
Relation between orientational correlation time and the self-diffusion
coefficient of tagged probes in viscous liquids: A density functional
theory analysis

Biman Bagchia)

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India

The usual explanation for the observed inverse relation between the orientational correlation time
(tR) and the self-diffusion (DS) of a tagged solute probe in a viscous liquid is in terms of the
hydrodynamic relations which are known to have dubious conceptual validity for small molecules.
Here, we present a microscopic derivation of the relation betweentR andDS . This derivation is
based on the general ideas of the mode coupling theory, but uses the time-dependent density
functional theory to obtain the torque–torque and force–force time correlation functions on the
solute probe. Our analysis shows that the orientational correlation time (tR) is inversely
proportional to the translational diffusion coefficient (D0) of the solvent molecules. Thus, the
viscosity dependence of orientational correlation time enters through the viscosity dependence of
the translational diffusion (D0). The same theoretical analysis also shows that the translational
diffusion coefficient of the solute probe (DS) is also proportional to the translational diffusion
coefficient,D0 , of the solvent molecules. This result is in agreement with the recent computer
simulation results which show that the product oftR andDS is a weak function of the density~hence
of the viscosity! of the liquid. The microscopic expressions provide explanation, in terms of the
solute–solvent direct correlation functions, the reason for the sensitivity of orientational diffusion to
solute–solvent interaction potential.
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I. INTRODUCTION

Understanding correlations between the solvent visc
ity, and the rotational and translational motions of a pro
molecule, has been a subject of attention for many years1–9

Rotational relaxation has been extensively studied becau
can be investigated by several experimental techniques,
dielectric relaxation, NMR, fluorescence depolarization, K
relaxation, solvation dynamics.6,8 The rate of rotational re-
laxation is commonly explained by using the solvent visc
ity dependence and the orientational correlation time,tR , is
given by the well-known Debye–Stokes–Einstein~DSE! re-
lation

tR5
CRhvs

kBT
, ~1!

wherekBT is Boltzmann constant times the temperature~T!,
h is the viscosity of the liquid medium,vs is the specific
volume of the molecule, andCR is a constant which is equa
to 3 in the DSE theory, but usually found to be much sma
and is, therefore, often left as a fitting parameter. The ro
tional diffusion coefficient (DR) is given by DR51/2tR .
One finds that Eq.~1! provides a reasonable, although by
means perfect, description of the viscosity dependence o
observed rotational correlation time. Note thatCR50 is the
prediction of the slip hydrodynamic boundary condition fo
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spherical rotor, which is unrealistic. At first this appears to
paradoxical because slip boundary condition is known
provide a satisfactory description of translation diffusion
small molecules. This was resolved by Hu and Zwanzi1

who showed that a reasonable value oftR for the rotation of
a probe is obtained in most cases if the solute is appr
mated by a spheroid, which is the correct description of
shape of solute probes employed in experiments. H
Zwanzig calculation also givestR /h5constant.

The physical picture behind the hydrodynamic deriv
tion of diffusion is that a tagged molecule diffuses due to
coupling with the natural currents of the liquid. In this pi
ture, the small amplitude motions of the tagged molecule
to interactions with the surrounding molecules lead to
significant diffusion as the long-range natural currents
more effective in the long-time diffusion of the tagged mo
ecule. Another uncertain aspect of this logic is the use
hydrodynamic boundary conditions employed to couple
solute’s motion to the currents of the liquid. This physic
picture behind rotational diffusion gets somewhat blurre
because now the molecule is made to rotate as a resu
coupling to the same currents which give rise to torque
the rotor’s surface. As a result, now the molecule can ro
without any hydrodynamic friction, which is known as th
slip limit. We have already discussed that part of these d
culties were resolved by Hu and Zwanzig,1 but some prob-
lems remain.

From a physical point of view, one would imagine th
rotation of a probe molecule in a viscous liquid should

h,
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coupled to the structural relaxation of the surrounding s
vent; that is, determined primarily by the local dynamic
The latter is determined largely by the translational diffus
coefficient (D0), and also the structure, of the neighbori
molecules. Thus, the rotational diffusion of a probe should
ideally correlated with the translational diffusion coefficie
of the solvent molecules. We are, however, not aware of
such relation.

The translational diffusion of the same probeDS can
also be studied by tracer diffusion and many other exp
mental techniques. Now, the translational diffusion of t
probe is also expressed in terms of solvent viscosity by
voking again the hydrodynamic relation betweenDS andh

DS5
kBT

CThR
. ~2!

