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The concentration dependence of the transport properties (i.e., the conductivity and the viscosity) of an
electrolyte solution has been a subject of lively debate for a very long time. The foundation for understanding
the transport properties of electrolyte solutions was laid down by Debye, Huckel, Onsager, and Falkenhagen
who derived several limiting laws valid at low ion concentration. These classical laws have been rederived
several times, although their extension to concentrated solutions has proven to be very difficult. We discuss
a new microscopic approach toward understanding the transport laws of electrochemistry. This new approach
is based on the general ideas of the mode coupling theory. We show that the mode coupling theory approach
is appropriate in the present case because concentration effects arise from collective variables (like charge
density and current) which are treated correctly by the mode coupling theory. The new theory can describe
the crossover from the low to high concentration seamlessly. Our study yields microscopic expressions of
both conductivity and viscosity in terms of static and dynamic structure factors of the charge and number
densities of the electrolyte solution. The celebrated expressions of Debye, Huckel, and Onsager for static
conductance, of Debye and Falkenhagen for frequency dependent electrolyte friction, and of Falkenhagen for
the viscosity follow exactly from the present microscopic theory in the limit of very low ion concentration.
Recently derived microscopic expressions of Chandra, Wei, and Patey for the frequency dependent conductivity
can also be derived from the present scheme. The present theory is a self-consistent theory. For conductance,
the agreement of the present theory with experimental results is satisfactory even up to one molar concentration.
For viscosity, the theory seems to give the right trend and suggests directions for further improvement to
explain the myriad of unexplained behavior known for a long time.

1. Introduction laws been hailed as the intellectual triumphs of the last century,
they have also been tremendously successful in explaining
concentration dependence of conductance at low ion concentra-
tion. However, these laws are certainly not perfect. They are

; . 1 valid only at low ion concentration and are applicable for
the viscosity of electrolyteS.™ The most celebrated among strongly dissociative salt solutions such as NaCl and KCI in

these is the DebyeHuckeI—Qnsager (DHO) law Wh'Ch. predicts water. Both the successes and the limitations of these classical
a square root concentration dependence of the ion conduc-

1213 . . theories can be traced back to the basic conceptual framework
tance- There are two other laws Wh'ChE are often discussed on which they are based. This conceptual framework has two
in the literature. One of these is the De lkenhagen (DF) basic in redignts First tHe solvent is Ft)reated as a structureless
theory of the frequency dependence of ionic conductitfitPne ¢ Ingredients. FIrst, the Son . - :

. continuum with a given static dielectric constant and viscosity.
often refers to DebyeFalkenhagen effect as the anomalous rise ; h .
s . . Second, there exists an ion atmosphere of net opposite charge
of conductivity with frequency at low frequencies which follows around each ion due to ion attraction. The radius of this ion
from the Debye-Falkenhagen theory. Another well-known )

theory is the FalkenhageiOnsager Fuoss (FOF) theory of the atmosphere is t_he Debye lenglip) which ha_ls an INnverse square
. ! . .~ ._root concentration dependence. The validity of the classical laws
concentration dependence of the excess viscosity of ionic

solutionst>*6This theory correctly explains the rise of viscosity Eecgglbalglgﬁp;ngen:zga I?re;/ratI#:notfhtelzq?ncaggz;:?gr?t?ﬁsv\(@jgh
with concentration in the limit obery lowion concentration. Y g 9 g

The classical derivations of these transport laws were highly as the radius of ions), then the classical description where the

. X . . . solvent is treated as dielectric continuumis valid. The
nontrivial, often involving astute use of electrohydrodynamics Y ; ) .

. . ) ; . equilibrium theories based on this assumption are often referred
and irreversible thermodynamieghe classic 1932 article by

i 1 7
Onsager and FuoXsis a case in point. Not only have these to as ion attraction theory or the Debysluckel _(DH) theory:
There have been several attempts to derive and extend the
t Department of Chemistry. limiting transport laws to higher concentrations from micro-
*Solid State and Structural Chemistry Unit. scopic point of view. Friedma# was thefirst to derive the
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The clasical transport laws and theories of electrochemistry
have been widely applied to understand the effects of ion
concentration on the diffusion of ions, ionic conductivity, and




9068 J. Phys. Chem. B, Vol. 104, No. 39, 2000 Chandra and Bagchi

limiting law of conductance from the time correlation function transport properties, like the viscosity. In addition, there are
formalism at microscopic level. The correlation function ap- several aspects of the earlier theoretical approaches which
proach was also employed by Resifdis derive the limiting require further improvement. Most importantly, these theories
law of conductance. The most notable among the studies atare not self-consistenta limitation which must be removed
higher concentrations is the work of Friedman and co-work- before one can treat higher concentrations.
ers®20 and of Blum and co-worke®:23 In the former Recently, we have been able to derive all the three above-
approach, the motion of an ion is described as a Brownian mentioned classical transport laws using the basic concepts of
particle in the force-field of other ions of the system. The force- mode coupling theory and the time dependent density functional
field is described in terms of ionic pair correlation functions. A  theory34=37 The resulting expression for the ionic conductance
dynamical theory at Smoluchowski level is used to calculate involves the dynamic structure factors and the current-current
the transport properties at finite ion concentration. In the correlation functions of the ions. In fact, the ion atmosphere
approach of Blum and co-workers, one uses the formal term is shown to correspond to the relaxation of dynamic
expressions of the transport properties derived earlier by Onsagestructure factors of the ions and the electrophoretic term to the
and Fuos® by using the continuity equation approach. These time correlation function involving the charge density and the
authors provided explicit expressions for the calculation of current terms. When microscopic expressions are evaluated,
transport properties as functions of the equilibrium ionic pair agreement (at least) at par with the earlier theories are found
correlation functions which are now available from the modern for the electrolyte conductance. This approach also provides
statistical mechanical theory of ionic solutions. Also, the microscopic expressions for the frequency dependence of ionic
difference between the self-diffusion and the conductivity was conductivity and for the ionic contribution to the viscosity of
explicitly taken into account in the later work by Turq efaf? an electrolyte solution.
Expressions derived in both the approaches reduce to the DHO The objective of this Article is to summarize and discuss the
law in the limit of low concentration. Also, these theories do mode coupling theory approach to the transport properties of
considerably better than the original DHO expression at higher electrolyte solutions. The organization of the rest of the Article
concentrations. Much less effort has been devoted to understands as follows. In the next section, we discuss the elements of
the frequency dependence of conductance or the concentratiorthe mode coupling theory which shall be used here. Section 3
dependence of viscosity. contains discussion of the zero frequency conductance and
Computer simulation is a complementary method to study derivation of the DHO law. Section 4 c_o_ntains the discussion
transport phenomena in ionic solutions. Among the simulation Of the frequency dependent conductivity and the Debye
techniques, the method of molecular dynamics (kt@)lows Falkenhagen effect. Section 5 summarizes the work on the
us to study the structural and dynamical properties of both ions concentration dependence of viscosity. Numerical results of the
and solvent molecules at Bor©ppenheimer level of descrip-  electrolyte friction, conductivity and viscosity are discussed in
tion. This technique has been used to study self-diffusion and S€ction 6. Section 7 presents a discussion of a full microscopic
conductivity of simple model solutions such as ions in Stock- theory. Section 8 concludes with a discussion of the future
mayer liquid>2® and also of more realistic solutions such as Problems.
NaCl, KCI, and ZnBs in water at finite concentratiorf$.2° _ _
However, the implementation of this technique for ionic 2- Mode Coupling Theory Approach to Electrochemistry

