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Brownian dynamics(BD) simulations have been carried out for the time dependent survival
probability [ Sy(t) ] of donor—acceptor pairs embedded at the two ends of an ideal polymer chain.
Long distance fluorescence resonance energy tra(fSRET) between the donor and the acceptor

is assumed to occur via the Forster mechanism, where the transféq( Rjtés a function of the
distance(R) between the donor and acceptor. For the Rouse chain simulatekfigyas assumed

to be given byk=Kkg /[ 1+ (R/Rg)®], wherek is the rate in the limit of zero separation aRd is

the Forster radius. The survival probability displays a strong nonexponential decay for the short to
intermediate times wheR is comparable t®), [distance at which thR?P(R) is maximuni. The
nonexponentiality is also more prominent in the case of highly viscous polymer solutions. It is
predicted that the FRET rate can exhibit a fractional viscosity dependence. This prediction can be
tested against experiments. We have also compared the BD simulation results with the predictions
of the well-known Wilemski—FixmartWF) theory at the level of survival probability. It is found

that the WF theory is satisfactory for the smalgyr values(where the rate is smallHowever, the
agreement becomes progressively poorer as the Forster radius is increased. The latter happens even
at intermediate strengths &E . The present results suggest the need to go beyond the WF theory.

I. INTRODUCTION distance energy transfer between two segments in a polymer
chain has been a subject of long standing interest among

Fluorescence resonance energy transfeéRET) is a  theoreticiand:>'1'?This is a nontrivial problem because of

powerful technique for the study of many aspects of structurghe connectivity among the monomers which makes the dis-

and dynamics of polymers and biopolymers in soluighin  tance between the two reacting sites a complex, fluctuating

this technique, the polymer is doped with a donor and aryyantity!***'*Pastor, Zwanzig, and Szalidad earlier per-

acceptor site at suitable positions along the chain backbonggrmed a Brownian dynamics simulation of this problem

The donor is excited optically by laser light and the energyyith a Heaviside sink function and compared the results with

transfer to the acceptor is monitored. When the distance bghe well-known Wilemski—Fixman theor:*’

tween the donor—acceptA) pair is fixed, as is the case in In this work we carry out a Brownian dynamics simula-

rigid biopolymers’ the FRET experiment provides infor- tion study of the energy transfer in dilute flexible polymer

mation on the distance between the donor and acceptor sitesp|utions. The polymer molecule is modeled as an ideal

since the mechanism for energy transfer is generally knowngaussian chain wittN monomer units with segmertor

For flexible molecules in solution, the distance between thgyhn) lengthb. The donor and acceptor sites are located at

donor and acceptor sites is a fluctuating quantity and, thergspposite ends of the polymer chain. The mechanism for ex-

fore, FRET experiments can be used to obtain detailed inforgitation energy transfer between the donor and acceptor sites

mation on the conformational dynamics of the individualjs taken to be the Forster mechanisfin this mechanism,

molecules. For example, the folding dynamics of proteinghe singlet—singlet resonance energy transfer k§R) is

can be studied directly using this technidu@learly, the use  assumed to be given by

of FRET in single molecule spectroscopy of polymers and

biopolymers requires theoretical understanding of the depen- F

dence of the survival probability on the fluctuating distance k(R)= 1+ (RIRp)®’ @

between the DA pait-1! Actually, theoretical study of long F

whereR is the Forster radius, defined as the DA separation

3Electronic mail: yethiraj@chem.wisc.edu corresponding to 50% energy transfig.is the rate of exci-