If one combines Eqs.~1! and ~2! one obtains the following
hydrodynamic prediction for the product oftR andDS :

tRDS5
CRvs

CTR
, ~3!

so that the said product does not depend on viscosity or
other dynamical property of the solvent, but only on the g
metric properties of the solute. This constancy oftRDS has
been observed in recent computer simulations.10 An example
of this behavior has been shown in Fig. 6 of Ref. 6, wh
the productDStR is plotted against density for a wide rang
of density. In this simulation, the probe is a prolate ellipso
and the solvent is a collection of Lennard-Jones sphere
was interesting to note the plateau in the producttRDS over
a considerable variation of density. This could be taken a
confirmation of hydrodynamic expressions.

As discussed earlier, both translational and rotatio
motion of a small solute probe in a dense liquid is expec
to be coupled to the structural relaxation of the surround
solvent molecules and thus to the translational diffusion
the solvent molecules and the local structure. While the sa
is expected to dominate the viscosity in dense liquids a
one should indeed have a relation between the rotational
translational motion of a solute probe to the solvent viscos
However, the reason behind this relationship between di
sions and viscosity can be entirely different from the o
based on hydrodynamic arguments.

The problem is that we do not have a simple and tra
parent argument which provides these relationships from
microscopic theory. A microscopic theory should be able
derive Eq.~3!, preferably by using the translational diffusio
of the solvent as a variable. The theory should also be ab
relate these diffusions with solvent viscosity. The object
of the present work is to show that such derivations are p
sible within the general framework of the mode coupli
theory.11 This work is partly motivated by our earlier work,12

which showed that mode coupling theory canquantitatively
explain the close relationship between the viscosity and f
tion. The second motivation comes from computer simu
tions, which shows that Eq.~3! indeed holds in the liquid
density range with surprising accuracy.

The coupling between rotation and translation has bee
subject of discussion recently in connection with solvat
l-
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dynamics in restricted geometries. The first experimental
per to probe this connection was carried out by Vajdaet al.,13

who showed that the rate of solvation of a dipolar solu
probe gets considerably reduced when the probe is confi
within a cyclodextrin cavity. It has been proposed that t
reduction is due to nonparticipation of the translation
modes.14 There is another, more subtle effect. If the trans
tional mode gets quenched, then the rotational motion
also get severely quenched. A situation like this happen
the orientational motion of water molecules on the surface
an aqueous micelle or within a reverse micelle.15,16However,
no microscopic theoretical study of this inter-relation b
tween the translation and rotation has been carried out. In
absence of any such study, one always has to appeal to
drodynamics and correlate the two via viscosity.

Experimental studies on supercooled liquids have fou
a significant deviation from the hydrodynamic predictio
Such deviations have been explained in terms of heterog
ities in the dynamics.17–19 The existing explanation make
use of the linear viscosity dependence of rotational corre
tion time and the inverse viscosity dependence of tran
tional diffusion coefficient of the probe. However, it wou
be more appropriate to correlate these quantities to the l
diffusion coefficients of the solvent molecule.

Thus, to summarize, note that other than hydrodyna
arguments, there exists no microscopic argument of the
cosity dependence of the rotational time constant. In part
lar, we are not aware of any statistical mechanical derivat
of Eq. ~3!, invoking spatial and time correlation function
This is an objective of this paper. We present a microsco
derivation of Eq. ~3!, starting from time-dependent free
energy functional derived from the density functional theo
In a general sense, this is essentially a Ginzburg–Lan
theory. The resulting expression is essentially a mode c
pling theory result.

The organization of the rest of the paper is as follows.
the next section, we present a theoretical formulation
rotational dynamics. We do the same for translational dif
sion in Sec. III. In Sec. IV, we discuss the theoretical resu
and also compare with existing simulations. Section V co
cludes with a brief discussion.

II. MICROSCOPIC EXPRESSION FOR ROTATIONAL
RELAXATION TIME

The rotational relaxation timetR is related to the zero
frequency rotational frictionzR by the usual expression

tR5
1

2DR
5

1

2

zR

kBT
. ~4!

A fully microscopic calculation ofzR is highly nontrivial and
no such calculation for an ellipsoidal molecule has been c
ried out yet, except in the Enskog limit.20 However, in a
viscous liquid, this friction is expected to be dominated
the slow density relaxation. The friction can be expressed
a sum of two terms

zR5zR,bin1zR,rr , ~5!

where zR,bin is the friction due to binary collisions while
zR,rr is the contribution due to density fluctuations. As me
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tioned earlier, in a viscous liquid, it is the latter that mak
the dominant contribution. In the following we present a m
croscopic but simple derivation of the the latter friction.

