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Brownian dynamics~BD! simulations have been carried out for the time dependent survival
probability @Sp(t)# of donor–acceptor pairs embedded at the two ends of an ideal polymer chain.
Long distance fluorescence resonance energy transfer~FRET! between the donor and the acceptor
is assumed to occur via the Forster mechanism, where the transfer ratek(R) is a function of the
distance~R! between the donor and acceptor. For the Rouse chain simulated here,k(R) is assumed
to be given byk5kF /@11(R/RF)6#, wherekF is the rate in the limit of zero separation andRF is
the Forster radius. The survival probability displays a strong nonexponential decay for the short to
intermediate times whenRF is comparable toRM @distance at which theR2P(R) is maximum#. The
nonexponentiality is also more prominent in the case of highly viscous polymer solutions. It is
predicted that the FRET rate can exhibit a fractional viscosity dependence. This prediction can be
tested against experiments. We have also compared the BD simulation results with the predictions
of the well-known Wilemski–Fixman~WF! theory at the level of survival probability. It is found
that the WF theory is satisfactory for the smallerRF values~where the rate is small!. However, the
agreement becomes progressively poorer as the Forster radius is increased. The latter happens even
at intermediate strengths ofkF . The present results suggest the need to go beyond the WF theory.
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I. INTRODUCTION

Fluorescence resonance energy transfer~FRET! is a
powerful technique for the study of many aspects of struct
and dynamics of polymers and biopolymers in solution.1–8 In
this technique, the polymer is doped with a donor and
acceptor site at suitable positions along the chain backb
The donor is excited optically by laser light and the ene
transfer to the acceptor is monitored. When the distance
tween the donor–acceptor~DA! pair is fixed, as is the case i
rigid biopolymers,6,7 the FRET experiment provides infor
mation on the distance between the donor and acceptor s
since the mechanism for energy transfer is generally kno
For flexible molecules in solution, the distance between
donor and acceptor sites is a fluctuating quantity and, th
fore, FRET experiments can be used to obtain detailed in
mation on the conformational dynamics of the individu
molecules. For example, the folding dynamics of prote
can be studied directly using this technique.8 Clearly, the use
of FRET in single molecule spectroscopy of polymers a
biopolymers requires theoretical understanding of the dep
dence of the survival probability on the fluctuating distan
between the DA pair.9–11 Actually, theoretical study of long

a!Electronic mail: yethiraj@chem.wisc.edu
b!Electronic mail: bbagchi@sscu.iisc.ernet.in
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distance energy transfer between two segments in a poly
chain has been a subject of long standing interest am
theoreticians.1,2,11,12This is a nontrivial problem because o
the connectivity among the monomers which makes the
tance between the two reacting sites a complex, fluctua
quantity.11,13,14Pastor, Zwanzig, and Szabo15 had earlier per-
formed a Brownian dynamics simulation of this proble
with a Heaviside sink function and compared the results w
the well-known Wilemski–Fixman theory.16,17

In this work we carry out a Brownian dynamics simul
tion study of the energy transfer in dilute flexible polym
solutions. The polymer molecule is modeled as an id
Gaussian chain withN monomer units with segment~or
Kuhn! lengthb. The donor and acceptor sites are located
opposite ends of the polymer chain. The mechanism for
citation energy transfer between the donor and acceptor
is taken to be the Forster mechanism.1,10 In this mechanism,
the singlet–singlet resonance energy transfer ratek(R) is
assumed to be given by

k~R!5
kF

11~R/RF!6 , ~1!

whereRF is the Forster radius, defined as the DA separat
corresponding to 50% energy transfer.kF is the rate of exci-
tation transfer when the separation between the donor
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the acceptor is vanishingly small~i.e., R/RF→0!. The For-
ster radius is usually obtained from the overlap of the do
fluorescence with the acceptor absorption and several o
available parameters.5 Note that the above form is differen
from the commonly used form of the Forster rate2 which is
given ask(R)5kF(RF /R)6. The (RF /R)6 distance depen
dence is not appropriate here, since it diverges atR→0,
which is allowed in the Rouse chain.18,19 In a real polymer,
the end-to-end distance~R! never approaches zero, due to t
excluded volume forces. On the other hand, one should
put the rate for distances less than the diameter of a mo
mer equal to zero also, as that is physically unreasona
Thus the modified form~Eq. 1! used here seems reasonab
Our interest in the Rouse chain stems from the fact that
limit can be treated easily in theory. For example, the the
of Wilemski and Fixman16,17,20can be readily applied to th
Rouse chain because the necessary Green’s function is a
able in analytic form.