sqlgtions is computationally very costly because_ of.th.e multi-  The mode coupling theory (MCT) was originally developed
plicity of components, the long-range nature of ionic interac- 4 explain the dramatic decrease in the values of the transport
tions, and the very long run that is required to obtain statistically yroperties near the critical point. More recently, it has been used
meaningful averages. This is why a great majority of the (ith mixed success) to describe the anomalous dynamics in
simulation studies have used techniques of stochastic simula-t,¢ supercooled liquid near the glass transif®#.While the
tions?* In these methods, the solution can be treated at the pasic idea behind the latter development is somewhat different
McMillan-Mayer level of descriptiohwhere solvent particles  from the former one, the structure of the theory has remained
are not considered explicitly: they are represented by a dielectric essentially the same. MCT is the natural framework to use for
continuum and the solute particles interact through solvent gescribing the transport phenomena of electrolyte solutions
averaged potentials. Brownian Dynamics (BD) and Langevin pecause here one is interested in the effects of collective
Dynamics (LD) are the two most often used stochastic simula- gynamics such as ion atmosphere relaxation on the single
tion methods that have been employed to calculate the self-particle properties. For applications to electrolytes, one needs
diffusion and conductance of various aqueous ionic soluffoi. to identify the slow variables which control the dynamics. In
Reasonably good agreement has been found with experimentabn, electrolyte solution at not too high concentration, these slow
results for diffusion and conductance. The study of the frequency variables are the charge density and the ion current. It is the

dependence of conductivity has also been carried out for modelcharge density and the current which give rise to the square
ionic solutions?>26.33These studies also showed the breakdown root concentration dependence of the conductance and the

of Debye-Huckel and Debye Huckel-Onsager classical laws  viscosity through ionic pair correlation functions at low
at finite concentrations. To the best of our knowledge, no concentration. Actually, the relevant length in the problem is
simulation study has yet been carried out to calculate the still the Debye length whose inverse goes to zero as the square
viscosity of ionic solutions. root of concentration of the ions.

Certainly one valuable lesson to be learned from the above At low concentration, ionic conductance is essentially driven
studies of diffusion and conductance is that the dielectric by the self-diffusion of the ions. The latter is a single particle
continuum model itself may be trusted up to concentration as property in the sense that this property can be measured by
high & 1 M solution; the original DHO law breaks down even following the motion of a single tagged ion. However, this single
at 0.01 M. However, this relative success of the dielectric particle motion is intimately connected to the collective, many-
continuum model may be limited only to the calculation of body dynamics of the surrounding liquid and this coupling
diffusion and conductance and might not be extendable to otherbetween the collective and the single particle motion makes the
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calculation of self-diffusion coefficient of a tagged solute an wherel(t) is the total friction acting on the single tagged ion
extremely difficult problent? One traditional approach has been andfgt) is the so-called random force. The Laplace transform
to relate the friction on the ion to the viscosity of the medium, of {(t) is {{(w) where—iw is the Laplace frequency variable
combined with the use of the exact Einstein relation between andi is the imaginary number. The frequency dependent self-
diffusion and friction3® The radius of the ion has often been diffusion coefficientDg(w) is related to the frictioris(w) by
used as a fit parameter. Although this method had some the following generalized NernsEinstein relation
numerical success, the use of hydrodynamics for small particles
has been shown to be seriously flawed on fundamental grbund. ke T

The mode coupling theory provides a systematic way to treat Dyw) = —————— 3)

: ) X ) . m(—iw + &(w))
this coupling between the single particle and the collective
dynamics. There are several different approaches to this theory

and all of them lead essentially to the same equations. The mainWherekB is Boltzmann constant, is the temperature, amd is

idea is to express the friction on the tagged molecule (here ion) :hf Imfa_s? of the tt";ggfd |ond. As d|scusbsetéll in the last ggcttlor;\,/vthe
in terms of the relevant time correlation functions. For example, otal friction on the tagged lon can be decomposed Into two

diffusion of a molecule should be coupled to density fluctuations parts: tA m|croscoplgr[]elaxatlon tergf%m&w) ?nd a h);qt.rody—dd
which are responsible for relaxation of the surrounding cage namic erm_@s;hyc(w). € inverses of these two qunuities ad

and also to the current modes which contribute to the randomtq give _the Inverse of the total lonic friction. _The microscopic
motion of the molecule via the natural currents present in the friction is most easily analyzed by using the Kirkwood's formula

liquid. Under some general approximations, the diffusion of a Iﬂr f?cnonfwhlcht.expressesl Itt' n t](carmst. o;ﬁag'lntegtrhatlotn over
tagged molecule can be written BS= Dy + Dpyd'2 Where e force-force time correlation functiof® Since the time

Dric denotes the microscopic contribution to diffusion which dependent force on the tagged ion has contributions from solvent

. A R .
consists of a bare term and the collective density termCpel density and polarization fluctuatiotfs*® and also from ion

is the hydrodynamic part which contains the contribution from atmo_sph_er_e ﬂL_JCtuat'OnS’ one can de_compose the t(_)tal_mlcro-
the current modes. scopic friction into a solvent contributiofy midc = 0) which is

The mode coupling theory has been constructed here Con_assumed to be a constant independent of ion concentration and
sidering only the collective ionic modes as the slow variables. a concentration dependent ion contributi@is mdw) which

This approach is valid at low ion concentration where the solvent originates from interaction with the _ion gtmosphere fIL_Jctuation_s.
modes relax much faster than the ionic modes. An extension ofH_erg we calculate the ion contn_butpn to the microscopic
this approach has been discussed in section 7. friction. Thus, the solvent contribution is not calculated

The hall mark of any mode coupling theory is a self-consistent micrpscopically, it d.etermines the ion diffusion at infinite
calculation of the transport properties and the time correlation dilution whose value is assumed to be known from experiments.

functions. For example, the contribution of the density term to The_hydrody_namic contribution originates from the coupl@ng
diffusion itself depends on the self-diffusion coefficient. One of the fon velocity to the relevant current modes of the solution.
eventually has a “mode coupling necklace” where all the terms Mode coupling theory directly provides an expression of the

are connected to each other, often by nonlinear equations. Thesgon;fr_lt)_utl?r:ho{_th? '::hurr_ents Off Fhf@g?ﬁggg‘- to ize d|ffu3|ton
equations are to be solved self-consistently. In the present work,coetcient, that s, to the INVerse mcticr: Ince the curren

MCT will be used to calculate the frequency dependent ionic modes of the SOIU“Q” consists gf both the SO'Ve.m. and ion
friction and the self-diffusion coefficients. From the self- CUTents, both contribute to the inverse of the friction. The

diffusion coefficients, we will calculate the conductance and hydrodynamic contribution to the total friction can, therefore,

5 -1 = = -1 -1
the frequency dependent conductivity. As we will see in section bi expressed_éé@ . Cst?r:y‘iz) I_ Csiyd C f_ 0=+ r‘?;;hy‘(z) |
5, MCT also provides an expression for the ionic contribution w eresnyd = 0) is the usual viscous friction which now also

to the viscosity in terms of the static and dynamic charge density includes the additional dielectric friction contribution due to the
structure factors of the solution polarization current?50 6¢snydw) represents the electrolyte

friction on the tagged ion due to coupling with the ion
3. The Total Electrolyte Friction and Limiting lonic atmosphere current. The latter is commonly known as the
Conductance electrophoretic effect. As before, the solvent contribution is not
calculated in the present work. It constitutes part of the ion

In the limit of very low but finite ion concentration, the jffusion at infinite dilution which is assumed to be known from

conductance is described by the well-known Debteicket- experiments. The ion contribution to the hydrodynamic part or
Onsager limiting la?3 the electrophoretic effect is calculated here microscopically by
using the mode coupling theory.
A (c) = A2 —[A+BAY/c, (1) 3.1. The Calculation of the lon Atmosphere Contribution
to the Microscopic Friction: The Asymmetric Effect
where A, is the conductance of the ionic species at The ion atmosphere contribution to the microscopic electro-

concentratiore, andA® is the conductance at infinite dilution lyte friction can be calculated from the correlation of the force
which is obtained by extrapolating the concentration to zero. €xerted by the fluctuating ion atmosphere on the tagged ion by
A and B are the two constants which are determined by the using the Kirkwood's formuld® In time domain, the micro-

properties of the ions and the medium. scopic electrolyte friction can be expressed as