Let us start by considering a very dilute solution of e
lipsoids in a solvent of spherical molecules. This is perh
the simplest possible system which can be used to study
viscosity dependence of orientational relaxation of the el
soids. Let us assume thatrell(r,V,t) denote the positionr ,
orientationV, and timet-dependent number momenta de
sity of the ellipsoids andrs(r ,t) denote the position and
time-dependent number density of the solvent molecules.rell

and rs denote the average solute and solvent densities
spectively. The former does not enter the theoretical exp
sions derived below.

The relaxation of these densities can be described
using a molecular hydrodynamic theory of orientational
laxation described elsewhere. The molecular hydrodyna
equations are solved conveniently by Fourier and Lapl
transforming them to the wave vector and frequency sp
~with wave vectork conjugate to positionr and frequencyz
conjugate to timet!. Since the details have been discuss
elsewhere,9 we shall just provide the essentials. We start
expanding the orientational density in the spherical harm
ics,

rell~k,V,t !5( alm~k,t !Ylm~V!. ~6!

The experimentally observed orientational correlation fu
tions are of two kinds: the collective and the single partic
The collective correlation functions are defined in the tim
domain by

Clm~k,t !5^alm~2k,t50!alm~k,t !&. ~7!

Usually, by collective limit, one implies thek50 limit of the
above function. The single particle orientational correlat
functions, on the other hand, are defined by

Clm
s ~ t !5^Ylm~V i~0!Ylm~V i~ t !&, ~8!

where one considers the orientational dynamics of a sin
particle, modulated of course by interactions with all t
other particles of the medium. In the present case, the
correlation functions approach each other because we
sider only a very dilute solution of ellipsoids. In addition, w
assume that the solvent has no orientational degrees of
dom.

The relaxation of the the orientational correlation fun
tions depends on the torque and the force exerted by
surrounding solvent molecules. These torque and fo
which act on a tagged ellipsoidal molecule at positionr with
orientation V at time t, can be derived from the densit
functional theory, which gives the following general expre
sion for the free-energy functional of an inhomogeneo
system:9
s
-

s
he
-

e-
s-

y
-
ic
e
e

d
y
-

-
.

n

le

o
n-

e-

-
he
e,

-
s

bF@rell~ t !,rs~ t !#5E dr dV rell~r ,V,t !@ ln rell~r ,V,t !21#

1E dr rs~r ,t !@ ln rs~r ,t !21#

2
1

2E dr dr 8 dVcls~r2r 8,V!

3drell~r ,V,t !drs~r 8,t !

2
1

2E dr dr 8css~r2r 8!

3drell~r ,t !drs~r 8t !, ~9!

where drell(r ,V,t)5rell(r ,V,t)2rell/4p is the fluctuation
in the position and orientation dependent number den
rell(r ,V,t) anddrs(r ,t)5rs(r ,t)2r0 . Here,rell andr0 are
the corresponding average number densities. The direct
relation functions, css(r2r 8) and cls(r2r 8,V) are the
second-order expansion coefficients in the expansion of
free-energy functional in the respective densities. Needles
say, we have truncated the free-energy expansion in Eq~9!
after the quadratic term in the density fluctuation.

We next assume, in the spirit of mode coupling theo
that the torque on a molecule is determined by the den
fluctuations. The above density functional theory can be u
to derive an expression for the torque.N(r ,V,t) is the torque
on a tagged ellipsoid at~r ,V,t!. The procedure is simple an
is well-documented.9 One takes a functional derivative of th
free energy given by Eq.~9! with respect to the space an
orientation dependent density. When this derivative is se
zero and the resultant equation is solved for the equilibri
density, one can identify an effective potential ener
Torque is obtained by taking an angular gradient of this
tential. The expression for the torque obtained by this pro
dure is given by9

N~r ,V,t !5kBT¹VE dr 8 c~r2r 8,V!dr~r 8,t !. ~10!

Note that the above expression for the torque provides a c
explanation of the coupling of the rotor’s motion to the is
tropic density fluctuation of the solvent. The orientation
friction can now be given by Kirkwood’s formula, which
expresses the friction as an integral over the torque–tor
time correlation function,9

zR,rr5
1

2kBT E
0

`

dt
1

4pV E dr dV^N~r ,V,0!

