) is the so-called random force. The Laplace transform
of ús(t) is ús(ω) where-iω is the Laplace frequency variable
and i is the imaginary number. The frequency dependent self-
diffusion coefficientDs(ω) is related to the frictionús(ω) by
the following generalized Nernst-Einstein relation

wherekB is Boltzmann constant,T is the temperature, andm is
the mass of the tagged ion. As discussed in the last section, the
total friction on the tagged ion can be decomposed into two
parts: A microscopic relaxation termús;mic(ω) and a hydrody-
namic termús;hyd(ω). The inverses of these two quntities add
to give the inverse of the total ionic friction. The microscopic
friction is most easily analyzed by using the Kirkwood’s formula
for friction which expresses it in terms of an integration over
the force-force time correlation function.43 Since the time
dependent force on the tagged ion has contributions from solvent
density and polarization fluctuations44-46 and also from ion
atmosphere fluctuations, one can decompose the total micro-
scopic friction into a solvent contributionús,mic(c ) 0) which is
assumed to be a constant independent of ion concentration and
a concentration dependent ion contributionδús,mic(ω) which
originates from interaction with the ion atmosphere fluctuations.
Here we calculate the ion contribution to the microscopic
friction. Thus, the solvent contribution is not calculated
microscopically, it determines the ion diffusion at infinite
dilution whose value is assumed to be known from experiments.

The hydrodynamic contribution originates from the coupling
of the ion velocity to the relevant current modes of the solution.
Mode coupling theory directly provides an expression of the
contribution of the currents of the system to the diffusion
coefficient, that is, to the inverse friction.38,47-48 Since the current
modes of the solution consists of both the solvent and ion
currents, both contribute to the inverse of the friction. The
hydrodynamic contribution to the total friction can, therefore,
be expressed as34,35 ús;hyd(z)-1 ) ús;hyd(c ) 0)-1 + δús,hyd(z)-1

whereús;hyd(c ) 0) is the usual viscous friction which now also
includes the additional dielectric friction contribution due to the
polarization current.49,50 δús,hyd(ω) represents the electrolyte
friction on the tagged ion due to coupling with the ion
atmosphere current. The latter is commonly known as the
electrophoretic effect. As before, the solvent contribution is not
calculated in the present work. It constitutes part of the ion
diffusion at infinite dilution which is assumed to be known from
experiments. The ion contribution to the hydrodynamic part or
the electrophoretic effect is calculated here microscopically by
using the mode coupling theory.

3.1. The Calculation of the Ion Atmosphere Contribution
to the Microscopic Friction: The Asymmetric Effect

The ion atmosphere contribution to the microscopic electro-
lyte friction can be calculated from the correlation of the force
exerted by the fluctuating ion atmosphere on the tagged ion by
using the Kirkwood’s formula.43 In time domain, the micro-
scopic electrolyte friction can be expressed as

whereFs(r ,t) is the force exerted on the tagged ion due to its
interaction with all other ions in the solution andV is the volume
of the system. An expression forF(r ,t) can be obtained from

ΛR(cR) ) ΛR
0 - [A + BΛR

0]xcR (1)

∂

∂t
Vs(t) ) -∫0

∞
dtús(t - t′)Vs(t′) + fs(t) (2)

Ds(ω) )
kBT

m(-iω + ús(ω))
(3)

δús,mic(t) ) 1
3kBTV∫ dr 〈Fs(r ,t) ‚ Fs(r ,0)〉 (4)

Feature Article J. Phys. Chem. B, Vol. 104, No. 39, 20009069



density functional theory and it is given by34,35

wherens(r ,t) represents the position (r ) and time (t) dependent
density distribution of the tagged ion andδFR(r ,t) is the
collective density fluctuation which is equal toFR(r ,t) - FR,
whereFR is the average number density of ionic speciesR and
csR(r ,r ′) is the direct correlation function between speciesR and
the tagged ion. Because of the presence of convolution integral
in eq 5 and of isotropy of the system, final expressions are much
simpler in the Fourier space. The final expression for the
microscopic electrolyte friction has the following simple expres-
sion34,35

where the wavevectork is the Fourier variable conjugate tor
and GRâ(k,t) is the Fourier transform of the ionic van Hove
function between speciesR andâ which is defined as

where〈‚‚‚〉 denotes average over an equilibrium ensemble and
FR(k,t) is the Fourier transform ofFR(r ,t). NR and Nâ are the
number of ions of speciesR andâ in the solution, respectively.
Later, we will denote the Fourier-Laplace transform of the van
Hove function asGRâ(k,ω). Fs(k,t) is the self-dynamic structure
factor of the tagged ion. Clearly, the effects of self-motion on
the ionic friction is contained inFs(k,t). Equation 6 is an
important result. Note that the same expression can be defined
from a more rigorous analysis, as the one given by Sjogren and
Sjolander.47

A microscopic calculation of the density relaxation term
requires tractable expressions of the wavenumber (k) and time
(t) (or frequency (ω)) dependent ionic van Hove functions. Such
expressions can be obtained from the time dependent density
functional theory. In the present work, we ignore the explicit
dynamical coupling of ions with the solvent and we include
the effects of the solvent in an effective manner. Thus, for the
calculation of the ion-ion correlations, it is assumed that the
solvent is a dielectric continuum with dielectric constantε and
the ions interact with a solvent averaged interaction potential,
i.e., with a long-range Coulomb potential scaled by the dielectric
constant of the solvent.38 Also, the dynamics of ions is now
described by generalized Smoluchowski theory with appropriate
solvent averaged mean potential and diffusion coefficients. We
note that the assumption of solvent continuum for the calculation
of the ion-ion correlations is expected to be valid in the limit
of very low ion concentrations. Use of time dependent density
functional theory leads to the following generalized Smolu-
chowski equation for the frequency dependent van Hove
function35,51

where theDR(ω) is the frequency dependent diffusion coefficient
of speciesR and cRâ(k) is the Fourier transform of the direct

correlation function between speciesR andâ. SRâ(k) ) GRâ(k,t
) 0) whereSRâ(k) is the partial static structure factor between
speciesR andâ.