The dynamics of Forster energy migration has been
vestigated traditionally via time domain measurements of
decay of the fluorescence~due to excitation transfer! from
the donor.1,4,5,10 As both kF and RF are determined by the
DA pair, the rate of decay of the fluorescence intensity p
vides a direct probe of the conformational dynamics of
polymer. Recently, this technique has been used in sin
molecule spectroscopy of biopolymers6,7 and proteins,8

where the distance dependence of FRET provides rele
information about the conformation and dynamics of sin
biopolymer. At any given time after the initial excitation, th
fluorescence intensity is a measure of the ‘‘unreacted’’ do
concentration, that is, of the survival probabilitySp(t).

The complexity of describing the dynamics of ener
transfer of polymers in solution arises from the fact that, d
to chain connectivity, the Brownian motion of the monome
on the polymer are strongly correlated. The many-body
ture of polymer dynamics can be described by a joint, ti
dependent probability distributionP(rN,t) whererN denotes
the position of all theN polymer beads at timet. The time
dependence of the probability distributionP(rN,t) can be
described by the following reaction–diffusion equation16,17

]

]t
P~rN,t !5LB~rN,t !P~rN,t !2k~R!P~rN,t !, ~2!

whereLB is the full 3N dimensional diffusion operator,

LB~r ,t !5D(
j 51

N
]

]r j
Peq~r ,t !

]

]r j

P~r ,t !

Peq~r ,t !
, ~3!

where ‘‘eq’’ denotes equilibrium,R is the scalar distance
between the two ends of the polymer chain, andD is the
center of mass diffusion coefficient. The solution of Eq.~2!,
with the sink term~last term on the right-hand side! given by
the Forster expression1,2 for k(R), is highly nontrivial.

In two seminal papers, Wilemski and Fixman~WF!16,17

presented a nearly analytic solution of the problem for a
arbitrary sink. The WF theory has been tested, only for
average rate, by computer simulations when the sink
Heaviside function.15,21 We are not aware of any such sim
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lation study with a distance dependent rate, such as Fo
energy transfer. Such a study is clearly important because
end-to-end probability distribution in polymer peaks at a d
tance which scales asN2n. n51/2 for the Rouse chain an
3/5 for the self-avoiding walk~SAW!.22 At this point it
should be mentioned that Portman and Wolynes20 developed
variational upper and lower bounds on the survival proba
ity and calculated the frequency dependent survival proba
ity for the harmonic sink and exponential sink functions.
the present study the survival probability is directly obtain
in the time domain by performing BD simulations and
compared with the WF theory. We have not compared
results with the latter developments.11,20,23

The main objectives of this paper are the following.~1!
To present the results of Brownian dynamics~BD! simula-
tions of Eq.~2!, with k(R) given by the Forster rate@Eq. ~1!#.
~2! To investigate the nonexponential behavior ofSp(t) and
the viscosity dependence of the FRET rate.~3! To present a
detailed comparison of the simulated rate with the W
theory. To the best of our knowledge the viscosity dep
dence of FRET in polymers has not been studied befo
Detailed investigation into the time dependence of the s
vival probability shows that theSp(t) exhibits an interesting
nonexponential behavior for the short to intermediate tim
when RF'RM , whereRM is the distance corresponding t
the maximum in the end-to-end probability distribution of
polymer chain. The nonexponentiality is more pronounced
the case of highly viscous solutions and also for largekF

values. Neither the observed nonexponentiality nor the fr
tional viscosity dependence can be explained by the
theory. We have not made a quantitative comparison w
other theoretical treatments, although such studies could
useful.

The organization of the rest of the paper is as follows.
Sec. II we describe the simulation method and in Sec. III
outline the WF theory. In Sec. IV the emergence of non
ponential behavior ofSp(t) and the dependence of FRE
rate on viscosity is discussed. In this section a compari
between the simulation results and the WF theory is a
presented. We close the paper with a few conclusions
Sec. V.