In this section, we will calculate the conductance from a 1
microscopic calculation of the electrolyte friction. We start with 0 ()= —=— [dr F(r 1) F(r.0)0 4
the following generalized Langevin equation for time evolution smic(!) 3|<BTVf {r) - F(r.0) “)

of the velocity of a single tagged ion of chargé®
whereF(r,t) is the force exerted on the tagged ion due to its
a I oy ' interaction with all other ions in the solution aNds the volume
BtUS(t) jﬁ; gt = 1)o(t) + 140 2) of the system. An expression f&i(r,t) can be obtained from
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density functional theory and it is given ¥y
F(r.t) =ksTny(r.)V z f dr' cg, (r, r")op,(r',t)y (5)
o

whereng(r,t) represents the position)(and time ) dependent
density distribution of the tagged ion anip,(r,t) is the
collective density fluctuation which is equal ®(r,t) — pa,
wherep, is the average number density of ionic speciesnd
Cs(r,r') is the direct correlation function between speciesnd

the tagged ion. Because of the presence of convolution integral
in eq 5 and of isotropy of the system, final expressions are much

simpler in the Fourier space. The final expression for the
microscopic electrolyte friction has the following simple expres-
siorp435

6§s,mic(t) =
T

;f dikiC, ()  pupsGap (ki (WF (K (6)
3(2n)® &

where the wavevectds is the Fourier variable conjugate to
and Gyg(k,t) is the Fourier transform of the ionic van Hove
function between species and which is defined as

Gg(kit) = (NN 2 3, (K, D)ps(—K)O ()

where[d--(denotes average over an equilibrium ensemble and

pa(K,t) is the Fourier transform opy(r,t). N, and Ng are the
number of ions of specias and in the solution, respectively.
Later, we will denote the Fourier-Laplace transform of the van
Hove function as5s(k,w). Fy(kt) is the self-dynamic structure
factor of the tagged ion. Clearly, the effects of self-motion on
the ionic friction is contained irF¢(k,t). Equation 6 is an

Chandra and Bagchi

correlation function between speciesindf. S,s(K) = Ggp(kt
= 0) whereS,s(K) is the partial static structure factor between
speciesx andp.

The coupled equations as given by eq 8 for the van Hove
functions can be solved to obtain the following explicit result
for the time dependence of the ionic van Hove functf®fs

; \ pap/)’quqﬁGaﬁ(kvw) =
1 —
Z(k'w)[_lw; papﬁqaqﬁsaﬁ(k) +
D(@)CARKY Y/ P10 Sa(K) + 0,08} +
Dy(@)RAKK Y ps:Sk) + 01651} (9)

where

Z(kw) = —0’ — iwAK)[D(0)K*S;y(K) + Dy(w)KS,(K)] +
Dy()Dy(w)K'A(K) (10)

andA(K) = [S1(KS2K) — Si2(K)?]~L. The Laplace transform
of the self-dynamic structure factor of the tagged ion can be
described by the following equation

(11)

The analytical solutions of the ionic structure factors and the
direct correlation functions are known in the literature. Thus,

egs 6-10, together with the hydrodynamic term discussed later,
form a set of self-consistent equations which can be solved to
obtain the microscopic electrolyte friction.

important result. Note that the same expression can be defined 3.2. Calculation of the lon Atmosphere Contribution to
from a more rigorous analysis, as the one given by Sjogren andthe Hydrodynamic Friction: The Electrophoretic Effect. The

Sjolandert”

A microscopic calculation of the density relaxation term
requires tractable expressions of the wavenumkjear{d time
(t) (or frequency @)) dependent ionic van Hove functions. Such

ion atmosphere contribution to the hydrodynamic friction
originates from the coupling of the velocity of the tagged ion
with the current mode of the ions. A formal expression of this
friction can be derived from mode coupling theory by using

expressions can be obtained from the time dependent densityp®(k)j (—k) as the relevant binary product whes&k) andj(k)

functional theory. In the present work, we ignore the explicit
dynamical coupling of ions with the solvent and we include
the effects of the solvent in an effective manner. Thus, for the
calculation of the iorrion correlations, it is assumed that the
solvent is a dielectric continuum with dielectric constamind

the ions interact with a solvent averaged interaction potential,
i.e., with a long-range Coulomb potential scaled by the dielectric
constant of the solveri Also, the dynamics of ions is now

described by generalized Smoluchowski theory with appropriate
solvent averaged mean potential and diffusion coefficients. We

are the charge density and total ion current of the solution,
respectively. The hydrodynamic friction is then given by

= mw ck-_chk-_k,Ck
0Chya(t) ZZ oo (KD (—K)TLA"(K)j (—k),07(K)

J(—k)T* x ] (—k) ™ (k)i (=K TR (KD (—K),
PRI (=TT x (K] (—K") Up I (12)

where ug is the velocity of the tagged ion along a particular

note that the assumption of solvent continuum for the calculation yirection (sayx) andL is the Liouville operator. The vertexes

of the ion—ion correlations is expected to be valid in the limit
of very low ion concentrations. Use of time dependent density
functional theory leads to the following generalized Smolu-
chowski equation for the frequency dependent van Hove
functior?®51

Gup(k) = [~ + D (0)K] ™ Su(k) +

D, (w)K* 2
> VPup,Coy (G, (k) (8)

—iw + Da(a))k2 y=1

where theD(w) is the frequency dependent diffusion coefficient
of specieso. and cqp(K) is the Fourier transform of the direct

and the time correlation function in the above expression can
be evaluated by using the following decomposition of the charge
density and the ion currenf(k) = p (k) + p3(K) + p5(k) and
J(K) = jo(K) + j1(K) + j2(K) wherepg(k) andjo(k) are the charge
density and current of the tagged ion apfflk) andjq(k) are
those of species surrounding the tagged ion.

After a strightforward analysis, the following expression is
obtained for the elctrophoretic frictiéh3®

kT _ 1
0Cshya 3\712,0N

Jodt [ dkié[p, Gy (kit) —
pGLAKDICT(KY) (13)
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wherep is the total ion density anll is the total number of
ions in the solution.Ggﬁ(k,t) is the distinct part of the van
Hove function between species and f and CT(kt) is the

transverse part of the current correlation function. Note that the

relaxation of the transverse velocity correlation function occurs

much faster than the distinct van Hove functions and the major

contribution to the above integral comes from the short time

region whereG, (k,t) & hya(k) andGo,(k,t) & hya(k) wherehegs-

(k) is the Fourier transfoem of the total pair correlation function

between specias andf. We also assume an exponential decay

of CT(k,t) of the following fornt?

we*ﬂkzt/pm
m

C'(kt) = (14)

wherey is the viscosity of the solution. Equation 14 can be

substituted in eq 13 to obtain an expression for the electro-

phoretic friction in terms of viscosity and ionic pair correlation
functions.