The coupled equations as given by eq 8 for the van Hove
functions can be solved to obtain the following explicit result
for the time dependence of the ionic van Hove functions35,51

where

and∆(k) ) [S11(k)S22(k) - S12(k)2]-1. The Laplace transform
of the self-dynamic structure factor of the tagged ion can be
described by the following equation

The analytical solutions of the ionic structure factors and the
direct correlation functions are known in the literature. Thus,
eqs 6-10, together with the hydrodynamic term discussed later,
form a set of self-consistent equations which can be solved to
obtain the microscopic electrolyte friction.

3.2. Calculation of the Ion Atmosphere Contribution to
the Hydrodynamic Friction: The Electrophoretic Effect. The
ion atmosphere contribution to the hydrodynamic friction
originates from the coupling of the velocity of the tagged ion
with the current mode of the ions. A formal expression of this
friction can be derived from mode coupling theory by using
Fc(k)j (-k) as the relevant binary product whereFc(k) and j (k)
are the charge density and total ion current of the solution,
respectively. The hydrodynamic friction is then given by

whereu0x is the velocity of the tagged ion along a particular
direction (say,x) andL is the Liouville operator. The vertexes
and the time correlation function in the above expression can
be evaluated by using the following decomposition of the charge
density and the ion currentFc(k) ) F0

c(k) + F1
c(k) + F2

c(k) and
j (k) ) j0(k) + j1(k) + j2(k) whereF0

c(k) andj0(k) are the charge
density and current of the tagged ion andFR

c(k) and jR(k) are
those of speciesR surrounding the tagged ion.

After a strightforward analysis, the following expression is
obtained for the elctrophoretic friction34,35

F(r ,t) ) kBTns(r ,t)∇ ∑
R
∫ dr ′ csR(r , r ′)δFR(r ′,t) (5)

δús,mic(t) )
kBT

3(2π)3
∑
R,â

∫ dkk2csR(k) xFRFâGRâ(k,t)csâ(k)Fs(k,t) (6)

GRâ(k,t) ) (NRNâ)
-1/2 〈FR(k,t)Fâ(-k)〉 (7)

GRâ(k,ω) ) [-ω + DR(ω)k2]-1 SRâ(k) +

DR(ω)k2

-iω + DR(ω)k2
∑

γ ) 1

2

xFRFγcRγ(k)Gγâ(k,ω) (8)

∑
Râ

xFRFâqRqâGRâ(k,ω) )

1

Z(k,ω)
[-iω∑

Râ
xFRFâqRqâSRâ(k) +

D2(ω)k2∆(k){xF1q1S11(k) + xF2q2S12(k)}2 +

D1(ω)k2∆(k){xF2q2S22(k) + xF1q1S21(k)}2] (9)

Z(k,ω) ) -ω2 - iω∆(k)[D1(ω)k2S22(k) + D2(ω)k2S11(k)] +

D1(ω)D2(ω)k4∆(k) (10)

Fs(k,ω) ) 1

-iω + Ds(ω)k2
(11)

kBT

δúhyd(t)
) ∑

k
∑
k′

〈u0x, Fc(k)j (-k)〉 〈Fc(k)j (-k),Fc(k) ×

j (-k)〉-1 × 〈Fc(k)j (-k),eiLt Fc(k′)j (-k′)〉 〈Fc(k′)j (-k′),
Fc(k′)j (-k′)〉-1 × 〈Fc(k′)j (-k′),u0x〉 (12)

kBT

δús,hyd
) 1

3π2FN
∫0

∞
dt ∫0

∞
dkk2[F1G11

d (k,t) -

F2G12
d (k,t)]CT(k,t) (13)
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whereF is the total ion density andN is the total number of
ions in the solution.GRâ

d (k,t) is the distinct part of the van
Hove function between speciesR and â and CT(k,t) is the
transverse part of the current correlation function. Note that the
relaxation of the transverse velocity correlation function occurs
much faster than the distinct van Hove functions and the major
contribution to the above integral comes from the short time
region whereG11

d (k,t) ≈ h11(k) andG12
d (k,t) ≈ h12(k) wherehRâ-

(k) is the Fourier transfoem of the total pair correlation function
between speciesR andâ. We also assume an exponential decay
of CT(k,t) of the following form42

whereη is the viscosity of the solution. Equation 14 can be
substituted in eq 13 to obtain an expression for the electro-
phoretic friction in terms of viscosityη and ionic pair correlation
functions.

Note that bothFs(k,t) andGRâ(k,t) depend on the self-diffusion
coefficient of the ions. On the other hand, these correlation
functions determine the self-diffusion coefficient through eqs
6-11 and 13. Thus, the calculation ofD requires a self-
consistent solution of these expressions. This is nontrivial. As
already mentioned, such self-consistent calculation is the
hallmark of any MCT calculation. In fact, strictly speaking, one
should include the expression for viscosity (derived in section
5 below) in this self-consistent calculation. We have neglected
this complication here because the concentration dependence
of viscosity is not significant at low and intermediate concentra-
tions.

3.3. Reduction to Debye-Huckel-Onsager Limiting Law.
It is shown here how the present molecular theory reduces to
the well-known DHO law when applied to solutions of very
low concentration. For convenience, the expression for the
microsocpic friction is rewritten in the following form35

where [hs(k)] is the row matrix [xF1hs1(k) xF2hs2(k)], [hs(k)]†

is the transpose of [hs(k)]. [S(k)] and [G(k,t)] are the 2× 2
structure factor and van Hove function matrices of the ions.

3.3.1. Debye-Huckel Expression.We shall first derive the
original Debye-Huckel expression12 for the asymmetric effect.
For this case, we ignore the self-motion, i.e., we setFs(k,t) )
1 and we assume that the diffusion coefficients of the positive
and negative ions are equal i.e., we assumeDs ) D1 ) D2. In
this simplified case, the time integral of the van Hove function
is given by

We substitute eq 16 in eq 15 to obtain the following expression
for the microscopic friction

Since our goal is to derive the DHO law, we assume the ions
to be point ions and use the following Debye-Huckel solution17

for the Fourier transform of the pair correlation function

in eq 17 and evaluate the integral over the wavevector space to
obtain the following expression forδús,mic

whereκD is the inverse Debye screening length given by

The above expression is precisely the one originally derived
by Debye and Huckel ignoring self-motion of the tagged ion.12

3.3.2. Onsager’s Correction: DHO Expression. Next, we
derive Onsager’s correction13 by including the self-motion but
still assume that the diffusion coefficients are equal. The
microscopic friction can now be written as

where [G′(k,t)] is the modified van Hove function matrix given
by [G′(k,t)] ) e-Dsk2t[G(k,t)]. The time integral of the modified
van Hove matrix can be derived from the molecular hydrody-
namic equations described earlier and is given by

We substitute eq 22 in eq 21 and use the relation between the
structure factor and the pair correlation function matrices to
obtain

where [h(k)] is the 2 × 2 matrix of ion-ion pair correlation
functions. The various terms in the right-hand side of the above
equation can be evaluated analytically by using Debye-Huckel
solution for the ionic pair correlation functions, and the final
result is35

The above expression is identical with the one derived by
Onsager13 for a binary electrolyte by including the self-Brownian
motion of the tagged ion. We note that the quantity (2- x2)
is denoted as thew factor in DHO law for a binary electrolyte.