II. SIMULATION DETAILS

Brownian Dynamics~BD! simulations are carried out fo
an ideal Rouse chain where the neighboring beads inte
via a harmonic potentialU given by

bU5
3

2b2 (
j 51

N

~r j2r j 11!2, ~4!

whereb21 is the Boltzmann constant times the temperatu
r j is the position vector of beadj, and the number of bead
constituting the polymer chain isN11. The mean square
bond length isb2, and the equilibrium root mean squa
end-to-end distance of the polymer chainL is given by

L[A^~r N112r 1!2&5ANb. ~5!
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In the Rouse model,18 since there is no excluded volume, an
bead can pass through any other bead without hindrance
a result the end-to-end distance can attain any value betw
zero andN.

In the present study a polymer chain is additionally ch
acterized by the presence of two reactive end groups. T
essentially implies that within the time intervalDt, the two
end groups react with a probabilityk(R)Dt.24 The initial
configuration for each trajectory is selected from Mon
Carlo generated equilibrium configurations. The dynam
are then propagated using the following equation of moti

r j~ t1Dt !5r j~ t !1F j~ t !Dt1DXG~ t !, ~6!

wherer j (t) andr j (t1Dt) are the positions of beadj at time
t and t1Dt, respectively.F j (t) is the total force acting on
bead j and DXG(t) is a random Brownian displacemen
taken from a Gaussian distribution with zero mean and v
ance^(XG)2&52Dt. Normally distributed random number
are generated by using the reshuffling method.25 In Eq. ~6!
the time and energy scales are fixed by using units wh
b51, the bead diffusion coefficientD051, and the mass o
beadm51. All the results are presented in these dimensi
less units. Here a comment about the time step is requ
Dt is varied, between 0.0001 and 0.01, depending onRF

value. The larger theRF , the greater the requirement for th
smaller time step. For example, atkF51, whenRF51 the
Dt50.01 is employed and forRF55, a much smaller time
step,Dt50.0002 is used.

Each trajectory generated by using the above proced
is terminated when the two end groups react. In practice
is done in the simulations as follows. At each time step,
instantaneous end-to-end distanceR is used in Eq.~1! to
calculate the distance dependent rate constantk(R). The tra-
jectory is then terminated with a probabilityk(R), i.e., a
uniformly distributed random number between 0 and 1
selected and if this random number is less thank(R)Dt, then
the trajectory is terminated; otherwise, the trajectory is c
tinued. Averages are obtained over many such trajecto
This procedure generates an irreversible FRET.24

Each polymer chain is equilibrated for 105 time steps
before the reaction is switched on. Subsequently, 50 00
100 000 trajectories with different initial configurations a
generated and the survival probabilitySp(t) is obtained by
averaging over all the trajectories. This procedure is syst
atically applied for the polymer chains withN520, 50, and
100. As a check of the simulation method, the results
Pastor, Zwanzig, and Szabo~PZS!15 on the mean first pas
sage time, with Heaviside sink function of infinite streng
are reproduced. Our simulation results agreed with thos
PZS, within the uncertainty given by PZS.

III. WILEMSKI–FIXMAN THEORY

Wilemski and Fixman~WF!16,17 developed an elegan
theory for the diffusion limited intrachain reaction of a fle
ible polymer. Recently, Portman and Wolynes20 presented a
simple and straightforward derivation of the WF scheme.
WF theory, to account for the chemical reaction, WF adde
sink termS to the many-body diffusion equation, just as
Eq. ~2!. The WF equation of motion is given by
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P~rN,t !1LBP~rN,t !52k0S~R!P~rN,t !. ~7!

In the notation of the present work,

k05kF ~8!

and

S~R!5
1

11~R/RF!6 , ~9!

where the operatorLB(rN,t) is given by Eq.~3!. As men-
tioned in the Introduction, the treatment of WF is general a
can be applied to a reaction with arbitrary sink.

The survival probabilitySp(t) is defined as the probabil
ity that the chain has not reacted after timet and is given by

Sp~ t !5E P~rN,t !dr1dr2¯drN . ~10!