Note that bothFs(kt) andGgg(k,t) depend on the self-diffusion
coefficient of the ions. On the other hand, these correlation

J. Phys. Chem. B, Vol. 104, No. 39, 2008071

for the Fourier transform of the pair correlation function

4'*7-’7(:]()Lc'][i 1
ekeT 1+ K2

hys(k) = — (18)

in eq 17 and evaluate the integral over the wavevector space to
obtain the following expression fa¥¢smic

_ quD
6eD,

csCs,mic (19)

wherexp is the inverse Debye screening length given by
A5 1/2
2
kp === ) P
D (GkBT Z a a)

The above expression is precisely the one originally derived

by Debye and Huckel ignoring self-motion of the taggedén.
3.3.2. Onsager’s Correction: DHO ExpressioNext, we

derive Onsager’s correctidhby including the self-motion but

(20)

functions determine the self-diffusion coefficient through eqs still assume that the diffusion coefficients are equal. The
6—11 and 13. ThUS, the calculation & requires a self- microscopic friction can now be written as

consistent solution of these expressions. This is nontrivial. As
already mentioned, such self-consistent calculation is the

hallmark of any MCT calculation. In fact, strictly speaking, one
should include the expression for viscosity (derived in section

5 below) in this self-consistent calculation. We have neglected

LI
aama—azﬂ&ﬁ dt " dkiTh(KI[SK)] G (k)] x

[S(K)] ' Thy(K)]F(kt) (21)

this complication here because the concentration dependence

of viscosity is not significant at low and intermediate concentra-
tions.
3.3. Reduction to Debye-Huckel—Onsager Limiting Law.

where [G'(kt)] is the modified van Hove function matrix given
by [G'(kt)] = e P+ [G(k,t)]. The time integral of the modified
van Hove matrix can be derived from the molecular hydrody-

It is shown here how the present molecular theory reduces tonamic equations described earlier and is given by

the well-known DHO law when applied to solutions of very

low concentration. For convenience, the expression for the

microsocpic friction is rewritten in the following forff

ke T o _
=B KKTh (1T ST Gk
%mﬂwﬂwmtwmnwmw
(K] gk Fykt) (15)

where hg(K)] is the row matrix L/p_lhsl(k) Jp_zhsik)], [hs(K)]T

is the transpose of{(k)]. [S(k)] and [G(kt)] are the 2x 2

structure factor and van Hove function matrices of the ions.
3.3.1. Debye-Huckel ExpressionWe shall first derive the

original Debye-Huckel expressioli for the asymmetric effect.

For this case, we ignore the self-motion, iwe setF(kt) =

1 and we assume that the diffusion coefficients of the positive

and negative ions are equal i.e., we assige= D; = D». In

this simplified case, the time integral of the van Hove function

is given by

[SK)]

Jo O =25 o1

(16)

We substitute eq 16 in eq 15 to obtain the following expression
for the microscopic friction

kT 1

) —_-_B5 4
Z;s,mu: 3(27_[)3 Ds

[ dkIh®Ih™  (17)

[S(K)]
DI + DTSR

Jo dG (k)] = 22)

We substitute eq 22 in eq 21 and use the relation between the
structure factor and the pair correlation function matrices to
obtain

ks T

g 3
6D(27)

J kK] x

Csmic =

{ 1- %[h(k)] - Lll[h(k)]z---}[hs(k)]T (23)

where h(K)] is the 2 x 2 matrix of ion—ion pair correlation
functions. The various terms in the right-hand side of the above
equation can be evaluated analytically by using Detiyeckel
solution for the ionic pair correlation functions, and the final
result is®

2
00— V2)

6§s,mic = 6eD
s

(24)

The above expression is identical with the one derived by

Onsage' for a binary electrolyte by including the self-Brownian

motion of the tagged ion. We note that the quantity—(z/i)

is denoted as the factor in DHO law for a binary electrolyte.
3.3.3. The Generalized DHO Expressidiow we consider

the more general case where self-motion is included and the

Since our goal is to derive the DHO law, we assume the ions diffusion coefficients of the positive and negative ions are taken

to be point ions and use the following Debyduckel solutioA”

to be unequal, i.eD; = D,. In this case, the time integral of
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the modified van Hove function matrix is given by the numerical values of the conductances of positive and
negative ions. Note that the factay, goes over exactly to the
[SK)] (25) DHO value (2 — \/E) for a binary electrolyte when one
kZ[DS] + kz[[)][s(k)]*l assumes\; = A,. More importantly, in the same limit eq 28
becomes identical with the DHO limiting law. Furthermore, the

where above equation reduces to the expression of Friedman and co-

] workerd® when one replaced, terms in the right-hand side
[D] = [([))s ([)) of the equation by\". This is exact to the ordayc,. Equation

J3 dG (k)] =

29 predicts different values ¥, for positive and negative ions
when their mobilities are different. The original DHO law does
and not reflect this asymmetry although it was later noticed by
Onsagep?
D, 0

[D] :[ D ; ity
0 2 4. Frequency Dependent lonic Conductivity:

) ) ) ) Debye-Falkenhagen Effect
Again, we substitute eq 25 in eq 21, use the relation between

the structure factor and the pair correlation function and evaluate 1€ frequency dependent specific conductivify) describes
the integral over wavevector space to obtain the following final the motion of ions in the presence of a time dependent extenal

s,mic 6eD
s

expression for the microscopic friction field, wherew is the oscillation frequency of the field. When
an ion moves in electrolyte solution, the atmosphere cannot
2 2 1/ i i i i
» DJ(D.+ D immediately follow the motion of the central ion and becomes
00, = Ao,y _ (1 - 2 PO+ D) Zl (26) asymmetric causing a retarding effect on the motion of the ion.

Y Pl

The above expression reduces to the DHO expression for
electrolyte friction wherDg is taken to be equal tB; andD..
Also, the above expression becomes identical with the one of
Onsager (derived in 1948)and of Friedman and co-worké®s 5oy mmetric) compared to that for a moving ion in a static field.
whenDs andDq (o = 1,2) terms in ghe right-hand side of the  Ag'4 result, the effects of the asymmetry of the ion atmosphere
above equation are replacd andD, which are the values of s reduced causing a ne¢ductionof the electrolyte friction
the ion diffusjon coefficients in .the limit of infinite diluti.on. and anenhancement of the condusty at low frequency. This
~ Now we discuss the calculation of the hydrodynamic term «anomalous” increase of conductivity at low frequency is known
in the limit of zero ion size and very low concentration. In this g5 the DebyeFalkenhagen effedt. At high frequency, the
limiting situation, the DebyeHuckel solution of the ionic pair  conductivity decreases because the ions oscillate so fast that
correlation functions can be used. We alsosset 0ineq 13 ne net jonic motion along a particular direction is smaller than
and we evaluate the integral over the wavevector space to obtainnat in the presence of a static or low-frequency field. By using
a diffusion equation approach for the time dependence of ion
1 _ 1 _fo (27) atmosphere, Debyd~alkenhagen derived the following rather
Cshya  Csnya(€=0) 6y unusual looking expression for the frequency dependent elec-

trolyte friction
where the second term represents the electrophoretic contribution

At zero frequency, this relaxation effect leads to EBIRO\/E

term in eq 1. In the presence of an oscillating field, the central
ion oscillates and the ion atmosphere gets less time to relax
and cannot follow the oscillations of the ion. The average effect
is that the ion atmosphere remains more symmetric (or less

to the total diffusion. We note that the above expression for 1+ */a
the electrophoretic contribution is a general result which does Eor(@) = Cpr(0) ) 7 (30)
not depend on any hydrodynamic boundary condition. This is 1+ [0 — iw7y)]

exactly what was pointed out by Onsadger. _ o
Equations 26-27, together with the relation between the Where pr(0) is the zero-frequency frictiong = 1/2 for a

diffusion coefficient and the conductarféand betwee, (the symmetric binary electrolyte andn is the relaxation time of
concentration ofith species in moles per liter) apg provide the ion atmosphere given by
the following general equation for the conductance at very low
concentration 1
Tatm (31)

— (D1 + Dy)akp
A (c) = A% — Lqi': e - .
oo o 37r77(10005kBT)1/2 Here,D; andD; are the self-diffusion coefficients of the positive
and negative ions, respectively, ard is the inverse Debye
27N |G, W, 0 screening length defined by eq 20.
WAa \/C_a (28) As the DF expression is based on Deby&uckel theory, it
is valid only at very low ion concentrations. For a typical 0.001
M solution of a 1:1 saltzam ~ 10°7s, and therefore, the
dispersion of the DF friction for such a solution is predicted to
zl occur in the MHz region. The electrophoretic force, on the other

where

A 1.
1— :_L _* (29) hand, responds at rates comparable to that of molecular velocity
2 Z A, g correlations. The velocity correlation times in solutions are of
the order of 0.1 ps, and thus, the dispersion of the electrophoretic
whereNp is Avogadro number an& is Faraday. The above contribution occurs at a frequency much higher than GHz. In

equations are to be solved self-consistently, in general, to obtainDF theory, the frequency dependence of the electrophoretic

w, =2
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effect is not considered. Thus, the well-knowebye-Falk-
enhagen effeaf increasing conductivity with frequency arises
solely from the decrease of the friction from the ion atmosphere.
Actually, the Debye-Falkenhagen effect seems to have never
been confirmed satisfactorily. In a new twist to this old problem,