3.3.3. The Generalized DHO Expression.Now we consider
the more general case where self-motion is included and the
diffusion coefficients of the positive and negative ions are taken
to be unequal, i.e.,D1 * D2. In this case, the time integral of

CT(k,t) )
NkBT

m
e-ηk2t/Fm (14)

δús,mic )
kBT

3(2π)3 ∫0

∞
dt ∫ dkk2[hs(k)][S(k)]-1[G(k,t)][S

(k)]-1[hs(k)]†Fs(k,t) (15)

∫0

∞
dt[G(k,t)] )

[S(k)]

k2Ds[S(k)]-1
(16)

δús,mic )
kBT

3(2π)3

1
Ds

∫ dk[hs(k)][hs(k)]† (17)

hRâ(k) ) -
4πqRqâ

εkBT
1

k2 + κD
2

(18)

δús,mic )
qs

2
κD

6εDs
(19)

κD ) ( 4π

εkBT
∑

R
FRqR

2)1/2

(20)

δús,mic )
kBT

3(2π)3 ∫0

∞
dt ∫ dkk2[hs(k)][S(k)]-1[G′(k,t)] ×
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the modified van Hove function matrix is given by

where

and

Again, we substitute eq 25 in eq 21, use the relation between
the structure factor and the pair correlation function and evaluate
the integral over wavevector space to obtain the following final
expression for the microscopic friction

The above expression reduces to the DHO expression for
electrolyte friction whenDs is taken to be equal toD1 andD2.
Also, the above expression becomes identical with the one of
Onsager (derived in 1945)52 and of Friedman and co-workers19

whenDs andDR (R ) 1,2) terms in the right-hand side of the
above equation are replacedDs

0 andDR
0 which are the values of

the ion diffusion coefficients in the limit of infinite dilution.
Now we discuss the calculation of the hydrodynamic term

in the limit of zero ion size and very low concentration. In this
limiting situation, the Debye-Huckel solution of the ionic pair
correlation functions can be used. We also setσ ) 0 in eq 13
and we evaluate the integral over the wavevector space to obtain

where the second term represents the electrophoretic contribution
to the total diffusion. We note that the above expression for
the electrophoretic contribution is a general result which does
not depend on any hydrodynamic boundary condition. This is
exactly what was pointed out by Onsager.13

Equations 26-27, together with the relation between the
diffusion coefficient and the conductance53 and betweencR (the
concentration ofRth species in moles per liter) andFR provide
the following general equation for the conductance at very low
concentration

where

whereN0 is Avogadro number andF is Faraday. The above
equations are to be solved self-consistently, in general, to obtain

the numerical values of the conductances of positive and
negative ions. Note that the factorwR goes over exactly to the
DHO value (2 - x2) for a binary electrolyte when one
assumesΛ1 ) Λ2. More importantly, in the same limit eq 28
becomes identical with the DHO limiting law. Furthermore, the
above equation reduces to the expression of Friedman and co-
workers19 when one replacesΛR terms in the right-hand side
of the equation byΛR

0. This is exact to the orderxcR. Equation
29 predicts different values ofwR for positive and negative ions
when their mobilities are different. The original DHO law does
not reflect this asymmetry although it was later noticed by
Onsager.52

4. Frequency Dependent Ionic Conductivity:
Debye-Falkenhagen Effect

The frequency dependent specific conductivityσ(ω) describes
the motion of ions in the presence of a time dependent extenal
field, whereω is the oscillation frequency of the field. When
an ion moves in electrolyte solution, the atmosphere cannot
immediately follow the motion of the central ion and becomes
asymmetric causing a retarding effect on the motion of the ion.
At zero frequency, this relaxation effect leads to theBΛ0xc
term in eq 1. In the presence of an oscillating field, the central
ion oscillates and the ion atmosphere gets less time to relax
and cannot follow the oscillations of the ion. The average effect
is that the ion atmosphere remains more symmetric (or less
asymmetric) compared to that for a moving ion in a static field.
As a result, the effects of the asymmetry of the ion atmosphere
is reduced causing a netreductionof the electrolyte friction
and anenhancement of the conductiVity at low frequency. This
“anomalous” increase of conductivity at low frequency is known
as the Debye-Falkenhagen effect.14 At high frequency, the
conductivity decreases because the ions oscillate so fast that
the net ionic motion along a particular direction is smaller than
that in the presence of a static or low-frequency field. By using
a diffusion equation approach for the time dependence of ion
atmosphere, Debye-Falkenhagen derived the following rather
unusual looking expression for the frequency dependent elec-
trolyte friction14

where úDF(0) is the zero-frequency friction,q ) 1/2 for a
symmetric binary electrolyte andτatm is the relaxation time of
the ion atmosphere given by

Here,D1 andD2 are the self-diffusion coefficients of the positive
and negative ions, respectively, andκD is the inverse Debye
screening length defined by eq 20.

As the DF expression is based on Debye-Huckel theory, it
is valid only at very low ion concentrations. For a typical 0.001
M solution of a 1:1 salt,τatm ∼ 10-7s, and therefore, the
dispersion of the DF friction for such a solution is predicted to
occur in the MHz region. The electrophoretic force, on the other
hand, responds at rates comparable to that of molecular velocity
correlations. The velocity correlation times in solutions are of
the order of 0.1 ps, and thus, the dispersion of the electrophoretic
contribution occurs at a frequency much higher than GHz. In
DF theory, the frequency dependence of the electrophoretic

∫0
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(30)
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effect is not considered. Thus, the well-knownDebye-Falk-
enhagen effectof increasing conductivity with frequency arises
solely from the decrease of the friction from the ion atmosphere.