In order to obtain the survival probability, WF made a cl
sure approximation, according to which the Laplace tra
form of Sp(t) is approximated as

Ŝp~s!5
1

s
2

kveq

s2~11kD̂~s!/veq!
, ~11!

where k is the momentum transfer variable ands is the
Laplace transform variable. It is important to note that t
above equation is a zeroth order approximation which,
discussed by WF, limits the validity of the theory to the ca
when the deviation from equilibrium distribution at any tim
is small. The final form of WF theory is expressed in term
of a frequency dependent functionD(s) which is given by

D̂~s!5E
0

`

e2stD~ t !dt, ~12!

which is the Laplace transform of sink–sink time correlati
function D(t). D(t) is given by

D~t!5Ed3R1E d3R2S~R1!S~R2!G~R1 ,R2 ,t !Peq~R2!,

~13!

where the equilibrium end-to-end distribution functio
Peq(R) is given by

Peq~R!5S 3

2pL2D 3/2

expS 23R2

2L2 D . ~14!

The Green’s functionG appearing in Eq.~13! is given by

G~R1 ,R2 ,t !5S 3

2pL2D 3/2S 1

@12r2~ t !#3/2D
3expS 2

R1
222r~ t !R1•R21R2

2r2~ t !

2L2@12r2~ t !# D ,

~15!

where r(t) is the normalized time correlation function o
end-to-end vector defined as^R(0)•R(t)&/^R2&, which can
be obtained analytically and is given by the following equ
tion,
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l ;odd

4

l 2 exp~2l l t !. ~16!

Note that in the above equation, summation includes only
odd values ofl. If we neglect the excluded volume and th
hydrodynamic interactions~to account for the Rouse model!,
l l is given by16,17

l l53D0~ lp /Nb!2. ~17!

Finally veq is defined as

lim
t→`

D~ t !5~veq!
2. ~18!

Note thatveq is the rate when the distribution of the polym
ends is at equilibrium. Thusveq gives the initial rate of decay
of SP(t) and can be estimated from the transient behavior
most cases the rate of decay should become progress
smaller, as the population from the sink region decreases
the reaction proceeds.

By using the above set of equations and after averag
over all the angles, one can write the sink–sink time cor
lation function@D(t)# in the following form,15

D~ t !5S 3

2pL2D 3 1

@12r2~ t !#3/2

3E
0

`

4pR1
2S~R1!dR1E

0

`

4pR2
2S~R2!dR2

3expS 2
3~R1

21R2
2!

2L2@12r2~ t !# D
3

sinh$@3r~ t !R1R2#/„L2@12r2~ t !#…%

@3r~ t !R1R2#/„L2@12r2~ t !#…
. ~19!

Once the choice of the sink function is specified, it
straightforward to calculate the survival probability by utili
ing the above set of equations. WF’s choice was the He
side sink function. Later Doi26 showed that the WF metho
is easy to apply if the Heaviside sink function is replac
with a Gaussian sink function. Battezzatti and Perico27 stud-
ied the dependence of the rate on the choice of sink func
within the frame work of WF theory and supported the W
closure approximation. In this studySp(t) is obtained from
the Laplace inversion of Eq.~11!. In doing so we use the
Stehfest algorithm.28 In the notation of present work, th
final form of the sink–sink time correlation function can b
written as

D~ t !5S 3

2pL2D 3 1

~12r2!3/2

3E
0

`

4pR1
2S RF

6

R1
61RF

6 D dR1E
0

`

4pR2
2S RF

6

R2
61RF

6 D dR2

3expS 2
3~R1

21R2
2!

2L2@12r2~ t !# D
3

sinh$@3r~ t !R1R2#/„L2@12r2~ t !#…%

@3r~ t !R1R2#/„L2@12r2~ t !#…
. ~20!
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IV. RESULTS AND DISCUSSION

A. Survival probability

Figure 1 depicts the time dependence of the survi
probability Sp(t) for N550. The main figure shows th
Sp(t) for RF51, while the inset shows the result forRF

55. In both figureskF is varied from 0.1 to 10, that is, two
orders of magnitude. This figure demonstrates the strong
pendence of the decay ofSP(t) on RF . In both the figures,
curves from top to bottom represent theSp(t) for kF50.1, 1,
and 10, respectively. The maximum survival time forRF

51 is more than an order of magnitude larger than that
RF55, at a fixedkF value. This strong dependence of dec
of Sp(t) on RF could be potentially useful in unravelling th
mechanism and the dynamics of energy transfer. Note
the earlier experiments3,5 ~which fit the quantum yield to the
Forster expression! obtained values which were rather larg
even larger than the root mean square radius of the poly
chain. This could have been due to the use of an equilibr
end-to-end probability distribution in the fitting, instead of
time dependent distribution. In model calculations, one u
ally assumes a small value ofRF ~often in the form of a
Heaviside sink function!.