PElectronic mail: bbagchi@sscu.iisc.emet.in tation transfer when the separation between the donor and




the acceptor is vanishingly smdile., R/R—0). The For- lation study with a distance dependent rate, such as Forster
ster radius is usually obtained from the overlap of the donoenergy transfer. Such a study is clearly important because the
fluorescence with the acceptor absorption and several othend-to-end probability distribution in polymer peaks at a dis-
available parametersNote that the above form is different tance which scales d$?”. »=1/2 for the Rouse chain and
from the commonly used form of the Forster Fatehich is  3/5 for the self-avoiding walkSAW).?? At this point it
given ask(R)=kg(Rr/R)®. The Rr/R)® distance depen- should be mentioned that Portman and WolyAegveloped
dence is not appropriate here, since it divergeRatO, variational upper and lower bounds on the survival probabil-
which is allowed in the Rouse chaifr!®In a real polymer, ity and calculated the frequency dependent survival probabil-
the end-to-end distan¢®) never approaches zero, due to theity for the harmonic sink and exponential sink functions. In
excluded volume forces. On the other hand, one should ndhe present study the survival probability is directly obtained
put the rate for distances less than the diameter of a mondr the time domain by performing BD simulations and is
mer equal to zero also, as that is physically unreasonableompared with the WF theory. We have not compared our
Thus the modified fornfEq. 1) used here seems reasonable.results with the latter developmerts?®23
Our interest in the Rouse chain stems from the fact that this The main objectives of this paper are the followilg))
limit can be treated easily in theory. For example, the theorylo present the results of Brownian dynami@&D) simula-
of Wilemski and Fixmatf*"?°can be readily applied to the tions of Eq.(2), with k(R) given by the Forster rafé&q. (1)].
Rouse chain because the necessary Green’s function is avaiR) To investigate the nonexponential behaviorSy(t) and
able in analytic form. the viscosity dependence of the FRET rd®.To present a
The dynamics of Forster energy migration has been indetailed comparison of the simulated rate with the WF
vestigated traditionally via time domain measurements of theheory. To the best of our knowledge the viscosity depen-
decay of the fluorescendglue to excitation transfeifrom  dence of FRET in polymers has not been studied before.
the donort*>1°As bothkr and Rr are determined by the Detailed investigation into the time dependence of the sur-
DA pair, the rate of decay of the fluorescence intensity provival probability shows that th&(t) exhibits an interesting
vides a direct probe of the conformational dynamics of thenonexponential behavior for the short to intermediate times,
polymer. Recently, this technique has been used in singleshen Re=~Ry, whereRy, is the distance corresponding to
molecule spectroscopy of biopolym&fsand protein§, the maximum in the end-to-end probability distribution of a
where the distance dependence of FRET provides relevapblymer chain. The honexponentiality is more pronounced in
information about the conformation and dynamics of singlethe case of highly viscous solutions and also for lakge
biopolymer. At any given time after the initial excitation, the values. Neither the observed nonexponentiality nor the frac-
fluorescence intensity is a measure of the “unreacted” donotional viscosity dependence can be explained by the WF
concentration, that is, of the survival probabilBy(t). theory. We have not made a quantitative comparison with
The complexity of describing the dynamics of energyother theoretical treatments, although such studies could be
transfer of polymers in solution arises from the fact that, duauseful.
to chain connectivity, the Brownian motion of the monomers  The organization of the rest of the paper is as follows. In
on the polymer are strongly correlated. The many-body naSec. Il we describe the simulation method and in Sec. Ill we
ture of polymer dynamics can be described by a joint, timeoutline the WF theory. In Sec. IV the emergence of nonex-
dependent probability distributioR(r™,t) wherer denotes ponential behavior of5,(t) and the dependence of FRET
the position of all theN polymer beads at timeé The time rate on viscosity is discussed. In this section a comparison
dependence of the probability distributid®(rN,t) can be between the simulation results and the WF theory is also
described by the following reaction—diffusion equatfotf presented. We close the paper with a few conclusions in
Sec. V.