•N~r ,V,t !&, ~11!

where ^...& involves averaging over the initial solvent con
figuration and also solvent dynamics when the position a
the orientation of the solute probe are held fixed.

In the subsequent steps one writes the integral in
wave vector~k! space, and expands both the direct corre
tion function and the density field in the spherical harmon
~in the framework wherek is taken parallel to thez axis!.
Straightforward algebra leads to the following expression
the torque:
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N~r ,V,t !5
1

~2p!3 ~¹VYlm~V!!E dk eik•rclm~k!dr~k,t!,

~12!

wheredr(k,t) is the Fourier transform ofdr(r ,t)5r(r ,t)
2r0 , wherer0 is the average solvent density.clm(k) is the
lmth coefficient in the spherical harmonic expansion of
direct correlation functionc(k,V) term which is the Fourier
transform of the two particlec(r2r 8,V). The above expres
sion for the torque is now substituted in Eq.~11!. The sub-
sequent steps involve an integration by parts and an inte
tion over angles to obtain the following expression for t
time-dependent friction:

zR,rr~ t !5
kBTrs

16p3 E dk k2(
lm

l ~ l 11!clm
2 ~k!F~k,t !.

~13!

In the above expressionF(k,t) is the dynamic structure fac
tor or the intermediate scattering function of the liquid. Th
equation has the structure well-known in the mode coup
theory of liquid dynamics, although we have not come acr
this expression before. In dense liquids, most of the con
bution to this integration comes from the intermediate wa
number regime where the static structure factor of the liqu
S(k), has a sharp peak. In this region, the dynamic struc
factor or the intermediate scattering function,F(k,t) can be
given by the following simple expression:

F~k,t !5S~k!exp~2D0k2t/S~k!!, ~14!

whereD0 is the translational diffusion coefficient of the so
vent molecules. If we substitute this expression in Eq.~13!
for zR,rr , and carry out the integration over wave numberk,
we get the following expression for the friction:

zR,rr5
kBTrs

16p3D0
E dk S~k!(

lm
l ~ l 11!clm

2 ~k!. ~15!

This equation can be recast in the form

tRD05
rs

32p3 E dk S~k!(
lm

l ~ l 11!clm
2 ~k!, ~16!

where we have used the relation betweentR and the rota-
tional diffusion coefficient,DR . This expression has the nic
feature that the terms on the right-hand side are purely s
and determined solely by the local correlations. We are
aware of any prior derivation of such an expression.

We can now address the viscosity dependence oftR .
Within mode coupling theory and with the same diffusi
assumption for the dynamic structure factor, one can sh
that the collective part of viscosity is related to translatio
diffusion by the following relation:

D0h5
kBT

120p2 E dk k2@S8~k!/S~k!#2S~k!. ~17!

Both tR and h are closely related to the translation
diffusion coefficient of the solvent molecules because it
the latter which determines the rate of structural relaxati
We can use the last two equations to eliminateDT , the trans-
lational diffusion coefficient, and relate the rotational rela
ation time directly to viscosity. One can draw several ad
tional conclusions regarding the viscosity dependence oftR .
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First, the rotational correlation time is directly proportion
to viscosity which is inconsistent with the theoretical pred
tions. Second, if coupling of the rotational correlation tim
with viscosity enters through the coefficientsClm(k), if these
coefficients are small, then the rotational correlation tim
could get decoupled from viscosity. Thus, when one chan
the viscosity through variation of the solvent or the tempe
ture, these coefficients also change, thus leading to a m
complex dependence. This aspect has been addressed e
by many, including Zwanzig.1

III. MICROSCOPIC EXPRESSION FOR THE SELF-
DIFFUSION COEFFICIENT OF A TAGGED SOLUTE

The self-diffusion coefficient of the probe is related
the friction by the Einstein relation. The total friction on th
probe can be decomposed into two parts: one is the binar
short time friction determined by the collision with the su
rounding solvent molecules, while the second one is de
mined by structural relaxation. In viscous liquids, it is th
second one which is important. An expression for this fr
tion can be found by using the Kirkwood’s formula, given
this case by

zS,rr5
1

3kBT E
0

`

dt
1

4pV E dr dV

3^F~r ,V,0!•F~r ,V,t !&, ~18!

whereF(r ,V,t) is the force on the solute probe at positionr ,
with orientationV at timet. We obtain an expression for th
force from the density functional theory; this is given by

F~r ,V,t !5kBT¹E dr 8 C~r2r 8,V!dr~r 8,t !. ~19!