J. Phys. Chem. B, Vol. 104, No. 39, 2008073

4.1. Derivation of Debye-Falkenhagen Form of Frequency
Dependent Friction. Here we identify the limiting conditions
under which the present theory reduces to the well-known
Debye-Falkenhagen expression (eq 30) of the frequency
dependent electrolyte friction. We note that in Debyalken-

Anderson, in a paper entitled “The DebyEalkenhagen Ef- hagen theory, the frequency dependence of only the ion
fect: Experimental Fact or Fiction®?*,has recently questioned  atmosphere relaxation contribution is considered and that of the
the original analysis of Falkenhagen. The difficulty of observing electrophoretic term is ignored. Accordingly, we consider only
this effect is that the effect is predicted at very small concentra- the microscopic electrolyte friction as given by eq 6.
tion and also the magnitude of the effect is rather small. The ions are assumed to be point ions as in the Debye
In the following we discuss the recent mode coupling theory Huckel theory. The use of the DH solutions of the direct
analysis of this problem. We calculate the frequency dependentcorrelation function and the diffusive limit of ionic van Hove
electrolyte friction and the ionic diffusion coefficients by using functions leads to the following expression of the time dependent
the same theory discussed in the last section. It is assumed thafriction
the frequency dependent conductivitw) is related to the
frequency dependent ionic diffusion coefficieig(w) by the
following generalized NernstEinstein relatioff

oL cp| g Deo"
3¢ | /27Dt

where®(X) is the error function and it is assumed that all ions
have the same diffusion coefficieBt We note that the above
expression of time dependent electrolyte friction becomes

o identical with the one derived by de Leon et5alwhen the
We note, however, that the frequency dependent ionic conduc-it,,sion coefficientD in the right-hand side of eq 33 is replaced

tivity can, in general, be related to the Fourier transform of the 1, o \yhich is the value of the ion diffusion coefficient in the
ionic current-current time correlation functiéh.Since the limit of infinite dilution.

electric current is a collective dynamical quantity, its time The Fourier-Laplace transform of eq 33 can be carried out

correlation function comprises of a self-part that corresponds 4 \vtically to obtain the following expression of the frequency
to a summation over the velocity autocorrelation functions of dependent friction

the ions and a cross part involving the sum of the correlation
functions of the velocities of distinct ions. The generalized

Comicl) = + 1€ D(y 25D — 1} | (33)

1 2
o(o) =§Ta;paqioa(w) (32)

2
qu D

Nernst-Einstein relation (eq 32) includes only the self-part and Comiclw) = 1 (34)
the cross part is ignored. Although the importance of the cross ’ 6eD 1+ i[l — ia)/DKZD] 12
part is smaller than the self-part, it may not be negligible at V2

high ion concentrations. However, at low and moderate ion ) o .
concentrations, the contribution of the cross part is expected to 1N€ expression of the frequency dependent friction as given by
be much smaller than that of the self-part. For example, at 0.5 €d 34 can be rewritten in the following form
M concentration of aqueous NacCl solution, an analysis of the

simulation data of self-diffusion coefficients and conductivity 1+ \/a
reveals that the cross term reduces the static conductivity by 1+ Vo[l — i7"
less than 5987 We also note that in the calculation of the static

and dynamic ionic structure factors which appear in the final wheretym is defined in eq 31. Equation 35 is identical with
expressions of the friction and the conductivity, the solvent is the DF expression (eq 30). Thus, it is clear from the above
treated as a dielectric continuum. At high concentrations, the analysis that the present microscopic theory reduces to the DF
molecular details of the ionsolvent and solventsolvent theory in the limit of low ion concentration when finite sizes
correlations may become important. Because of these ap-of the ions are ignored, electrophoretic effects are not included,
proximations, the present theory is limited to solutions of not and the collective dynamics of the ion atmosphere relaxation is

Cs;mic(w) = Cs mic(o) (35)

too high concentration (less thd M solution). However, the
theory has been found to give reliable results for the static
conductance of strong electrolytes even a@tM concentra-
tiOI’].34’35

described by diffusive motion.

We note that the DF theory incorporates the cross dynamical
coupling of ions at the level of ion atmosphere relaxation (or
the ionic van Hove functions) but not at the level of ionic

As explained in the last section, the total friction acting on velocity or current relaxation. Thus, like the present theory, the
the tagged ion is decomposed into two parts. The first part is DF expression also does not include the effects of the so-called
due to the microscopic interaction of the tagged ion with the current cross terms. The contribution of such cross correlations
surrounding ions and the second part originates from the is expected to be vanishingly small in the limit of low ion
hydrodynamic coupling of the velocity of the tagged ion with concentration, and therefore, the DF expression is regarded as
the current modes of the surrounding particles. The time the correct limiting expression of the frequency dependent ion
dependent microscopic electrolyte frictia¥is midt) is given by atmosphere friction in an electrolyte solution.
eq 6 of section 3. The frequency dependence of the hydrody- 4.2. Derivation of the Conductivity Expressions of Chan-
namic (or the electrophoretic part) is obtained by a generalization dra, Wei, and Patey.Chandra, Wei and Patey (CWPhave
eq 13 to frequency domain. After the frequency dependence ofrecently derived analytical expressionsagv) by employing
the microscopic and hydrodynamic frictions are obtained, we a non-Markovian equation of motion of the self-van Hove
calculate the frequency dependent diffusion coeeficients of the function of a tagged ion. By employing exactly known short
ions by using the Generalized Einstein relation (eq 3) and then and long time constraints upon the ionic self-van Hove function,
we obtain the frequency dependent conductivity from the these authors derived closed-form expressions of the frequency
generalized NernstEinstein relation (eq 32). dependent conductivity for two models, referred to as models |
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and Il. Model | depends on an expression of the frequency
dependent diffusion coefficient which ensures that the short time

dynamics up to the second frequency moment and also the long

time dynamics of the self-van Hove function are described
correctly. The final expression of the conductivity is described
by a multiple Debye forr#f

2

1 2 Po96Dy
o(w) =— z 36
@) keT =11 (36)

— iwD M kT

wherem, is the mass of an ion of species The model Il of

Chandra and Bagchi
expression after Laplace transformation gives

92

S

—iw + DMQ/kT

o) = (41)

Equation 41, on combining with the generalized Einstein relation
and eq 32, gives eq 37, which is the model Il expression for
o(w). Thus, in this model, the frequency dependence of
conductivity originates from both the intertial and the non-
Markovian effects.

5. Concentration Dependence of the Viscosity:

CWP is a generalized version which correctly describes the ShortFaIkenhagen Expression

time dynamics up to the fourth frequency moment and also the
long time dynamics of the ionic self-van Hove functions. In
this model,o(w) is given by

D, Q2 — iwkgT/m,

2
> Put (37)

a=1

1
O‘(w) =
ke T Q2 — w? — iwD,Q2m kg T

whereQ, is the Einstein frequency of an ion of speciesso

Qi is proportional to the mean square force acting on an ion.
The CWP theory is capable of predicting the increase of
conductivity at low frequency. However, no attempt was made
by CWP to derive the DF expression.

