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The usual explanation for the observed inverse relation between the orientational correlation time
(7r) and the self-diffusion @g) of a tagged solute probe in a viscous liquid is in terms of the
hydrodynamic relations which are known to have dubious conceptual validity for small molecules.
Here, we present a microscopic derivation of the relation betwgesnd Ds. This derivation is

based on the general ideas of the mode coupling theory, but uses the time-dependent density
functional theory to obtain the torque—torque and force—force time correlation functions on the
solute probe. Our analysis shows that the orientational correlation timag 6 inversely
proportional to the translational diffusion coefficie{) of the solvent molecules. Thus, the
viscosity dependence of orientational correlation time enters through the viscosity dependence of
the translational diffusiondy). The same theoretical analysis also shows that the translational
diffusion coefficient of the solute probeDg) is also proportional to the translational diffusion
coefficient,D,, of the solvent molecules. This result is in agreement with the recent computer
simulation results which show that the product-gfandD g is a weak function of the densithence

of the viscosity of the liquid. The microscopic expressions provide explanation, in terms of the
solute—solvent direct correlation functions, the reason for the sensitivity of orientational diffusion to
solute—solvent interaction potential.

I. INTRODUCTION spherical rotor, which is unrealistic. At first this appears to be

. . . paradoxical because slip boundary condition is known to
Understanding correlations between the solvent viscoss . iqe 4 satisfactory description of translation diffusion of

ity, and the rotational and translational motions of a probe,. -1 molecules. This was resolved by Hu and Zwanzig
molegule, has begn a subject of atten't|on for many yedts. who showed that a reasonable valuergffor the rotation of
Rotational relaxation has been extensively studied becauseét probe is obtained in most cases if the solute is approxi-

Siqeké?r'?v(glsatlg?'ts: kI}II\/ISFfvaI} rgl :Xf:r:gng%rgaglt:fhgi%%ei;'I?ehated by a spheroid, which is the correct description of the
! 1€ relaxation, » TUOTeS polanzation, rshape of solute probes employed in experiments. Hu-
relaxation, solvation dynamié€ The rate of rotational re- 2 . lculati | . =
laxation is commonly explained by using the solvent viscos- wanzig caicu at|or_1 aiso givess 7= constant. : .
The physical picture behind the hydrodynamic deriva-

It?/vgﬁpben?hzn\(/:veelirllﬂ;\rflvi cg';? tzgcgill(ggr_rgiii?gn%%g’rs_ tion of diffusion is that a tagged molecule diffuses due to its
g y y coupling with the natural currents of the liquid. In this pic-

lation . .
ture, the small amplitude motions of the tagged molecule due
Cr7vs to interactions with the surrounding molecules lead to no
TR T (1) significant diffusion as the long-range natural currents are

more effective in the long-time diffusion of the tagged mol-
wherekgT is Boltzmann constant times the temperat(ife ~ ecule. Another uncertain aspect of this logic is the use of
7 is the viscosity of the liquid mediumy is the specific  hydrodynamic boundary conditions employed to couple the
volume of the molecule, an@p is a constant which is equal solute’s motion to the currents of the liquid. This physical
to 3 in the DSE theory, but usually found to be much smallemicture behind rotational diffusion gets somewhat blurred,
and is, therefore, often left as a fitting parameter. The rotabecause now the molecule is made to rotate as a result of
tional diffusion coefficient Dg) is given by Dg=1/275. coupling to the same currents which give rise to torque on
One finds that Eq(1) provides a reasonable, although by nothe rotor’s surface. As a result, now the molecule can rotate
means perfect, description of the viscosity dependence of thgithout any hydrodynamic friction, which is known as the
observed rotational correlation time. Note tiiZ4=0 is the  slip limit. We have already discussed that part of these diffi-
prediction of the slip hydrodynamic boundary condition for aculties were resolved by Hu and ZwanzZigut some prob-

lems remain.
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coupled to the structural relaxation of the surrounding sol-dynamics in restricted geometries. The first experimental pa-
vent; that is, determined primarily by the local dynamics.per to probe this connection was carried out by Vajtal,*®
The latter is determined largely by the translational diffusionwho showed that the rate of solvation of a dipolar solute
coefficient Oy), and also the structure, of the neighboring probe gets considerably reduced when the probe is confined
molecules. Thus, the rotational diffusion of a probe should beavithin a cyclodextrin cavity. It has been proposed that this
ideally correlated with the translational diffusion coefficient reduction is due to nonparticipation of the translational
of the solvent molecules. We are, however, not aware of anynodes-* There is another, more subtle effect. If the transla-
such relation. tional mode gets quenched, then the rotational motion can
The translational diffusion of the same probg; can  also get severely quenched. A situation like this happens in
also be studied by tracer diffusion and many other experithe orientational motion of water molecules on the surface of
mental techniques. Now, the translational diffusion of thean aqueous micelle or within a reverse micéfié® However,
probe is also expressed in terms of solvent viscosity by inno microscopic theoretical study of this inter-relation be-
voking again the hydrodynamic relation betweeg and » tween the translation and rotation has been carried out. In the
absence of any such study, one always has to appeal to hy-