One next follows the same steps as in the previous sectio
obtain the following expression for the friction:

zS,rr5
kBTrs

6p2D0
E dk k2(

lm
clm

2 ~k!S~k!. ~20!

Note that the sum overl on the right-hand side of the abov
equation starts withl 50, while that for rotational friction the
sum overl starts froml 51. Thus, the first term on the right
hand side of Eq.~20! is the isotropic term well-known in the
mode coupling theory expression of the friction. One expe
this first term to dominate in most cases.

In the subsequent steps we eliminateD0 from the ex-
pressions oftR andzS to obtain the following expression fo
the producttRDS :

tRDS5
8p

3

*dkS~k!( lml ~ l 11!clm
2 ~k!

*dk k2( lmclm
2 ~k!S~k!

. ~21!

The above equation is an important result of this work. T
provides a microscopic relation between the rotational ti
and the self-diffusion of a tagged probe in dense liquids.

Amplitude of rotational friction clearly depends on th
spherical harmonic coefficients,Clm(k), in addition to the
translational diffusion coefficient of the solvent. Unfortu
nately, reliable expressions forClm(k) are hard to obtain.
Approximate analytical forms are available for two mod
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systems: dipolar hard spheres and a neat liquid
ellipsoids.9,21,22 Nevertheless one can easily see the diff
ence in the dependence of the rotational friction on the in
molecular potential from that of translational friction. An
other rather surprising result is that the rotational friction
less local than the translational friction.

IV. RESULTS AND DISCUSSION

The main results of this paper are given in Eqs.~13!,
~16!, and~21!. Although no numerical study of these expre
sions has been carried out yet, one can draw sev
conclusions/conjectures from the nature of the above exp
sions. Below, we summarize our main conclusions.

~1! We have established that the orientational relaxat
time of the solute probe is coupled primarily by th
translational diffusion coefficient of the solvent. Th
clean separation between the static and dynamic term
a consequence of the form assumed forF(k,t), as given
by Eq. ~14!. In highly viscous liquids, this form will
break down.

~2! If one is changing the transport properties by increas
the pressure or lowering the temperature, then Eq.~21!
suggests that there can be a small variation in the p
uct tRDS . However, the producttRD0 can show a
greater variation and should increase with increase
pressure or lowering of temperature. Thus, one mi
observe a viscosity dependence oftR which is even
stronger than h. This can be observed only in highl
viscous liquids.

~3! The above equations suggest an interesting density~or
viscosity! dependence of the producttRDS . At low den-
sity or viscosity, we need to include the binary contrib
tion both to the rotational and the translational frictio
and the binary term is the dominant one at low densit
Now, as the density is increased from low values,
increase intR is slower than the increase inDS . So, the
product tRDS will first decrease with density. As on
enters the liquid density, the product may vary slow
with density, as the two opposing trends may cancel e
other. This is the region where hydrodynamic express
may appear to be valid. However, as density is furt
increased and we enter the viscous liquid regime,
binary contribution becomes negligible and we can fi
the producttRDS again increase with density, pressu
or viscosity. It is interesting to note that these thr
domains have indeed been observed in rec
simulations.10

V. CONCLUSION

In this article we have presented a theoretical study
correlations between viscosity, rotational and translatio
diffusion in dense liquids. We have shown that one can
plain some of the experimental and simulation results w
out recourse to hydrodynamics. The latter is unsatisfac
on several counts, the most important being the concep
difficulty one faces in accepting viscosity as the main va
able to describe rotation of a small probe. We have arg
f
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the local structural relaxation of the solvent as the main
terminant in the rotational and translational motions
tagged solutes. The theory suggests an alternative expl
tion for the constancy of the producttRDs , often observed
in experiments.

As mentioned in the Introduction, this coupling betwe
rotational and translational motions could have direct r
evance in many experimental measurements. One curre
active area where it is so is the dynamics in restric
geometries.14,16 In such systems the translational motion
the solvent molecules can be restricted, which in turn c
affect the rotational motion of either the probe or the solv
molecules, or both. In fact, the quenching of translatio
motion has been offered as a possible reason for the obse
slow solvation dynamics in aqueous cyclodextrin cavities15

Other examples are motions within reverse micelles or at
surface of aqueous micelles.16 In these systems both rota
tional and translational motions are found to exhibit a ve
slow decay, the origin of which is not clearly understood y
but quenching of translational motion has been proposed
plausible mechanism.14
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