Actually, the Debye-Falkenhagen effect seems to have never
been confirmed satisfactorily. In a new twist to this old problem,
Anderson, in a paper entitled “The Debye-Falkenhagen Ef-
fect: Experimental Fact or Fiction?”,54 has recently questioned
the original analysis of Falkenhagen. The difficulty of observing
this effect is that the effect is predicted at very small concentra-
tion and also the magnitude of the effect is rather small.

In the following we discuss the recent mode coupling theory
analysis of this problem. We calculate the frequency dependent
electrolyte friction and the ionic diffusion coefficients by using
the same theory discussed in the last section. It is assumed that
the frequency dependent conductivityσ(ω) is related to the
frequency dependent ionic diffusion coefficientsDR(ω) by the
following generalized Nernst-Einstein relation36

We note, however, that the frequency dependent ionic conduc-
tivity can, in general, be related to the Fourier transform of the
ionic current-current time correlation function.38 Since the
electric current is a collective dynamical quantity, its time
correlation function comprises of a self-part that corresponds
to a summation over the velocity autocorrelation functions of
the ions and a cross part involving the sum of the correlation
functions of the velocities of distinct ions. The generalized
Nernst-Einstein relation (eq 32) includes only the self-part and
the cross part is ignored. Although the importance of the cross
part is smaller than the self-part, it may not be negligible at
high ion concentrations. However, at low and moderate ion
concentrations, the contribution of the cross part is expected to
be much smaller than that of the self-part. For example, at 0.5
M concentration of aqueous NaCl solution, an analysis of the
simulation data of self-diffusion coefficients and conductivity
reveals that the cross term reduces the static conductivity by
less than 5%.27 We also note that in the calculation of the static
and dynamic ionic structure factors which appear in the final
expressions of the friction and the conductivity, the solvent is
treated as a dielectric continuum. At high concentrations, the
molecular details of the ion-solvent and solvent-solvent
correlations may become important. Because of these ap-
proximations, the present theory is limited to solutions of not
too high concentration (less than 1 M solution). However, the
theory has been found to give reliable results for the static
conductance of strong electrolytes even up to 2 M concentra-
tion.34,35

As explained in the last section, the total friction acting on
the tagged ion is decomposed into two parts. The first part is
due to the microscopic interaction of the tagged ion with the
surrounding ions and the second part originates from the
hydrodynamic coupling of the velocity of the tagged ion with
the current modes of the surrounding particles. The time
dependent microscopic electrolyte friction,δús,mic(t) is given by
eq 6 of section 3. The frequency dependence of the hydrody-
namic (or the electrophoretic part) is obtained by a generalization
eq 13 to frequency domain. After the frequency dependence of
the microscopic and hydrodynamic frictions are obtained, we
calculate the frequency dependent diffusion coeeficients of the
ions by using the Generalized Einstein relation (eq 3) and then
we obtain the frequency dependent conductivity from the
generalized Nernst-Einstein relation (eq 32).

4.1. Derivation of Debye-Falkenhagen Form of Frequency
Dependent Friction. Here we identify the limiting conditions
under which the present theory reduces to the well-known
Debye-Falkenhagen expression (eq 30) of the frequency
dependent electrolyte friction. We note that in Debye-Falken-
hagen theory, the frequency dependence of only the ion
atmosphere relaxation contribution is considered and that of the
electrophoretic term is ignored. Accordingly, we consider only
the microscopic electrolyte friction as given by eq 6.

The ions are assumed to be point ions as in the Debye-
Huckel theory. The use of the DH solutions of the direct
correlation function and the diffusive limit of ionic van Hove
functions leads to the following expression of the time dependent
friction

whereΦ(x) is the error function and it is assumed that all ions
have the same diffusion coefficientD. We note that the above
expression of time dependent electrolyte friction becomes
identical with the one derived by de Leon et al.55 when the
diffusion coefficientD in the right-hand side of eq 33 is replaced
by D0, which is the value of the ion diffusion coefficient in the
limit of infinite dilution.

The Fourier-Laplace transform of eq 33 can be carried out
analytically to obtain the following expression of the frequency
dependent friction

The expression of the frequency dependent friction as given by
eq 34 can be rewritten in the following form

whereτatm is defined in eq 31. Equation 35 is identical with
the DF expression (eq 30). Thus, it is clear from the above
analysis that the present microscopic theory reduces to the DF
theory in the limit of low ion concentration when finite sizes
of the ions are ignored, electrophoretic effects are not included,
and the collective dynamics of the ion atmosphere relaxation is
described by diffusive motion.

We note that the DF theory incorporates the cross dynamical
coupling of ions at the level of ion atmosphere relaxation (or
the ionic van Hove functions) but not at the level of ionic
velocity or current relaxation. Thus, like the present theory, the
DF expression also does not include the effects of the so-called
current cross terms. The contribution of such cross correlations
is expected to be vanishingly small in the limit of low ion
concentration, and therefore, the DF expression is regarded as
the correct limiting expression of the frequency dependent ion
atmosphere friction in an electrolyte solution.

4.2. Derivation of the Conductivity Expressions of Chan-
dra, Wei, and Patey.Chandra, Wei and Patey (CWP)26 have
recently derived analytical expressions ofσ(ω) by employing
a non-Markovian equation of motion of the self-van Hove
function of a tagged ion. By employing exactly known short
and long time constraints upon the ionic self-van Hove function,
these authors derived closed-form expressions of the frequency
dependent conductivity for two models, referred to as models I
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FRqR
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2
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x2πDt
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and II. Model I depends on an expression of the frequency
dependent diffusion coefficient which ensures that the short time
dynamics up to the second frequency moment and also the long
time dynamics of the self-van Hove function are described
correctly. The final expression of the conductivity is described
by a multiple Debye form26

wheremR is the mass of an ion of speciesR. The model II of
CWP is a generalized version which correctly describes the short
time dynamics up to the fourth frequency moment and also the
long time dynamics of the ionic self-van Hove functions. In
this model,σ(ω) is given by26

whereΩR is the Einstein frequency of an ion of speciesR, so
ΩR

2 is proportional to the mean square force acting on an ion.
The CWP theory is capable of predicting the increase of
conductivity at low frequency. However, no attempt was made
by CWP to derive the DF expression.