= ke T ) 2 drodynamics and correlate the two via viscosity.
CrmR Experimental studies on supercooled liquids have found
If one combines Eqs(1) and (2) one obtains the following @ significant deviation from the hydrodynamic prediction.
hydrodynamic prediction for the product mfz and DS: Such deviations have been eXpIained in terms of heterogene'
ities in the dynamics’~° The existing explanation makes
_ Crus use of the linear viscosity dependence of rotational correla-
TRYs= ) 3 . . . - .
C:R tion time and the inverse viscosity dependence of transla-

so that the said product does not depend on viscosity or arﬂ})nal diffusion coefficient of the probe. However, it would

other dynamical property of the solvent, but only on the geo- € more apprgpriate to correlate these quantities to the local
metric properties of the solute. This constancyrgD 5 has diffusion coefficients .Of the solvent molecule. .

been observed in recent computer simulatitfisn example Thus, to summarize, note that other than hydrodynamic
of this behavior has been shown in Fig. 6 of Ref. 6 Wherearguments, there exists no microscopic argument of the vis-

the productD g7y is plotted against density for a wide range cosity dependence of the rotationa_l time constant. In p_arti_cu-
of density. In this simulation, the probe is a prolate eIIipsoidIar' we are not aware of any stat|§t|cal mechgnlcal der!vatlon
and the solvent is a collection of Lennard-Jones spheres. f .Eq' 3). myokmg spatl_al and time correlation fgnctmns._

was interesting to note the plateau in the prod over his is an objective of this paper. We present a microscopic

a considerable variation of density. This could be taken as gerivation OT Eq. (3)’. starting from tim_e—dependent free-
confirmation of hydrodynamic expressions. energy functional derived from the density functional theory.

As discussed earlier, both translational and rotationam a ge_lrlﬁral serI\tge, this is E{sseptlally atQ:rzburg—dLandau
motion of a small solute probe in a dense liquid is expecte eory. The resulting expression Is essentially a mode cou-

to be coupled to the structural relaxation of the surroundind)“m_gl_rt]heory re_su!:. fh tof th . foll |
solvent molecules and thus to the translational diffusion of € organization of the rest of the paper IS as follows. In

the solvent molecules and the local structure. While the sam@? tnextlsdectlon_, weWprt(ajse[lr': a theorfetlctal foerulatllog_f:or
is expected to dominate the viscosity in dense liquids alsor,o ational dynamics. YWe do thé same for transiational diftu-

one should indeed have a relation between the rotational and®" " Sec. lll. In Sec. 1V, we discuss the theoretical results

translational motion of a solute probe to the solvent viscosityand also compare with existing simulations. Section V con-

However, the reason behind this relationship between dif'fugIUdeS with a brief discussion.

Elons and viscosity can be entirely different from the one“. MICROSCOPIC EXPRESSION FOR ROTATIONAL
ased on hydrodynamic arguments.
. . RELAXATION TIME

The problem is that we do not have a simple and trans-
parent argument which provides these relationships from a The rotational relaxation timey, is related to the zero
microscopic theory. A microscopic theory should be able tofrequency rotational frictiordg by the usual expression
derive Eq.(3), preferably by using the translational diffusion 1 1 ¢
of the solvent as a variable. The theory should also be able o rp=—— == >~
relate these diffusions with solvent viscosity. The objective 2Dr 2 kgT
of the present work is to show that such derivations are posA fully microscopic calculation of is highly nontrivial and
sible within the general framework of the mode couplingno such calculation for an ellipsoidal molecule has been car-
theory™! This work is partly motivated by our earlier wotk, ried out yet, except in the Enskog linff.However, in a
which showed that mode coupling theory aguiantitatively  viscous liquid, this friction is expected to be dominated by
explain the close relationship between the viscosity and fricthe slow density relaxation. The friction can be expressed as
tion. The second motivation comes from computer simula-a sum of two terms
tions, which shows that Eq3) indeed holds in the liquid
density range with surprising accuracy. ¢r= {RbinT {Rpp ®)

The coupling between rotation and translation has been where (g i, is the friction due to binary collisions while
subject of discussion recently in connection with solvation{g ,, is the contribution due to density fluctuations. As men-
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tioned earlier, in a viscous liquid, it is the latter that makes
the dominant contribution. In the following we present a mi- BFLpei(t),ps(t) 1= f dr d€Q pe(r,,1)[In pey(r,€2,t)—1]
croscopic but simple derivation of the the latter friction.