It is discussed here that the main expressions of CWP can
be obtained from the present formalism. To recover the
expression of Model | (eq 36), we ignore the frequency
dependence ofyw) in the Einstein relation and replace it by
the zero-frequency valug; so that

kT 1
D) =1 Siw r g,
11— iwDdMJksT (38)

where, in deriving the second equality, we have used the Einstein
relations = kg T/Dgms. On combining eq 38 with the Nernst
Einstein relation (eq 32), one obtains eq 36, which is the CWP
model | expression of the frequency dependent conductivity.
Thus, in this limiting case, the frequency dependence of the
conductivity originates entirely from the inertial effects.

Also, whenD; = D, andm; = my, the frequency dependence
of the conductivity is described by a simple Debye form

g

o) = T i, DmiT

(39)

whereo is the conductivity at zero frequency. We note that the
simple Debye form has been used in the literature as an
empirical expression fow(w).2>

To derive the expression of model Il (eq 37), we approximate
the time dependence of the total friction as friction as

L) = E{t=0)e "™ (40)

where(t=0) is described by the spatial integral of the zero-
time force-force correlation which is equal to the square of the

Einstein frequenc{s of the tagged ion. The relaxation tinig
can be eliminated in favor of the diffusion coefficieDt by

using the Einstein relation described above, and the resultant

Viscosity of an electrolyte solution is long known to show
anomalous dependence on ion concentratk88’For some ions
(like LiCl, NaCl, and BaCl in water), the viscosity increases
monotonically with concentration, while for some others (like
KCI, KBr, or KI), the viscosity increases slightly at very low
concentration, then it decreases as the ion concentration is
increased and finally it increases again at higher concentra-
tion.”"58 This anomalous concentration dependence of viscosity
clearly has a complex origin which, to the best of our
knowledge, has not even been addressed to from a microscopic
theory.

At very low concentration, the increase in viscosity with ion
concentration can be well described by the well-known expres-
sion derived by Falkenhagen many decades ago. The expression
of Falkenhagen is valid for symmetrical electrolytes and is given
by5:6:15

KpGo
480

n() =1, + (42)

wherez(c) is the viscosity of the electrolyte solution when the
molar concentration of the salt ¢ 7o is the same of the pure
solvent, {p is the friction on an ion in the solution at infinite
dilution, and«p is the inverse Debye screening length. The
Falkenhagen expression was later extended to asymmetrical
electrolytes by Onsager and Fud&slote, however, that at the
heart of the derivation of Falkenhagen and also of Onsager and
Fuoss is the DebyeHuckel theory of ion atmosphere. Since
the Debye-Huckel theory is valid at very low concentrations,
so is the FalkenhagerOnsager Fuoss expression. In fact, the
validity of Falkenhagen expression seems to be limitegbém
lower concentrations than that of the DHO law of conductance
for reasons we discuss below.

5.1. Mode Coupling Theory Formulation for Viscosity. Our
starting point for the calculation of viscosity of the solution is
the following Green-Kubo formul&®

S5 dt 6"k 0)0™ (k)0 (43)

whereo?{(kt) is the transverse (or off-diagonal) component of
the wavevectork) and time dependent stress tensor. Clearly,
o?{kt) = o0*4k,t). Moreover, because of the inherent isotropy
of the solution, the time correlation functid®®{(k,0)o?{(k,t)[is
independent of the particular combinatiaX)(of the Cartesian
indices, it can equivalently be replaced byy)( and {2
components. The total transverse stress tensor of an ionic
solution contains contributions from both solvent and ions and
it can be written as

o (k) = oGk + oigr(kD) (44)
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where 0%, and 0%, denote, respectively, the solvent and ion the current correlation function decays much faster (its relaxation

contributions to the transverse stress. Accordingly, the viscosity time being determined byn/). The jj term is, therefore,

can be written as neglected in this work and we consider the contribution from
the pepc term.

1= Nso T Mion-sol T Mion (45) The final expression of the excess viscosity is givef by

where the terms in the right-hand side of the above equation KeT oo © 4 ) 5 4
represent, respectively, the solvent, d@olvent, and ion Nex = 6072 fo dk ﬁ) dtk"S (k) F(k)TS(k)"  (48)
contributions to the viscosity. At low concentration, the solvent

contribution 7750 is expected to be very close to the 10 the \yhereg(K) andFo(kt) are, respectively, the static and dynamic
viscosity of the pure solvenf,. Since we are interested in dilute charge density structure factors of the ions in the solut&n.
solutions in the present study, we assume thatis equal to (K) represents the derivative d&(K) with respect to the
170. The ion-solvent contribution involves dynamical cross \yavevectork. Note that this expression has the same form as
correlation between the transverse ion stress and the transversg,a one derived by GesZf,except that the stucture factor here
solvent stress. The magnitude of such dynamical cross correla~gfers to that of charge densityot atomic and molecular

_tion is expected to b_e sr_nall for dilute solutions. Thus, the major density.Fe(k) thus describes the relaxation of ion atmosphere
ion dependent c_on_tr|b_ut|on comes fro;_im. Inthe prese_nt_work, at all length scales.
we calculate this ionic contribution, i.e., the one arising from ¢ 5ne includes the current-current contribution to the viscos-
ion—ion transverse stress correlation ity, an additional term enters in eq 48. The expression is similar,
exceptFc(k,t) gets replaced by the currenturrent correlation
(k,O)ofg‘n(k,t)D function, with a few additional changes. As alreday discussed,
the contribution of this term to viscosity is small and is usually
neglected. It should be pointed out here that an expression like
J(’)” dt 0 (k,0)d, (k)0 (46) eq 48 has been used to address the observed anomalous rise of
viscosity of polyelectrolyte solutions at very low polyelectrolyte
concentration§%611n this case, one needs to consider both the
where J,(kt) is the time derivative of the transverse ion mass and charge density of the polyelectrolytes as the slow
current. It is assumed that the wavevector k is alongzthgis variables.
and that all ions of the solution have the same mas®Ve 5.2. Reduction to the Falkenhagen Expressionin this
note that the ionic contribution to the viscosity was identified section we show that the present theory of the ionic viscosity
as the excess viscosity in earlier stud¥eé$ although, strictly nicely reduces to the Falkenhagen expressiéhfor a binary
speaking, it becomes the excess viscosity only in the limit of symmetric electrolyte in the limit of very low ion concentration.
very low ion concentration where solveribn cross dynamical At low concentration, we use the Debykluckel expressions
stress correlation becomes vanishingly small. In the following, of the ionic pair correlation (which is an exponentially decaying
we employ the mode coupling treatment of Ge¥zt derive a function of the distance) and the direct correlation functions.
simplified microscopic expression of this ionic contributigg. The dynamic charge structure facteg(k,t) is determined in
Since we assume that the ionic contribution to viscosity arises the following way. We assume that the dynamics of ion
only from the interaction between the ions and that the solvent atmosphere relaxation occurs by diffusive motion; thus, we
modes relax much faster than the ionic modes in dilute solutions ignore the frequency dependencelgtv)) in eq 8. The inverse
(as discussed before), one can use the collective ionic variabled aplace transformation of eq 8 then gives the following
to describe the dynamics of the correlation functions of eq 46. dynamical equation foF(k,t)3"
We treat the modemode coupling among four variables of

T 1 i ZX
Mion = LILT(]) ﬁ//‘o dt [dig,

k=0 } TVK

ionic current density,(k) (o = 1, 2, 3) and the charge density aF(kt)
oK) Clearly, p(k) = quoa(k) + Gopa(k). The GreerKubo —5r = ~DKI1 - 2p,¢,,(IF (k) (49)
formula of eq 46 can now be rewrirren as
2 so that
Tion = lim lim == [ dt (QLj(k) exp(QLQt — et)| QL (K) . 1
0 k=0 0 F(k)/SK]? dt = ——— 50
eV (47) Jo TFLkD/S (0] 2D(K + «2) (0)

wherelL is the same Liouville operator which appeared in eq
12 andQ is the projector onto the manifold of dynamical
variables orthogonal to ionic current density and the charge
density. The time evolution operator expLiQt — ¢t] acts on

the space of dynamical variables. The standard approximation

where, in deriving the above equation, we have used the Debye
Huckel expression of the direct correlation function. We now
substitute eqs 50 in eq 48 and use the Deltyackel solutions

of the ionic structure factors to obtain

in the mode-mode coupling expansion is to consider the kBT/c4 2

subspace of various binary products of the basic variables. Moy = ol f‘” dk—~

Among such binary products, the odd ones with respect to time 3D Y0 (IR +«3)?