%P(rN,t)=£B(rN,t)P(rN,t)—k(R)P(rN,t), 2)

. . . . . II. SIMULATION DETAILS
where Ly is the full 3N dimensional diffusion operator,

Brownian Dynamic$BD) simulations are carried out for
d P(r,t) an ideal Rouse chain where the neighboring beads interact
L(r,H)= Dgl &_rjpeq(r't) (9_“. Pedr 1)’ 3 via a harmonic potentidll given by

where “eq” denotes equilibriumR is the scalar distance
between the two ends of the polymer chain, dhds the
center of mass diffusion coefficient. The solution of Ez),
with the sink term(last term on the right-hand sifdgiven by ~ whereB ! is the Boltzmann constant times the temperature,
the Forster expressidf for k(R), is highly nontrivial. ri is the position vector of bead and the number of beads
In two seminal papers, Wilemski and Fixm&VF)®1”  constituting the polymer chain isl+1. The mean square
presented a nearly analytic solution of the problem for anybond length isb?, and the equilibrium root mean square
arbitrary sink. The WF theory has been tested, only for theend-to-end distance of the polymer chéiris given by
average rate, by computer simulations when the sink is a
Heaviside functiort>?*We are not aware of any such simu-  L=\{((ry,1—r1)%)=Nb. (5)
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In the Rouse modéf since there is no excluded volume, any 4

bead can pass through any other bead without hindrance. As ¢ P(rV,t)+ LgP(rN,t) = —koS(R)P(rMt). (7)
a result the end-to-end distance can attain any value between

zero andN. In the notation of the present work,

In the present study a polymer chain is additionally char-
acterized by the presence of two reactive end groups. This
essentially implies that within the time intervAk, the two  and
end groups react with a probabilitg(R)At.?* The initial
configuration for each trajectory is selected from Monte )= (9)
Carlo generated equilibrium configurations. The dynamics 1+(R/Rg)®’

are then propagated using the following equation of motionwhere the operatotg(rV,t) is given by Eq.(3). As men-

ri(t+At)=ri(t)+F;(H)At+ AXC(t), (6)  tioned in the Introduction, the treatment of WF is general and
can be applied to a reaction with arbitrary sink.

The survival probabilityS,(t) is defined as the probabil-
ity that the chain has not reacted after titrend is given by

k(): k|: (8)

wherer;(t) andr;(t+At) are the positions of begdat time

t andt+At, respectively.F;(t) is the total force acting on
beadj and AX®(t) is a random Brownian displacement,
taken from a Gaussian distribution with zero mean and vari- N

ance((X®)?)=2At. Normally distributed random numbers Sp(t):J’ P(r,t)drydry:--dry. (10
are generated by using the reshuffling metfbth Eq. (6) _ _ -

the time and energy scales are fixed by using units wherth order to obtain the survival probability, WF made a clo-

=1, the bead diffusion coefficie@,=1, and the mass of SUre approximation, a(_:cording to which the Laplace trans-
beadm=1. All the results are presented in these dimensionform of Sy(t) is approximated as
less units. Here a comment about the time step is required. 1 Ko

At is varied, between 0.0001 and 0.01, dependingRgn ép(s)=—— = ,
value. The larger th&¢, the greater the requirement for the S 1+ kKD(s)/veg)

smaller time step. For example, lat=1, whenRg=1 the . . .
At=001 is empFI)oyed and fd%Fj‘SI a much smFaIIer time where k is the momentum transfer variable asdis the

step,At=0.0002 is used. Laplace transform variable. It is important to note that the

Each trajectory generated by using the above procedu pove equation is a 'zeroth or'd.er approximation which, as
is terminated when the two end groups react. In practice thidiScussed by WF, limits the validity of the theory to the case

is done in the simulations as follows. At each time step, thé"’he” the deviation from equilibrium distribution at any time
instantaneous end-to-end distarRes used in Eq.(1) to Is small. The final form of WF theory is expressed in terms
calculate the distance dependent rate con$tgiR}. The tra- of a frequency dependent functié(s) which is given by
jectory is then terminated with a probabilig(R), i.e., a ~ °

uniformly distributed random number between 0 and 1 is D(S)Zfo e °D(t)dt, (12
selected and if this random number is less th@R)At, then

the trajectory is terminated; otherwise, the trajectory is conwhich is the Laplace transform of sink—sink time correlation
tinued. Averages are obtained over many such trajectorieunction D(t). D(t) is given by