It is discussed here that the main expressions of CWP can
be obtained from the present formalism. To recover the
expression of Model I (eq 36), we ignore the frequency
dependence ofús(ω) in the Einstein relation and replace it by
the zero-frequency valueús so that

where, in deriving the second equality, we have used the Einstein
relationús ) kBT/Dsms. On combining eq 38 with the Nernst-
Einstein relation (eq 32), one obtains eq 36, which is the CWP
model I expression of the frequency dependent conductivity.
Thus, in this limiting case, the frequency dependence of the
conductivity originates entirely from the inertial effects.

Also, whenD1 ) D2 andm1 ) m2, the frequency dependence
of the conductivity is described by a simple Debye form

whereσ is the conductivity at zero frequency. We note that the
simple Debye form has been used in the literature as an
empirical expression forσ(ω).25

To derive the expression of model II (eq 37), we approximate
the time dependence of the total friction as friction as

whereús(t)0) is described by the spatial integral of the zero-
time force-force correlation which is equal to the square of the
Einstein frequencyΩs of the tagged ion. The relaxation timeτs

can be eliminated in favor of the diffusion coefficientDs by
using the Einstein relation described above, and the resultant

expression after Laplace transformation gives

Equation 41, on combining with the generalized Einstein relation
and eq 32, gives eq 37, which is the model II expression for
σ(ω). Thus, in this model, the frequency dependence of
conductivity originates from both the intertial and the non-
Markovian effects.

5. Concentration Dependence of the Viscosity:
Falkenhagen Expression

Viscosity of an electrolyte solution is long known to show
anomalous dependence on ion concentration.7,56,57For some ions
(like LiCl, NaCl, and BaCl2 in water), the viscosity increases
monotonically with concentration, while for some others (like
KCl, KBr, or KI), the viscosity increases slightly at very low
concentration, then it decreases as the ion concentration is
increased and finally it increases again at higher concentra-
tion.7,58 This anomalous concentration dependence of viscosity
clearly has a complex origin which, to the best of our
knowledge, has not even been addressed to from a microscopic
theory.

At very low concentration, the increase in viscosity with ion
concentration can be well described by the well-known expres-
sion derived by Falkenhagen many decades ago. The expression
of Falkenhagen is valid for symmetrical electrolytes and is given
by5,6,15

whereη(c) is the viscosity of the electrolyte solution when the
molar concentration of the salt isc, η0 is the same of the pure
solvent,ú0 is the friction on an ion in the solution at infinite
dilution, andκD is the inverse Debye screening length. The
Falkenhagen expression was later extended to asymmetrical
electrolytes by Onsager and Fuoss.16 Note, however, that at the
heart of the derivation of Falkenhagen and also of Onsager and
Fuoss is the Debye-Huckel theory of ion atmosphere. Since
the Debye-Huckel theory is valid at very low concentrations,
so is the Falkenhagen-Onsager-Fuoss expression. In fact, the
validity of Falkenhagen expression seems to be limited toeVen
lower concentrations than that of the DHO law of conductance
for reasons we discuss below.

5.1. Mode Coupling Theory Formulation for Viscosity.Our
starting point for the calculation of viscosity of the solution is
the following Green-Kubo formula39

whereσzx(k,t) is the transverse (or off-diagonal) component of
the wavevector (k) and time dependent stress tensor. Clearly,
σzx(k,t) ) σxz(k,t). Moreover, because of the inherent isotropy
of the solution, the time correlation function〈σzx(k,0)σzx(k,t)〉 is
independent of the particular combination (zx) of the Cartesian
indices, it can equivalently be replaced by (xy) and (yz)
components. The total transverse stress tensor of an ionic
solution contains contributions from both solvent and ions and
it can be written as
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where σsol
zx and σion

zx denote, respectively, the solvent and ion
contributions to the transverse stress. Accordingly, the viscosity
can be written as

where the terms in the right-hand side of the above equation
represent, respectively, the solvent, ion-solvent, and ion
contributions to the viscosity. At low concentration, the solvent
contribution ηsol is expected to be very close to the to the
viscosity of the pure solventη0. Since we are interested in dilute
solutions in the present study, we assume thatηsol is equal to
η0. The ion-solvent contribution involves dynamical cross
correlation between the transverse ion stress and the transverse
solvent stress. The magnitude of such dynamical cross correla-
tion is expected to be small for dilute solutions. Thus, the major
ion dependent contribution comes fromηion. In the present work,
we calculate this ionic contribution, i.e., the one arising from
ion-ion transverse stress correlation

where J̇x(k,t) is the time derivative of the transverse ion
current. It is assumed that the wavevector k is along thez-axis
and that all ions of the solution have the same massm. We
note that the ionic contribution to the viscosity was identified
as the excess viscosity in earlier studies15,16 although, strictly
speaking, it becomes the excess viscosity only in the limit of
very low ion concentration where solvent-ion cross dynamical
stress correlation becomes vanishingly small. In the following,
we employ the mode coupling treatment of Geszti59 to derive a
simplified microscopic expression of this ionic contributionηion.

Since we assume that the ionic contribution to viscosity arises
only from the interaction between the ions and that the solvent
modes relax much faster than the ionic modes in dilute solutions
(as discussed before), one can use the collective ionic variables
to describe the dynamics of the correlation functions of eq 46.
We treat the mode-mode coupling among four variables of
ionic current densityj̆R(k) (R ) 1, 2, 3) and the charge density
Fc(k). Clearly, Fc(k) ) q1F1(k) + q2F2(k). The Green-Kubo
formula of eq 46 can now be rewrirren as

whereL is the same Liouville operator which appeared in eq
12 and Q is the projector onto the manifold of dynamical
variables orthogonal to ionic current density and the charge
density. The time evolution operator exp[iQLQt - εt] acts on
the space of dynamical variables. The standard approximation
in the mode-mode coupling expansion is to consider the
subspace of various binary products of the basic variables.
Among such binary products, the odd ones with respect to time
inversion do not contribute to the viscosity; thus only the even
combinations need be retained. Of these, the most important
contribution comes from the charge density combinationFcFc

because this term decays slowly, particularly at low concentra-
tion when the Debye length (λD) is large (because the ion
atmosphere relaxation time is given byλD

2 /Dion). The contribu-
tion of the current combinationjj is expected to be small because

the current correlation function decays much faster (its relaxation
time being determined bym/ú). The jj term is, therefore,
neglected in this work and we consider the contribution from
the FcFc term.