inversion do not contribute to the viscosity; thus only the even

combinations need be retained. Of these, the most important kpG

contribution comes from the charge density combinagpgn ~ 4807 (51)

because this term decays slowly, particularly at low concentra-

tion when the Debye lengthlf) is large (because the ion  where the Einstein relation between the diffusion coefficient
atmosphere relaxation time is givenA@!/Dion). The contribu- and the friction is used in deriving the second equality. Equation
tion of the current combinatigpis expected to be small because 51 becomes identical to the Falkenhagen expression of excess
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Figure 1. The ion atmosphere contribution to the microscopic friction

is plotted against the square root of ion concentration (in molarity) for
a 1:1 electrolyte. The values of different parameters describing the
solution are described in the text. The details of the calculations are
available in ref 35. The solid curve shows the results of the present
theory and the dashed curve represents the predictions of DHO theory.
(Reprinted with permission from ref 35. Copyright 1999 American
Institute of Physics.)

viscosity when the ionic friction is replaced by its value at
infinite dilution. The same expression was also derived by Fuoss
and Onsaget®

6. Numerical Results at Finite Concentration: Departure
from Classical Laws

The numerical results of the electrolyte friction, conductivity
and the viscosity are discussed for symmetric binary salt
solutions at varying concentrations. All ions of the solutions
are assumed to be charged hard spheres of equal diameter
for simplicity. The solutions are completely specified by

specifying the reduced chargg = «/qf/kBTo, the reduced ion
density p; = p10® and the dielectric constant. The pair
correlation functions for the evaluation of the quantitig(k)

and c«(K) are obtained from the solutions of Attafi#lin this
scheme, the functional forms of the ionic pair correlation
functions are the same as given by Debytuckel theory.
However, the screening parameter which enters into the
mathematical expressions i®t the one of DebyeHuckel

theory but a renormalized one. In real space, the expression of®

the pair correlation functiohgg(r) is given by

k(r—o)

qaqﬂ K_2 e
kg T(1 + k0) k3

hop(r) = — (52)

r

where the screening parameteris related to the Debye
screening parametep by the following relation

Kp

K‘ =
[1 — (kp0)%2 + (p0)%6]"?

(53)

Chandra and Bagchi
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Figure 2. The ion atmosphere contribution to the hydrodynamic part
of ion diffusion is plotted against the square root of ion concentration.
The different curves are as in Figure 1. (Reprinted with permission
from ref 35. Copyright 1999 American Institute of Physics.)
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Figure 3. The total conductance is plotted against the square root of
ion concentrationA, represents the conductance at infinite dilution.
The different curves are as in Figure 1. (Reprinted with permission

from ref 35. Copyright 1999 American Institute of Physics.)

0.2
00 1.0

to 0.0135 which corresponds to changing the concentration from
0.0to 1.0 M whereM is the molarity of the solution. The results

of DHO law are also included in the figure for comparison.
The DHO law predicts a linear increaseddmic with the square
root of ion concentration whereas the present theory predicts a
nonlinear dependence at finite ion concentration. Here by finite
ion concentration we mean a concentration regime higher than
0.05 M or so. In the limit of very low ion concentratior Q.05

M), the results of the present theory coincides with those of
DHO law, as expected. However, at finite concentration the
lectrolyte friction is found to be much smaller than the
prediction of the DHO law. Also, it changes rather weakly with
concentration compared to the prediction of the DHO law. The
electrophoretic contribution to the diffusion of the tagged ion
is shown in Figure 2. In this figur@)Dspyq is plotted against
square root of ion concentration wWhe¥Bs nya = ke T/Cs nyd —
kBT/Z;ghyd. The results 0BDspyg are shown in units okgT/zo.
Again, DHO results are shown for comparison. At finite
concentration, the predictions of the present theory are seen to
be significantly different from those of the DHO law.

In Figure 3, we have shown how the ion conductance changes
with square root of ion concentration for the same model
solution. The values of the conductance at different concentra-
tions are normalized by its limiting value at zero concentration.

The above solution of the ionic pair correlation function with  The details of the calculations are described in ref 35. Significant
the renormalized screening length has been found to be accurateleparture from DHO linear behavior is observed at finite
up to 1 M concentration for monovalent electrolytes and it concentration where a much weaker and nonlinear dependence
considerably extends the range of validity of the classical of the conductance on square root of ion concentration is

Debye-Huckel theory. The Fourier transform of the pair
correlation function can be obtained readily from eq?%2.
6.1. Static Electrolyte Friction and Conductance.The

predicted by the present microscopic theory. The relative
contributions of the microscopic relaxation and electrophoretic
effects to the conductance have also been comptfEde two

numerical results of the electrolyte friction and conductance as effects have been found to exhibit different concentration
predicted by the present microscopic theory are described independence at higher ion concentration. Also, the electrophoretic
Figures 1-4.53 The results of the ion atmosphere contribution effect has been found to be more important than the microscopic
to the electrolyte friction of a tagged i08{smic, are shown in relaxation effect at finite ion concentration. This is in agreement
Figure 1. In these calculations (and also the ones of Figureswith the findings of Altenberger and Friedménin their

2—3 and 5-8), the value of the reduced chargfeis 14.1, which Smoluchowski level description of ion conductance. The results
corresponds to the charge of a univalent ion of diameter 2.82 shown in Figures 43 are obtained by using Attrad’s solutias

A at T = 298K. The reduced ion density is varied from 0.0 of the ionic pair correlation functions. To verify the accuracy
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Figure 4. The total conductance of aqueous (a) KCI and (b) NaCl
solutions is plotted against the square root of ion concentration. The
details of the calculations are available in refs 34 and 35. The solid
curve represents the predictions of the present theory and the square
represent the experimental results. (Reprinted with permission from
ref 34. Copyright 1999 American Chemical Society.)

Figure 5. The (a) real and (b) imaginary parts of the frequency
dependent microscopic electrolyte friction on an ion are plotted against
frequency for a 0.1 M solution of a 1:1 electrolyte. The details of the
calculations are available in ref 36. The solid and the dashed curves
represent, respectively, the results of the present theory and of Bebye
Falkenhagen expression (eq 30). (Reprinted with permission from ref

. . . 36. Copyright 2000 American Institute of Physics.
of these results, calculations have also been carried out by using pyrg ysics.)

hypernetted chain (HNC) approximation of the ionic pair = 10

3

correlations and the results of conductance with HNC solutions 208

have been found to be remarkably close to the ones of Figure e
335 ('53 ’

Finally we compare the predictions of the present theory with 1;01’

experimental results of real ionic solutions. Both KCl and NaCl 02
)

solutions are chosen as examples. The details of the numerical O e85 0o
calculations can be found in refs 34 and 35. The theoretical W I
predictions for these solutions along with experiemental results rigyre 6. The electrophoretic friction on an ion is plotted against
are shown in Figure 4. The experimental results are available frequency for a 0.1 M solution of a 1:1 electrolyte. The solid and the
in the textbook of GlasstoA@nd also in ref 19. It is clear from  dashed curves represent, respectively, the real and the imaginary parts.
this figure that the theoretical predictions are in excellent (Reprinted with permission from ref 36. Copyright 2000 American
agreement with the experimental results even at high concentra-nstitute of Physics.)