(11)

This procedure generates an irreversible FRET. ; ,
Each polymer chain is equilibrated for SL@ime steps D(t):fd le d°RyS(R1)S(R3)G(R1, R, 1) Ped Ry),
before the reaction is switched on. Subsequently, 50 000 to (13

100000 trajectories with different initial configurations areWhere the eaquilibrium end-to-end distribution function
generated and the survival probabili®y(t) is obtained by the €q b

averaging over all the trajectories. This procedure is system'-Deq(R) IS given by

atically applied for the polymer chains witki= 20, 50, and 3 \372 —3R?
100. As a check of the simulation method, the results of Peq(R):(HZ> ex W)
Pastor, Zwanzig, and SzalifZ9*® on the mean first pas-
sage time, with Heaviside sink function of infinite strength, The Green’s functiors appearing in Eq(13) is given by
are reproduced. Our simulation results agreed with those of a2
PZS, within the uncertainty given by PZS. G(Rl’Rz’t):<2wL2)

(14)

1
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11l. WILEMSKI-FIXMAN THEORY y - R%—Zp(t)Rr R,+ R%pz(t)
2U71-pA0] )

Wilemski and Fixman(WF)!®1” developed an elegant
theory for the diffusion limited intrachain reaction of a flex-
ible polymer. Recently, Portman and Wolyf&presented a (15
simple and straightforward derivation of the WF scheme. Inwhere p(t) is the normalized time correlation function of
WF theory, to account for the chemical reaction, WF added @&nd-to-end vector defined 4R(0)-R(t))/(R?), which can
sink term S to the many-body diffusion equation, just as in be obtained analytically and is given by the following equa-
Eg. (2). The WF equation of motion is given by tion,



8 4
p(t)= ?l%dl—zexq—)\ﬂ). (16)

Note that in the above equation, summation includes only the
odd values of. If we neglect the excluded volume and the
hydrodynamic interaction§o account for the Rouse modlel

\, is given by®!’

N =3Dy(I7m/Nb)2. (17

S, (t)

Finally vq is defined as

lim D(t)=(veg)?. (18

t—o

Note thatv o4 is the rate when the distribution of the polymer
ends is at equilibrium. Thus., gives the initial rate of decay
of Sp(t) and can be estimated from the transient behavior. In 0 L
most cases the rate of decay should become progressivel 0 500 1000 1500 2000 2500
smaller, as the population from the sink region decreases, a t/t
the reaction proceeds.

By using the above set of equations and after averaging'G. 1. Brownian dynamic$BD) simulation results for the survival prob-

over all the angles one can write the sink—sink time Corre_ability Sy(t) are plotted as a function of scaled time fér=50 for several
' values ofkg . The main figure shows th8,(t) for Re.=1 and the inset

lation funCtlon[D(t)] in the foIIowmg form, shows that folR=5. In both the figures, curves from top to bottom corre-
1 spond tok=0.1, 1, and 10, respectively.

3
D“):(zmz) (- P01

IV. RESULTS AND DISCUSSION

X Jo 47R2S(R,)d leo 47R3S(R,)dR, A. Survival probability
> Figure 1 depicts the time dependence of the survival
xexp(— 3(Ri+R3) ) probability Sy(t) for N=50. The main figure shows the
2L 1—pA(t)] Sy(t) for Re=1, while the inset shows the result f&e
. =5. In both figurexkg is varied from 0.1 to 10, that is, two
2rq_ .2 F ’ ’
S|nh[[3p(t)R1R2]/(2L [1 2p (t)])}_ (190  orders of magnitude. This figure demonstrates the strong de-
[Bp(RR/(LTL1=p(1)]) pendence of the decay &(t) on Re. In both the figures,

curves from top to bottom represent t§g(t) for ke=0.1, 1,
and 10, respectively. The maximum survival time fRg

=1 is more than an order of magnitude larger than that of
Rg=5, at a fixedkg value. This strong dependence of decay
of S,(t) onRe could be potentially useful in unravelling the