The final expression of the excess viscosity is given by37

whereSc(k) andFc(k,t) are, respectively, the static and dynamic
charge density structure factors of the ions in the solution.S′c
(k) represents the derivative ofSc(k) with respect to the
wavevectork. Note that this expression has the same form as
the one derived by Geszti,59 except that the stucture factor here
refers to that of charge densitysnot atomic and molecular
density.Fc(k,t) thus describes the relaxation of ion atmosphere
at all length scales.

If one includes the current-current contribution to the viscos-
ity, an additional term enters in eq 48. The expression is similar,
exceptFc(k,t) gets replaced by the current-current correlation
function, with a few additional changes. As alreday discussed,
the contribution of this term to viscosity is small and is usually
neglected. It should be pointed out here that an expression like
eq 48 has been used to address the observed anomalous rise of
viscosity of polyelectrolyte solutions at very low polyelectrolyte
concentrations.60,61 In this case, one needs to consider both the
mass and charge density of the polyelectrolytes as the slow
variables.

5.2. Reduction to the Falkenhagen Expression.In this
section we show that the present theory of the ionic viscosity
nicely reduces to the Falkenhagen expression5,6,15 for a binary
symmetric electrolyte in the limit of very low ion concentration.
At low concentration, we use the Debye-Huckel expressions
of the ionic pair correlation (which is an exponentially decaying
function of the distance) and the direct correlation functions.
The dynamic charge structure factorFc(k,t) is determined in
the following way. We assume that the dynamics of ion
atmosphere relaxation occurs by diffusive motion; thus, we
ignore the frequency dependence ofD(ω)) in eq 8. The inverse
Laplace transformation of eq 8 then gives the following
dynamical equation forFc(k,t)37

so that

where, in deriving the above equation, we have used the Debye-
Huckel expression of the direct correlation function. We now
substitute eqs 50 in eq 48 and use the Debye-Huckel solutions
of the ionic structure factors to obtain

where the Einstein relation between the diffusion coefficient
and the friction is used in deriving the second equality. Equation
51 becomes identical to the Falkenhagen expression of excess
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viscosity when the ionic friction is replaced by its value at
infinite dilution. The same expression was also derived by Fuoss
and Onsager.16

6. Numerical Results at Finite Concentration: Departure
from Classical Laws

The numerical results of the electrolyte friction, conductivity
and the viscosity are discussed for symmetric binary salt
solutions at varying concentrations. All ions of the solutions
are assumed to be charged hard spheres of equal diameterσ
for simplicity. The solutions are completely specified by

specifying the reduced chargeq1
/ ) xq1

2/kBTσ, the reduced ion
density F1

/ ) F1σ3 and the dielectric constantε. The pair
correlation functions for the evaluation of the quantitiesSRâ(k)
andcsR(k) are obtained from the solutions of Attard.62 In this
scheme, the functional forms of the ionic pair correlation
functions are the same as given by Debye-Huckel theory.
However, the screening parameter which enters into the
mathematical expressions isnot the one of Debye-Huckel
theory but a renormalized one. In real space, the expression of
the pair correlation functionhRâ(r) is given by

where the screening parameterκ is related to the Debye
screening parameterκD by the following relation

The above solution of the ionic pair correlation function with
the renormalized screening length has been found to be accurate
up to 1 M concentration for monovalent electrolytes and it
considerably extends the range of validity of the classical
Debye-Huckel theory. The Fourier transform of the pair
correlation function can be obtained readily from eq 52.35

6.1. Static Electrolyte Friction and Conductance.The
numerical results of the electrolyte friction and conductance as
predicted by the present microscopic theory are described in
Figures 1-4.63 The results of the ion atmosphere contribution
to the electrolyte friction of a tagged ion,δús,mic, are shown in
Figure 1. In these calculations (and also the ones of Figures
2-3 and 5-8), the value of the reduced chargeq* is 14.1, which
corresponds to the charge of a univalent ion of diameter 2.82
Å at T ) 298K. The reduced ion densityF1

/ is varied from 0.0

to 0.0135 which corresponds to changing the concentration from
0.0 to 1.0 M whereM is the molarity of the solution. The results
of DHO law are also included in the figure for comparison.
The DHO law predicts a linear increase ofδús,mic with the square
root of ion concentration whereas the present theory predicts a
nonlinear dependence at finite ion concentration. Here by finite
ion concentration we mean a concentration regime higher than
0.05 M or so. In the limit of very low ion concentration (<0.05
M), the results of the present theory coincides with those of
DHO law, as expected. However, at finite concentration the
electrolyte friction is found to be much smaller than the
prediction of the DHO law. Also, it changes rather weakly with
concentration compared to the prediction of the DHO law. The
electrophoretic contribution to the diffusion of the tagged ion
is shown in Figure 2. In this figure,δDs,hyd is plotted against
square root of ion concentration whereδDs,hyd ) kBT/ús,hyd -
kBT/ús,hyd

0 . The results ofδDs,hyd are shown in units ofkBT/ησ.
Again, DHO results are shown for comparison. At finite
concentration, the predictions of the present theory are seen to
be significantly different from those of the DHO law.

In Figure 3, we have shown how the ion conductance changes
with square root of ion concentration for the same model
solution. The values of the conductance at different concentra-
tions are normalized by its limiting value at zero concentration.
The details of the calculations are described in ref 35. Significant
departure from DHO linear behavior is observed at finite
concentration where a much weaker and nonlinear dependence
of the conductance on square root of ion concentration is
predicted by the present microscopic theory. The relative
contributions of the microscopic relaxation and electrophoretic
effects to the conductance have also been computed.35 The two
effects have been found to exhibit different concentration
dependence at higher ion concentration. Also, the electrophoretic
effect has been found to be more important than the microscopic
relaxation effect at finite ion concentration. This is in agreement
with the findings of Altenberger and Friedman19 in their
Smoluchowski level description of ion conductance. The results
shown in Figures 1-3 are obtained by using Attrad’s solutions62

of the ionic pair correlation functions. To verify the accuracy

Figure 1. The ion atmosphere contribution to the microscopic friction
is plotted against the square root of ion concentration (in molarity) for
a 1:1 electrolyte. The values of different parameters describing the
solution are described in the text. The details of the calculations are
available in ref 35. The solid curve shows the results of the present
theory and the dashed curve represents the predictions of DHO theory.
(Reprinted with permission from ref 35. Copyright 1999 American
Institute of Physics.)