It is not difficult to understand the above results quali
tively. For an ideal Gaussian chain, the maximum in t
probability @4pR2P(R)#, that the two ends are separated
a distanceR, is located atRM@5A(2N/3)b#. For N550,
RM'5.773 b. Therefore whenRF55, the decay is facili-
tated by the presence of a large fraction of the population
a separation where the transfer rate is large. This can exp
the relatively faster decay forRF55 ~inset!. However, the
situation is completely different forRF51. Here the prob-
ability of finding a polymer with this small end-to-end dis
tance is negligible and the transfer rate where the bulk of

FIG. 1. Brownian dynamics~BD! simulation results for the survival prob
ability Sp(t) are plotted as a function of scaled time forN550 for several
values ofkF . The main figure shows theSp(t) for RF51 and the inset
shows that forRF55. In both the figures, curves from top to bottom corr
spond tokF50.1, 1, and 10, respectively.
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population is located is very small because of the stronR
dependence of the Forster energy transfer rate. Therefor
decay of the survival probability is slow for short times a
is determined by the interplay between the diffusion and
rate. This explains the decay nature ofSp(t) curves, shown
in Fig. 1.

The above discussion also suggests that the decay o
survival probability can depend strongly on the length of
polymer chain. This is because the Forster radius for a gi
DA pair is likely to be independent of the length of th
polymer chain. However, this dependence is not trivial,
hope to address it elsewhere.

FIG. 2. The semilog plot ofSp(t) against the reduced time forN550 at
RF51. Symbols show the simulation result, while the straight lines
linear fits to the long time, indicating the eventual exponential behav

Curves from top to bottom show the result fork̃F50.1, 1, 5, 10, and 50.

FIG. 3. Same as Fig. 2 but forRF55. This figure clearly shows that th
crossover time ofSp(t) from the nonexponential behavior at short to inte
mediate times to the exponential decay at longer times increases wit

creasing thek̃F at constantkF .
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B. Nonexponentiality of Sp„t … and the fractional
viscosity dependence of the rate

In this section we explore the connection between
observed nonexponentiality ofSp(t) and a possible fractiona
viscosity dependence of the average rate. For the sak
generality, the results are presented here in terms of a dim
sionless quantityk̃F , defined askF /D. Thus the results pre
sented here can be interpreted in two ways,k̃F can be varied
by keeping the center of mass diffusion~D! constant while
varying kF . Another way is to keepkF constant but varyD.
In the latter case, variation inD affects the viscosity~h! in an
exactly opposite manner. Thus at constantkF , large values

e
r.

in-

FIG. 4. The semilog plot ofSp(t) obtained from simulation~symbols! and

WF theory~line! is shown, as a function of time, atRF55 andk̃F510 for
N550. In this limit, simulatedSp(t) shows highly nonexponential behavio
for a relatively longer time, compared to that obtained from WF theory.

FIG. 5. The average FRET rate (kI) obtained from BD simulations is plot-

ted againstk̃F for N550 at RF51. Symbols show the simulation resul
while the full line is the fit to Eq.~21!. Error bars represent the uncertaintie
and are within 10%. The exponenta @in Eq. ~21!# is calculated as20.58,
indicating the fractional viscosity dependence ofkI .
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of k̃F represent solutions of high viscosity and smallk̃F val-
ues represent solutions of low viscosity. Figures 2 and
show the semilog plot of survival probability for varyin
values ofk̃F at RF51 andRF55, respectively. According to
the above discussion, these figures show the effect of vis
ity on Sp(t) at a fixedkF value. In both the figures, simula
tion results are represented by symbols, while the stra
lines are linear fits showing the extent of exponential beh
ior. At lower RF values the decay of survival probabilit
retains the exponential behavior over the entire range of
cosity probed in this study~Fig. 2!. On the other hand, whe
RF is comparable toRM , the crossover time ofSp(t) from
the nonexponential behavior at short to intermediate time
the exponential behavior at long times increases, as the
cosity of the polymer solution increases~see Fig. 3!. That is,
the extent of nonexponentiality increases with solution v
cosity. The large exponentiality observed in simulations
RF'RM and largekF cannot be explained by the WF theor
as shown in Fig. 4.~Details of the comparison of WF theor
with simulation results are discussed later!.