Once the choice of the sink function is specified, it is
straightforward to calculate the survival probability by utiliz-
ing the above set of equations. WF's choice was the Heavi
side sink function. Later D&% showed that the WF method

is easy to apply if the Heaviside sink function is replaced . .
with a Gaussian sink function. Battezzatti and Peticud- mechanism and the dynamics of energy transfer. Note that

ied the dependence of the rate on the choice of sink functioﬂ1e earlier experimerits (which fit the quantum yield to the

within the frame work of WF theory and supported the WF orster expressigrobtained values which were rather large,
closure approximation. In this studs(t) is obtained from even larger than the root mean square radius of the polymer

the Laplace inversion of Eq11). In doing so we use the chain. This could have been due to the use of an equilibrium
Stehfest algorithri® In the nota.tion of present work, the end-to-end probability distribution in the fitting, instead of a

final form of the sink—sink time correlation function can be "™M® dependent distribution. In model ca}lcuIanns, one usu-
ally assumes a small value & (often in the form of a

written as Heaviside sink function
3 1 It is not difficult to understand the above results qualita-
D(t)=<27ﬂ_2) (1-p?)%? tively. For an ideal Gaussian chain, the maximum in the
probability[ 47R?P(R)], that the two ends are separated by
= R = [ R a distanceR, is located atRy[=+/(2N/3)b]. For N=50,
X fo 4R ey RE dRy fo 4R\ e RE dR, Ry~5.773 b. Therefore wherR-=5, the decay is facili-

tated by the presence of a large fraction of the population at
3(R3+R)) a separation where the transfer rate is large. This can explain
Xexp — m the relatively faster decay fdRz=5 (inse). However, the
situation is completely different foR=1. Here the prob-
sinh{[3p(t) Ry R 1/ (L[ 1 p*(1) ]} 20 ability of finding a polymer with this small end-to-end dis-
[3p(t)R;R, /(L[ 1—p?(1)]) tance is negligible and the transfer rate where the bulk of the
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FIG. 2. The semilog plot oB,(t) against the reduced time fd¢f=50 at t/tT

Rg=1. Symbols show the simulation result, while the straight lines are
linear fits to the long time, indicating the eventual exponential behavior.FIG. 4. The semilog plot 0§,(t) obtained from simulatiotsymbolg and

Curves from top to bottom show the result far=0.1, 1, 5, 10, and 50. WF theory(line) is shown, as a function of time, & =5 andkg=10 for
N=>50. In this limit, simulatedS,(t) shows highly nonexponential behavior
for a relatively longer time, compared to that obtained from WF theory.

population is located is very small because of the stlBng B. Nonexponentiality of  S,(t) and the fractional
dependence of the Forster energy transfer rate. Therefore théscosity dependence of the rate

decay of the survival probability is slow for short times and In this section we explore the connection between the

is determined b)_/ the interplay between the diffusion and the,pcaned nonexponentiality 8%(t) and a possible fractional
rate. This explains the decay nature3{t) curves, shown \iscosity dependence of the average rate. For the sake of

in Fig. 1. generality, the results are presented here in terms of a dimen-

'!'he above gljscussion also suggests that the decay of ﬂ%‘?onless quantitke , defined akg/D. Thus the results pre-
survival probability can depend strongly on the length of the

. . . . sented here can be interpreted in two wayscan be varied
polymer chain. This is because the Forster radius for a give : ep )
S . y keeping the center of mass diffusiéD) constant while
DA pair is likely to be independent of the length of the . .
olymer chain. However, this dependence is not trivial Wevarymg k. Another way is to keey constant but vanp.
poly s ' P ' "In the latter case, variation D affects the viscosityz) in an
hope to address it elsewhere.