Figure 2. The ion atmosphere contribution to the hydrodynamic part
of ion diffusion is plotted against the square root of ion concentration.
The different curves are as in Figure 1. (Reprinted with permission
from ref 35. Copyright 1999 American Institute of Physics.)

Figure 3. The total conductance is plotted against the square root of
ion concentration.Λ0 represents the conductance at infinite dilution.
The different curves are as in Figure 1. (Reprinted with permission
from ref 35. Copyright 1999 American Institute of Physics.)
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of these results, calculations have also been carried out by using
hypernetted chain (HNC) approximation of the ionic pair
correlations and the results of conductance with HNC solutions
have been found to be remarkably close to the ones of Figure
3.35

Finally we compare the predictions of the present theory with
experimental results of real ionic solutions. Both KCl and NaCl
solutions are chosen as examples. The details of the numerical
calculations can be found in refs 34 and 35. The theoretical
predictions for these solutions along with experiemental results
are shown in Figure 4. The experimental results are available
in the textbook of Glasstone1 and also in ref 19. It is clear from
this figure that the theoretical predictions are in excellent
agreement with the experimental results even at high concentra-
tions. This is quite impressive given that the theory does not
involve any adjustable parameter.

6.2. Frequency Dependent Electrolyte Friction and Con-
ductivity. The electrolyte friction and the conductivity become
complex quantities at finite frequencies. We decompose the
frequency dependent microscopic electrolyte friction into its real
and imaginary parts as follows

Similar decomposition is also made for the electrophoretic
friction and the conductivity functions for the discussion of
numerical results at finite frequencies. The frequency depen-
dence of the real and imaginary parts of the microscopic
electrolyte friction have been calculated for 0.01 and 0.1 M
solutions of a 1:1 electrolyte at room temperature.36 The results
for the 0.1 molar solution are shown in Figure 5. The values of
the friction at different frequencies are normalized by its zero-
frequency value and the reduced frequencyω* ) ωσ2/D. At
low concentration and at low frequency, the results of the present
theory have been found to be quite close to the DF results.36

However, at high concentration, the results of the present theory
show significant departure from the DF results, especially at
high frequency. Also, with increase of ion concentration, the
dispersion of the electrolyte friction is found to occur at a higher
frequency because of faster relaxation of the ion atmosphere.36

In Figure 6, we have shown the frequency dependence of
the electrophoretic term for the 0.1 M solution. The dispersion
of the electrophoretic contribution is seen to occur at a much
higher frequency as one would expect. In fact, any noticeable

change in the electrophoretic term is found only aboveω* )
103 which corresponds to a frequency well above the GHz
region. The dispersion of the solvent contribution to the ionic
friction, which is assumed to be a constant in the present
calculations, is also expected to occur in this frequency domain.
The solvent contribution, being a larger effect, may dominate
the dispersion of the total ionic friction at such high frequencies.

The results of the frequency dependence of real and imaginary
parts of the ion conductivity are shown in Figure 7 for 0.01
and 0.1 M solutions. The real part shows a slight increase at
low frequency and then it decreases at high frequency as one
would expect. The initial increase at low frequency can be
attributed to the Debye-Falkenhagen effect. It is seen that the
primary dispersion of the conductivity occurs at a much higher
frequency than that of the microscopic electrolyte friction. The
dispersion of the microscopic electrolyte friction is primarily
determined by the inverse relaxation time of the ion atmosphere.
The frequency dependence of the conductivity, on the otherhand,
is determined by the frequency dependent diffusion coefficient
D(ω). The primary dispersion ofD(ω) occurs at a much higher
frequency than that of the electrolyte friction because of the
presence of-iω term in the generalized Einstein relation which
connects the diffusion coefficient to the friction at finite
frequencies. Sometimes the experimental results of the frequency
dependent conductivity are analyzed in terms of the so-called
Cole-Cole plots where the imaginary part of the conductivity
is plotted against the real part at different frequencies. Such
Cole-Cole plots show non-Debye behavior at higher ion
concentration.36 This is not unexpected as the Debye form of
σ(ω) (eq 39) is valid only in limiting situations as discussed in

Figure 4. The total conductance of aqueous (a) KCl and (b) NaCl
solutions is plotted against the square root of ion concentration. The
details of the calculations are available in refs 34 and 35. The solid
curve represents the predictions of the present theory and the squares
represent the experimental results. (Reprinted with permission from
ref 34. Copyright 1999 American Chemical Society.)

δús;mic(ω) ) δú′s;mic(ω) + iδú′′s;mic(ω) (54)

Figure 5. The (a) real and (b) imaginary parts of the frequency
dependent microscopic electrolyte friction on an ion are plotted against
frequency for a 0.1 M solution of a 1:1 electrolyte. The details of the
calculations are available in ref 36. The solid and the dashed curves
represent, respectively, the results of the present theory and of Debye-
Falkenhagen expression (eq 30). (Reprinted with permission from ref
36. Copyright 2000 American Institute of Physics.)

Figure 6. The electrophoretic friction on an ion is plotted against
frequency for a 0.1 M solution of a 1:1 electrolyte. The solid and the
dashed curves represent, respectively, the real and the imaginary parts.
(Reprinted with permission from ref 36. Copyright 2000 American
Institute of Physics.)
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section4 and, in general, the dispersion of the conductivity shows
a more complex behavior.

6.3. Ionic Contribution to the Viscosity. The results of the
ionic contribution to the viscosity of a 1:1 salt solution at varying
concentration are shown in Figure 8a. The values of various
parameters are the same as in Figure 1. In this figure, the results
of the Falkenhagen expression are also included for comparison.
The Falkenhagen expression predicts a linear increase ofηion

with square root of ion concentration whereas the present theory
predicts a nonlinear dependence at finite ion concentration. In
the limit of very low ion concentration (<0.05 M), the results
of the present theory coincides with those of Falkenhagen, as
expected. However, at finite concentration the excess viscosity
is found to be much higher than the prediction of the Falken-
hagen expression. In Figure 8b, we present the results for a 2:2
electrolyte. Hereq* ) 28.2 and the values of other parameters
are the same as in the previous figure. A much stronger
dependence of the excess viscosity on ion concentration is found
compared to the results of 1:1 electrolytes. Also, the deviations
from the Falkenhagen limiting behavior are found to be much
more in this case which can be attributed to the stronger ion-
ion correlations.