Note that the viscosity dependence of FRET could ac
an important marker of polymer/protein folding. In order
analyze the viscosity dependence of FRET rate (kI) in more
detail, we have adopted the following well-known form,

kI5Ah2a, ~21!

A is a characteristic constant of the reaction. The aver
FRET rate is defined as

kI
215E

0

`

Sp~ t !dt. ~22!

Figures 5 and 6 show the variation ofkI againstk̃F , for N
550, atRF51 andRF55, respectively. The FRET rate (kI)
obtained from BD simulations is shown by symbols, wh
the full lines are the fits to Eq.~21!, in both the figures. For
RF51 the exponenta is equal to 0.58~Fig. 5! and for RF

55, a is found to have a value of 0.395~Fig. 6!. These two
figures clearly suggest that the FRET rate can exhibit a f

FIG. 6. Same as Fig. 5 but forRF55. The exponenta @in Eq. ~21!# is
calculated as 0.395, indicating the fractional viscosity dependence ofkI .
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FIG. 7. BD simulation results~symbols! for Sp(t) compared with the pre-
dictions of the WF theory~lines! for N550, for various values ofRF , at
kF51. Figures~a!–~c! show the comparison forRF51, 2, and 5, respec-
tively. Theory and simulation agrees well in the limit of smallRF @~a!#.
Agreement becomes progressively poorer asRF is increased@~b! and ~c!#.
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tional viscosity dependence of the formh2a, where the ex-
ponenta can attain a value much less than unity. This fra
tional viscosity dependence occurs due to a competi
between reaction and diffusion and is well-known in the
action dynamics literature.29,30Another possible reason is th
collective many-body nature of the dynamics. This is
flected in the non-Markovian equation of motion for the r
duced equation of motion ofP(R,t). We found that the WF
theory fails to capture the fractional viscosity dependen
For example, it gives a value ofa50.91 for RF51, when
the simulated value is 0.59.

C. Comparison with WF theory

Before discussing the results we describe the sca
used to compare the simulation results to theoretical pre
tions. In this work, time is measured in units ofb2/D0 and
the rate constant is measured in units ofD0 /b2. In the origi-
nal WF theory, time was measured in units of 6D/L2, where
D is the center of mass diffusion constant andL2 is the mean
square end-to-end distance. The units of the rate cons
used here differ from that of WF by a factor of 6/N2 ~note
that D5D0 /N andL25Nb2 in the free draining limit!. The
Forster radius is scaled by the bead diameterb. Another im-
portant parameter in this problem is the root mean squ
end-to-end distance of the polymer, as this determines
end-to-end distribution. Although we have carried out sim
lations forN520, 50, and 100, in this report we shall co
centrate mostly onN550.

In Figs. 7~a!, 7~b!, and 7~c!, the survival probabilities
obtained from simulation are compared with the WF the
prediction for various values ofRF , at kF51. In all the
figures symbols show the simulation results while the f
line represents the predictions of WF theory. WF theory p
dictions are in good agreement with that of the simulation
both short and long times forRF51 @Fig. 7~a!#. As the For-
ster radius is increased, the agreement becomes progress

FIG. 8. Comparison of simulation results~symbols! for Sp(t) to predictions
of the WF theory~line! for a large Forster rate, namelykF510 atRF51 for
N550. The agreement is satisfactory only at short times.
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poorer@Fig. 7~b!#. For theRF values comparable toRM , the
agreement between WF theory and simulation results is
satisfactory@shown in Fig. 7~c!#. We have also compared th
WF theory predictions with the simulation results at larg
Forster rate. This is shown in Fig. 8, where the comparis
of SP(t) is shown atkF510 for RF51 and N550. Here
again the agreement is satisfactory only at short times
Fig. 9 we show the comparison between the simulation
sults and the WF theory forN5100 atRF58 andkF51. We
chooseRF58 because forN5100, RM'8.16. In this case
the comparison is qualitatively similar to the correspond
case forN550, the WF theory breaks down at intermedia
times. Note that in many applications of FRET, small siz
polymers are involved, as in proteins8 and oligomers.3 The
above results could be useful to such cases.