exactly opposite manner. Thus at constikpat large values
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FIG. 5. The average FRET ratg}] obtained from BD simulations is plot-
FIG. 3. Same as Fig. 2 but f&-=5. This figure clearly shows that the ted againsk for N=50 atR:=1. Symbols show the simulation result,
crossover time o8,(t) from the nonexponential behavior at short to inter- while the full line is the fit to Eq(21). Error bars represent the uncertainties
mediate times to the exponential decay at longer times increases with inand are within 10%. The exponeat[in Eq. (21)] is calculated as-0.58,
creasing thek; at constank, . indicating the fractional viscosity dependencekpf
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FIG. 6. Same as Fig. 5 but fdR.=5. The exponent [in Eq. (21)] is
calculated as 0.395, indicating the fractional viscosity dependenkg. of
1
- ~ ; (b)
of kg represent solutions of high viscosity and snigllval- 08 |
ues represent solutions of low viscosity. Figures 2 and 3 ;%
show the semilog plot of survival probability for varying F\

values ofk; atRr=1 andRg=5, respectively. According to 06| 3

the above discussion, these figures show the effect of viscos- %‘é

ity on Sy(t) at a fixedkg value. In both the figures, simula-

tion results are represented by symbols, while the straight 0.4 %

lines are linear fits showing the extent of exponential behav-

ior. At lower Rg values the decay of survival probability

retains the exponential behavior over the entire range of vis- 0.2

cosity probed in this studgFig. 2). On the other hand, when

Rg is comparable tRy,, the crossover time of,(t) from ‘

the nonexponential behavior at short to intermediate times to 0 50 100 150

the exponential behavior at long times increases, as the vis-

cosity of the polymer solution increaséesee Fig. 3. That is,

the extent of nonexponentiality increases with solution vis-

cosity. The large exponentiality observed in simulations for i

Re~R), and largekg cannot be explained by the WF theory,

as shown in Fig. 4(Details of the comparison of WF theory (c)

with simulation results are discussed later 0.8
Note that the viscosity dependence of FRET could act as

an important marker of polymer/protein folding. In order to

analyze the viscosity dependence of FRET r&i¢ (n more 0.6

detail, we have adopted the following well-known form,

ki=An"*, (21) 0.4

A is a characteristic constant of the reaction. The average
FRET rate is defined as

Sp(®)

t/t

00000

g

S, (1)

0.2

k1= f:sp(t)dt. 22)

Figures 5 and 6 show the variation kf againstkg, for N 0 5 10 15 20 =
=50, atRg=1 andRg=5, respectively. The FRET raté{ t/t

obtained from BD simulations is shown by symbols, while S _

the full lines are the fits to EC{21), in both the figures. For FIG. 7. BD simulation resultgsymbolg for Sy(t) compared with the pre-

- . . dictions of the WF theorylines) for N=50, for various values oRg, at
RF_ 1 the exponentr Is equal to O.58Flg. 5) and for RF ke=1. Figures(a)—(c) show the comparison fdRz=1, 2, and 5, respec-

=5, a/is found to have a value of 0.39Fig. 6). These tWo  tively. Theory and simulation agrees well in the limit of sm& [(a)].
figures clearly suggest that the FRET rate can exhibit a fracAgreement becomes progressively pooreRasis increased(b) and (c)].
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FIG. 8. Comparison of simulation resultsymbolg for S(t) to predictions FIG. 9. Comparison of simulation resulsymbol3 for Sy(t) to predictions
of the WF theory(line) for a large Forster rate, namety =10 atRy=1 for  ©f the WF theory(line) for a longer chain Ki=100) atRe=8 andkg=1.
N=50. The agreement is satisfactory only at short times.

poorer[Fig. 7(b)]. For theRg values comparable 1), , the
tional viscosity dependence of the forgt @, where the ex- agreement betwee_n WF theory and simulation results is not
ponenta can attain a value much less than unity. This frac-Satisfactorfshown in Fig. 7c)]. We have also compared the
tional viscosity dependence occurs due to a competitiofVF theory predilct!ons with _the .S|mulat|on results at Iarger
between reaction and diffusion and is well-known in the re-FOrster rate. This is shown in Fig. 8, where the comparison
action dynamics literatur&:3° Another possible reason is the Of Se(t) is shown atkg=10 for Re=1 andN=50. Here
collective many-body nature of the dynamics. This is re-29ain the agreement is sat!sfactory only at sh.ort tlmes. In
flected in the non-Markovian equation of motion for the re-Fig- 9 we show the comparison between the simulation re-
duced equation of motion d?(R,t). We found that the wF  Sults and the WF theory fdd=100 atRr=8 andkg=1. We
theory fails to capture the fractional viscosity dependenceCh00seRr=8 because foN=100, Ry~8.16. In this case