The microscopic theory predicts a stronger increase of
viscosity with increase of ion concentration, especially for ions
of higher valence which is in qualitative agreement with
experimental results. At finite concentration, the viscosity
increases nonlinearly with square root of concentration37

contrary to the linear increase predicted by the Falkenhagen
expression. Although the present theory proves to be an
improvement over the Falkenhagen expression, a quantitative
comparison of the viscosity data7,58 show that for many
electrolytes (like NaCl in water), the viscosity is still underes-
timated by the present theory at higher concentrations. Clearly,
much more work is needed to fully understand the concentration
dependence of the viscosity. We note that although the static
and dynamic ion-ion correlations and the screening effects are
included in the present work, the molecular details of the ion-
solvent and solvent-solvent correlations are missing. It would
be interesting to study how these ion-solvent and solvent-
solvent correlations contribute to the excess viscosity of an
electrolyte solution. The main approximation in the present
formalism seems to be the neglect of the binary terms involving
the solvent density in the set of slow variables. In a generalized
theory, not only the charge and size of the ions, but the
molecular details of solvent could also be important. Second,
we may need to include the contributions of charge currents.
Although the charge current is not a conserved quantity, its
contribution needs to be evaluated. However, it is believed that
the binary terms involving the ion-solvent and solvent-solvent
correlations hold the key to many of the surprising results of
the concentration dependence of viscosity.

7. Toward a Full Microscopic Theory: A Future
Problem

There is yet no first principles theory of electrolyte conduc-
tance and viscosity which treats the ions and the solvent
molecules at the same level. This is what we refer to as a fully
microscopic theory. Since the solvent molecules here are dipolar,
one needs to include not only the position but also the orientation
of these molecules. Not only the solvent-solvent but the ion-
dipole interactions are also orientation dependent. This is exactly
the difficulty which has limited any progress toward a full
theoretical description. Here we describe some of the progress
made recently.

In the calculation of the total microscopic friction, we require
an expression for the dielectric friction from ion-solvent
interaction. This can be derived by using the density functional
theory, along with Kirkwood’s formula and is given by

whereF3 is the density of the solvent (species 3),cs3(k,Ω) is
the wavevector and angle (Ω) dependent direct correlation
function between the tagged ion and the solvent, andGR3(k,Ω,t)
andG33(k,Ω,Ω′,t) are the ion-solvent and solvent-solvent van
Hove functions, respectively. This expression is a generalization
of the friction for limiting ionic conductivity45,46 to finite
concentration; the quantitiescs3(k,Ω), GR3(k,Ω,t) and G33-

Figure 7. The (a) real and (b) imaginary parts of the frequency
dependent conductivity are plotted against frequency for 0.01 M (dashed
curves) and 0.1 M solutions (solid curves) of a 1:1 electrolyte. The
details of the calculations are available in ref 36. (Reprinted with
permission from ref 36. Copyright 2000 American Institute of Physics.)

Figure 8. The ionic contribution to the viscosity is plotted against the
square root of ion concentration (in molarity) for solutions of (a) 1:1
and (b) 2:2 electrolytes. The details of the calculations are available in
ref 37. The reduced viscosityηion

/ ) ηionσ/ú0. The solid curves show
the results of the present theory and the dashed curves represent the
predictions of Falkenhagen expression (eq 42). (Reprinted with
permission from ref 36. Copyright 2000 American Institute of Physics.)

δúmic,solv(t) )
2kBT

3(2π)3
∑
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(k,Ω,Ω′,t) now depend on ion concentration. One can similarly
derive an expression for the dielectric friction from solvent
polarization current modes.

The calculation of the ion-solvent and solvent-solvent van
Hove functions will require solutions of a coupled hydrodynamic
equations of the type discussed by Bagchi and Chandra64 for
dipolar liquids, but now for a composite system with ions. This
leads to a set of coupled equations which can be linearized with
respect to density and momentum fluctuations. Recently,
Mahajan and Chandra65 have solved such linearized hydrody-
namic equations to obtain the time dependence of various ion-
ion, ion-solvent and solvent-solvent van Hove functions. The
implementation of such generalized solutions for the calculation
of electrolyte friction is yet to be carried out. The decrement of
dielectric constant49,66-72 with ion concentration is another issue
which is still not fully understood and not explicitly included
in the existing theories of electrolyte friction and conductance.
This effect will enter naturally once the dynamical coupling
with the solvent modes is treated explicitly. The detailed theory
will no doubt be quite involved, but will certainly be highly
rewarding.

8. Summary and Conclusions

In this article a review is presented mainly of our recent work
on the microscopic derivations of the limiting tranpsort laws of
electrochemistry and their generalizations to higher concentra-
tions. All the three transport laws have been derived from the
mode coupling theory approach. These derivations required
identification of the proper dynamical variables and the use of
appropriate time correlation functions. Although the derivations
are by no means trivial, we believe that they are more transparent
and easily understandable than the original derivations. The
present analysis also leads to a better understanding of the origin
of the often unusual forms of these laws. For example, the
derivation of Falkenhagen-Onsager-Fuoss form15,16for viscos-
ity very clearly reveals the origin of the 1/480π factor in the
expression of the excess viscosity.

Numerical calculations of the full expressions show much
better agreement with experimental results than the limiting
expressions at small but nonnegligible concentrations, like 0.5
M. In fact, the agreement for the static conductance is quite
impressive. The study of excess viscosity seems to suggest that
direct solvent involvement might be playing a crucial role, even
at as low a concentration as 0.1 M.

While we propose the full molecular theory, where the
dynamical coupling between the solvent and the ions are treated
explicitly in the calculation of the friction and the viscosity, as
the most important problem in this area, there are several
approximations in the present formulation that require improve-
ment. For example, no account of the collective effects arising
from the velocity cross correlations between different ions have
been considered. Such a correlation is zero att ) 0 and small
at small times, but can be significant at intermediate times for
higher ion concentrations, like 1 M. However, we feel that the
approximation involved in neglecting the explicit ion-solvent
coupling at molecular level will play a far bigger role at higher
concentrations.
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