Our results are consistent with the conclusion of the p
vious studies15,26 that considered only the average rate
using the Heaviside sink and other sink functions. The
studies found that the WF theory works better for a sink w
a smaller reaction radius than for one with a larger radi
The present study suggests that in the case of the Fo
sink, the WF theory works well as the Forster radius d
creases. WF used an approximate expression forr(t) and so
we have checked the accuracy of their approximation
r(t) also. Figure 10 compares the simulated end-to-end v
tor time correlation function@r(t)#, for N550, with the ap-
proximate expression used by WF@Eq. ~16!#. The agreement
is good and improves further for largerN. Thus the use of the
approximater(t) is not the reason for the failure of WF
theory. The inability of the Wilemski–Fixman theory to ex
plain the time dependence of the survival probability atRF

'RM values is, however, not very surprising. This is b
cause WF made a local equilibrium assumption, which
sentially implies that this theory is efficient only when th
system is not too far from the equilibrium. This assumpti
works well for the smaller reaction rates but leads to
erroneous result for the larger reaction rates and also w
population is small. WhenRF'RM , FRET rate is facilitated

FIG. 9. Comparison of simulation results~symbols! for Sp(t) to predictions
of the WF theory~line! for a longer chain (N5100) atRF58 andkF51.
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by the presence of a large fraction of population with t
required end-to-end separation. This essentially drives
system away from the equilibrium. Clearly, in this situatio
the local equilibrium assumption is not valid.

V. CONCLUSIONS

Let us first summarize the main results of this pap
Detailed Brownian dynamics simulations of fluorescen
resonance energy transfer~FRET! between the two ends o
an ideal Gaussian chain have been carried out. As note
previous workers,15 this apparently simple problem is actu
ally highly nontrivial because even a single polymer m
ecule is a many body problem. We have calculated surv
probability for a large number of values of the transfer r
kF and the Forster radiusRF . The survival probability is
exponential-like for the smaller values ofRF but shows
highly nonexponential behavior in the short to intermedi
times with increasingRF . The same is true for the Forste
ratekF .

It is found that the viscosity of solution can affect th
survival probability and thus the FRET rate to a great exte
The nonexponential behavior ofSp(t) is more prominent in
the case of highly viscous solutions. For smallerRF values
the effect of viscosity on the decay profile ofSp(t) is negli-
gible. We have predicted that the FRET rate can exhib
fractional viscosity dependence (;h2a), where the expo-
nent a can attain a value as low as 0.39 depending on
Forster radius andk̃F .

We compare the results of the simulation with the we
known theory of Wilemski and Fixman at the level ofSp(t)
and find that the theory is reliable when the Forster radiusRF

is small compared toRM and the transfer ratekF is compa-
rable to or smaller than the monomer diffusion rateD0 /b2.
However, the agreement is not satisfactory in the limit, wh
RF is either comparable or equal toRM and kF is large.

FIG. 10. The end-to-end vector time correlation functionr(t) plotted
against the scaled time for a polymer of mean square end-to-end dist
L2550b2. Symbols represent the simulatedr(t) and the full line shows the
r(t) obtained by using the approximate expression of WF@Eq. ~16!#.
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Neither the observed nonexponentiality nor the fractio
viscosity dependence can be explained by the WF the
The present studies suggest that for many realistic situat
we need to go beyond the zeroth order approximation e
ployed in the WF theory. In this regard, the work of Portm
and Wolynes20 may prove useful.

The techniques employed in this work could be e
ployed in other related fields. The distance dependent
appears in several other chemical processes, where the
of transfer is known to show an exponential distance dep
dence. One such example is the electron transfer reaction
is of interest to use the method employed here to that pr
lem as well. Another important long standing problem is t
study of reactions in realistic polymer chains with exclud
volume and hydrodynamic interactions. Finally, the simu
tion results obtained here should be analyzed by using
theory of Portman and Wolynes.20 Work in these directions
is in progress.

ACKNOWLEDGMENTS

This work was supported in part by the Council of Sc
entific and Industrial Research~CSIR! and the Department o
Science and Technology~DST!, India. G. Srinivas thanks
CSIR, New Delhi, India for a research fellowship. A part
this work was carried out when A. Yethiraj was on sabbati
leave at the Indian Institute of Science, Bangalore, and
Jawaharlal Nehru Center for Advanced Scientific Resea
Jakkur, Bangalore. A.Y. gratefully acknowledges financ
support from the Jawaharlal Nehru Center for Advanced S
entific Research, Bangalore, India, the Alfred P. Sloan Fo
dation, and the National Science Foundation~through Grants
No. CHE 9502320 and No. CHE 9732604!.