For example, it gives a value @i=0.91 forRe=1, when the comparison is qualitatively similar to the corresponding
the simulated value is 0.59. case forN=>50, the WF theory breaks down at intermediate

times. Note that in many applications of FRET, small sized
polymers are involved, as in protefhand oligomers. The
above results could be useful to such cases.

Before discussing the results we describe the scaling Our results are consistent with the conclusion of the pre-
used to compare the simulation results to theoretical predicvious studie¥?® that considered only the average rate by
tions. In this work, time is measured in units bf/D, and  using the Heaviside sink and other sink functions. These
the rate constant is measured in unit®gf/b?. In the origi-  studies found that the WF theory works better for a sink with
nal WF theory, time was measured in units @ /.2, where  a smaller reaction radius than for one with a larger radius.
D is the center of mass diffusion constant drfds the mean The present study suggests that in the case of the Forster
square end-to-end distance. The units of the rate constasink, the WF theory works well as the Forster radius de-
used here differ from that of WF by a factor ofN&/ (note  creases. WF used an approximate expressiop(fgrand so
thatD=D,/N andL?=Nb? in the free draining limit The  we have checked the accuracy of their approximation for
Forster radius is scaled by the bead diambteknother im-  p(t) also. Figure 10 compares the simulated end-to-end vec-
portant parameter in this problem is the root mean squartr time correlation functiofip(t)], for N=50, with the ap-
end-to-end distance of the polymer, as this determines thproximate expression used by WEqg. (16)]. The agreement
end-to-end distribution. Although we have carried out simu-is good and improves further for larghr Thus the use of the
lations forN=20, 50, and 100, in this report we shall con- approximatep(t) is not the reason for the failure of WF
centrate mostly omN=50. theory. The inability of the Wilemski—Fixman theory to ex-

In Figs. Ma), 7(b), and 7c), the survival probabilities plain the time dependence of the survival probabilityRat
obtained from simulation are compared with the WF theory=R,, values is, however, not very surprising. This is be-
prediction for various values oRg, at ke=1. In all the cause WF made a local equilibrium assumption, which es-
figures symbols show the simulation results while the fullsentially implies that this theory is efficient only when the
line represents the predictions of WF theory. WF theory presystem is not too far from the equilibrium. This assumption
dictions are in good agreement with that of the simulations atvorks well for the smaller reaction rates but leads to the
both short and long times fd®-=1 [Fig. 7(a)]. As the For-  erroneous result for the larger reaction rates and also where
ster radius is increased, the agreement becomes progressivelypulation is small. WheR-~R),, FRET rate is facilitated

C. Comparison with WF theory



Neither the observed nonexponentiality nor the fractional
viscosity dependence can be explained by the WF theory.
The present studies suggest that for many realistic situations
we need to go beyond the zeroth order approximation em-
ployed in the WF theory. In this regard, the work of Portman
and Wolyne&’ may prove useful.

The techniques employed in this work could be em-
ployed in other related fields. The distance dependent rate
appears in several other chemical processes, where the rate
of transfer is known to show an exponential distance depen-
dence. One such example is the electron transfer reactions; it
is of interest to use the method employed here to that prob-
lem as well. Another important long standing problem is the
study of reactions in realistic polymer chains with excluded
volume and hydrodynamic interactions. Finally, the simula-
10 tion results obtained here should be analyzed by using the
theory of Portman and Wolyné8 Work in these directions
is in progress.

p(t)

t/t
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