_tions. This is quite impressive given that the theory does not change in the electrophoretic term is found only abawe=
involve any adjustable parameter. o 10® which corresponds to a frequency well above the GHz
6.2. Frequency Dependent Electrolyte Friction and Con-  yegion. The dispersion of the solvent contribution to the ionic
ductivity. The electrolyte friction and the conductivity become  riction. which is assumed to be a constant in the present
complex quantities at finite frequencies. We decompose the ca|cylations, is also expected to occur in this frequency domain.
frequency dependent microscopic electrolyte friction into its real The solvent contribution, being a larger effect, may dominate

and imaginary parts as follows the dispersion of the total ionic friction at such high frequencies.
, o The results of the frequency dependence of real and imaginary
OCsmid @) = 08gmidw) + 108 midw) (54) parts of the ion conductivity are shown in Figure 7 for 0.01

and 0.1 M solutions. The real part shows a slight increase at

Similar decomposition is also made for the electrophoretic low frequency and then it decreases at high frequency as one
friction and the conductivity functions for the discussion of would expect. The initial increase at low frequency can be
numerical results at finite frequencies. The frequency depen- attributed to the DebyeFalkenhagen effect. It is seen that the
dence of the real and imaginary parts of the microscopic primary dispersion of the conductivity occurs at a much higher
electrolyte friction have been calculated for 0.01 and 0.1 M frequency than that of the microscopic electrolyte friction. The
solutions of a 1:1 electrolyte at room temperattfi€he results dispersion of the microscopic electrolyte friction is primarily
for the 0.1 molar solution are shown in Figure 5. The values of determined by the inverse relaxation time of the ion atmosphere.
the friction at different frequencies are normalized by its zero- The frequency dependence of the conductivity, on the otherhand,
frequency value and the reduced frequency= wo?/D. At is determined by the frequency dependent diffusion coefficient
low concentration and at low frequency, the results of the presentD(w). The primary dispersion dd(w) occurs at a much higher
theory have been found to be quite close to the DF redults. frequency than that of the electrolyte friction because of the
However, at high concentration, the results of the present theorypresence of-iw term in the generalized Einstein relation which
show significant departure from the DF results, especially at connects the diffusion coefficient to the friction at finite
high frequency. Also, with increase of ion concentration, the frequencies. Sometimes the experimental results of the frequency
dispersion of the electrolyte friction is found to occur at a higher dependent conductivity are analyzed in terms of the so-called
frequency because of faster relaxation of the ion atmospfere. Cole—Cole plots where the imaginary part of the conductivity

In Figure 6, we have shown the frequency dependence ofis plotted against the real part at different frequencies. Such
the electrophoretic term for the 0.1 M solution. The dispersion Cole—Cole plots show non-Debye behavior at higher ion
of the electrophoretic contribution is seen to occur at a much concentratior® This is not unexpected as the Debye form of
higher frequency as one would expect. In fact, any noticeable o(w) (eq 39) is valid only in limiting situations as discussed in
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125 — The microscopic theory predicts a stronger increase of
1.0 o4 viscosity with increase of ion concentration, especially for ions
508 o1 of higher valence which is in qualitative agreement with
go.e- BT 75730 experimental results. At finite concentration, the viscosity
04t 9 increases nonlinearly with square root of concentrdfion
02 contrary to the linear increase predicted by the Falkenhagen
00 expression. Although the present theory proves to be an
") improvement over the Falkenhagen expression, a quantitative
08r comparison of the viscosity ddt2 show that for many
3 o8- electrolytes (like NaCl in water), the viscosity is still underes-
b ooal /T timated by the present theory at higher concentrations. Clearly,
02 much more work is needed to fully understand the concentration
dependence of the viscosity. We note that although the static
%0 26 25 0 80 Mo and dynamic ior-ion correlations and the screening effects are
w107 included in the present work, the molecular details of the-ion

Figure 7. The (a) real and (b) imaginary parts of the frequency solvent and solvertsolvent correlations are missing. It would

dependent conductivity are plotted against frequency for 0.01 M (dashedpe interesting to study how these iesolvent and solvent

g””’?ls) "’;”?] 0.1 'IV' TO'.”“O”S (solid .‘f“l;‘l’esf) of ? 31&1 (eéectr_olytg. T_hﬁ solvent correlations contribute to the excess viscosity of an

etails of the calculations are available in re . eprinted witl . : : . :

permission from ref 36. Copyright 2000 American Institute of Physics.) electro_lyte solution. The main apprOXIma_ltlon in the_prese_nt
formalism seems to be the neglect of the binary terms involving

00006 the solvent density in the set of slow variables. In a generalized
@ theory, not only the charge and size of the ions, but the
00004} molecular details of solvent could also be important. Second,
3 L 3 we may need to include the contributions of charge currents.
& - . L
0.0002- it Although the charge current is not a conserved quantity, its
L //’/ contribution needs to be evaluated. However, it is believed that
0oooo"1__ ., the binary terms involving the iersolvent and solvertsolvent
0.0020 s correlations hold the key to many of the surprising results of
00015k the concentration dependence of viscosity.
*go.oomL 7. Toward a Full Microscopic Theory: A Future
Problem
00005+ e . . o
Pt There is yet no first principles theory of electrolyte conduc-
00008 e — 556 G5 tance and viscosity which treats the ions and the solvent

'S molecules at the same level. This is what we refer to as a fully
Figure 8. The ionic contribution to the viscosity is plotted against the Mmicroscopic theory. Since the solvent molecules here are dipolar,
square root of ion concentration (in molarity) for solutions of (a) 1:1 one needs to include not only the position but also the orientation
and (b) 2:2 electrolytes. The details of the calculations are available in of these molecules. Not only the solversolvent but the ior
ref 37. The reduced viscosityon” = 7i0n0/50. The solid curves show  dipole interactions are also orientation dependent. This is exactly
the rfes_ults of the present theory and t_he dashed curves represent thehe difficulty which has limited any progress toward a full
predictions of Falkenhagen expression (eq 42). (Reprinted with w0 etical description. Here we describe some of the progress
permission from ref 36. Copyright 2000 American Institute of Physics.)

made recently.

In the calculation of the total microscopic friction, we require
an expression for the dielectric friction from iesolvent
interaction. This can be derived by using the density functional
theory, along with Kirkwood'’s formula and is given by

section4 and, in general, the dispersion of the conductivity shows
a more complex behavior.

6.3. lonic Contribution to the Viscosity. The results of the
ionic contribution to the viscosity of a 1:1 salt solution at varying
concentration are shown in Figure 8a. The values of various

L2 . 2|<BT 2
parameters are the same as in Figure 1. In this figure, the results _
of the Falkenhagen expression are also included for comparison.a Cmicsonlt) = 3 Z f dk kozcm(k) x
The Falkenhagen expression predicts a linear increagg,of 3(21)” =1
with square root of ion concentration whereas the present theory PGk QD) C Ak Q)F (K t) +
predicts a nonlinear dependence at finite ion concentration. In T
the limit of very low ion concentration<{0.05 M), the results KgTps

of the present theory coincides with those of Falkenhagen, as f dk d€2 de k2C53(k'Q)G33(k’Q’Q D x

3
expected. However, at finite concentration the excess viscosity 3(27)
is found to be much higher than the prediction of the Falken- ook Q)R (kit) (55)
hagen expression. In Figure 8b, we present the results for a 2:2
electrolyte. Herey* = 28.2 and the values of other parameters where p3 is the density of the solvent (species 8)(k,<2) is
are the same as in the previous figure. A much stronger the wavevector and angle€2j dependent direct correlation
dependence of the excess viscosity on ion concentration is foundfunction between the tagged ion and the solvent,@gsk,<2,t)
compared to the results of 1:1 electrolytes. Also, the deviations andGs3(k,L2,Q2' t) are the ior-solvent and solventsolvent van
from the Falkenhagen limiting behavior are found to be much Hove functions, respectively. This expression is a generalization
more in this case which can be attributed to the strongerion of the friction for limiting ionic conductivit§>46 to finite
ion correlations. concentration; the quantitiess(k,L2), Gus(k,2,t) and Gss-
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