1Th. Forster, Ann. Phys.~Leipzig! 2, 55 ~1948!.
2Th. Forster, inModern Quantum Chemistry, Istanbul Lectures, Part II
Action of Light and Organic Crystals, edited by O. Sinanoglu~Academic,
New York, 1965!.

3L. Stryer and R. P. Haugland, Proc. Natl. Acad. Sci. U.S.A.58, 719
~1967!.

4G. B. Birks, in Photophysics of Aromatic Molecules~Wiley-Interscience,
London, 1970!, p. 576.

5E. Haas, M. Wilchek, E. Katchalski-Katzir, and I. Z. Steinberg, Proc. N
Acad. Sci. U.S.A.72, 1807~1975!.

6T. Ha, A. Y. Ting, J. Liang, W. B. Caldwell, A. A. Deniz, D. S. Chemla
P. G. Schultz, and S. Weiss, Proc. Natl. Acad. Sci. U.S.A.96, 893~1999!.

7A. A. Deniz, M. Dahan, J. P. Grunwell, T. Ha, A. E. Faulhaber, D.
Chemla, S. Weiss, and P. G. Schultz, Proc. Natl. Acad. Sci. U.S.A.96,
3670 ~1999!.

8A. A. Deniz, T. A. Laurence, G. S. Beligere, M. Dahan, A. B. Martin, D
S. Chemla, P. E. Dawson, P. G. Schultz, and S. Weiss, Proc. Natl. A
Sci. U.S.A.97, 5179~2000!.

9A. Grinvald, E. Haas, and I. Z. Steinberg, Proc. Natl. Acad. Sci. U.S
69, 2273~1972!.

10C. R. Cantor and P. Pechukas, Proc. Natl. Acad. Sci. U.S.A.68, 2099
~1971!.

11J. Wang and P. G. Wolynes, J. Chem. Phys.110, 4812~1999!.
12M. Doi, Chem. Phys.11, 107~1975!; S. Sunagawa and M. Doi, Polym. J

~Singapore! 7, 604 ~1975!; 8, 239 ~1976!.
13H. Frauenfelder, S. Sligar, and P. G. Wolynes, Science254, 1598~1991!.
14Y. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloff,The Almighty

Chance~World Scientific, Singapore, 1990!.
15R. W. Pastor, R. Zwanzig, and A. Szabo, J. Chem. Phys.105, 3878

~1996!.
16G. Wilemski and M. Fixman, J. Chem. Phys.60, 866 ~1974!.
17G. Wilemski and M. Fixman, J. Chem. Phys.60, 878 ~1974!.

ce,



n-
18P. E. Rouse, J. Chem. Phys.21, 1272~1953!.
19M. Doi and S. F. Edwards,The Theory of Polymer Dynamics~Oxford

University Press, Oxford, 1986!.
20J. J. Portman and P. G. Wolynes, J. Phys. Chem. A103, 10602~1999!.
21R. Zwanzig, Acc. Chem. Res.23, 148 ~1990!, and reference therein.
22P. de Gennes,Scaling Concepts in Polymer Physics~Cornell University

Press, Ithaca, 1979!.
23J. Wang and P. G. Wolynes, Phys. Rev. Lett.74, 4317~1994!.
24G. Srinivas and B. Bagchi, Chem. Phys. Lett.328, 420 ~2000!.
25W. H. Press, S. A. Teulolsky, W. T. Vellerling, and B. P. Flannery,Nu-
merical Recipes in Fortran~Cambridge University Press, Cambridge, E
gland, 1986!.

26M. Doi, Chem. Phys.9, 455 ~1975!.
27M. Battezzatti and A. Perico, J. Chem. Phys.74, 4527~1981!.
28H. Stehfest, Commun. ACM13, 624 ~1970!.
29B. Bagchi and G. R. Fleming, J. Phys. Chem.78, 7375~1983!.
30G. R. Fleming,Chemical Applications of Ultrafast Spectroscopy~Oxford,

New York, 1986!, Chap. 6.