Let us start by considering a very dilute solution of el-
lipsoids in a solvent of spherical molecules. This is perhaps
the simplest possible system which can be used to study the

+ f dr pg(r,H)[In pg(r,t)—1]

viscosity dependence of orientational relaxation of the ellip- _EJ drdr’ dQc,(r—r',9Q)

soids. Let us assume that,(r,Q,t) denote the positiom, 2

orientation{}, and timet-dependent number momenta den- X Spen(r,2,1) Spo(r' 1)

sity of the ellipsoids andpg(r,t) denote the position and

time-dependent number density of the solvent molecylgs. 1 , ,

and ps denote the average solute and solvent densities, re- _Ef drdricedr—r’)

spectively. The former does not enter the theoretical expres-

sions derived below. X Spen(r,t) dps(r't), ©

The relaxation of these densities can be described byyhere 5pg(r,Q,t) = pe(r,Q,t) — pey/dr is the fluctuation

using a molecular hydrodynamic theory of orientational re-in the position and orientation dependent number density
laxation described elsewhere. The molecular hydrodynamig _ (v ©.t) and sp4(r,t) = p«(r,t) — po. Here,pg andp, are

equations are solved conveniently by Fourier and Laplacéne corresponding average number densities. The direct cor-

transforming them to the wave vector and frequency spacgs|ation functions, ce(r—r’) and c(r—r’,Q) are the

(with wave vectork conjugate to position and frequency  second-order expansion coefficients in the expansion of the

conjugate to timet). Since the details have been discussedee-energy functional in the respective densities. Needless to

elsewheré, we shall just provide the essentials. We start bysay, we have truncated the free-energy expansion if®gq.
expanding the orientational density in the spherical harmonafter the quadratic term in the density fluctuation.

ICS, We next assume, in the spirit of mode coupling theory,
that the torque on a molecule is determined by the density
fluctuations. The above density functional theory can be used

Pei(K,Q2,1) =2 am(K,t)Yim(€). (6)  to derive an expression for the torqiN(r,Q,t) is the torque
on a tagged ellipsoid dt,€,t). The procedure is simple and
is well-documented.One takes a functional derivative of the

The experimentally observed orientational correlation func{free energy given by Eq9) with respect to the space and

tions are of two kinds: the collective and the single particle.orientation dependent density. When this derivative is set to

The collective correlation functions are defined in the timezero and the resultant equation is solved for the equilibrium

domain by density, one can identify an effective potential energy.

Torque is obtained by taking an angular gradient of this po-

tential. The expression for the torque obtained by this proce-

Clm(k!t):<a|m(_k!t:O)a|m(k:t)>' (7) dure is given b%
Usually, by collective limit, one implies thie=0 limit of the N(ryﬂ,t):kBTVQf dr’ c(r—r',Q)8p(r' t). (10)
above function. The single particle orientational correlation
functions, on the other hand, are defined by Note that the above expression for the torque provides a clear

explanation of the coupling of the rotor’s motion to the iso-
®) tropic density fluctuation of the solvent. The orientational

friction can now be given by Kirkwood’s formula, which

expresses the friction as an integral over the torque—torque
where one considers the orientational dynamics of a singléme correlation functior,
particle, modulated of course by interactions with all the

. - 1 o 1
other particles of the medium. In the present case, the two ;. =_f dt_f dr dQ(N(r,Q,0)
correlation functions approach each other because we con- PP 2kgT Jo = 4wV
sider only a very dilute solution of ellipsoids. In addition, we
assume that the solvent has no orientational degrees of free-
dom. where(...) involves averaging over the initial solvent con-
The relaxation of the the orientational correlation func-figuration and also solvent dynamics when the position and

tions depends on the torque and the force exerted by thihe orientation of the solute probe are held fixed.
surrounding solvent molecules. These torque and force, In the subsequent steps one writes the integral in the
which act on a tagged ellipsoidal molecule at positiamith ~ wave vector(k) space, and expands both the direct correla-
orientation Q at timet, can be derived from the density tion function and the density field in the spherical harmonics
functional theory, which gives the following general expres-(in the framework wherek is taken parallel to the axis).
sion for the free-energy functional of an inhomogeneousStraightforward algebra leads to the following expression for
system’ the torque:

Cin(1)=(Yim(2:i(0) Y (i (1)),

“N(r,Q,t)), (11



1 " First, the rotational correlation time is directly proportional
N(r,Q,t)= (Z_W)E(VQYIm(Q))j dk €™ ey (k) Sp(k,t), to viscosity which is inconsistent with the theoretical predic-
(12)  fions. Second, if coupling of the rotational correlation time
. . B with viscosity enters through the coefficiefitg,(k), if these
where p(k.t) is the Fourier transform 0bp(r.) =p(r.t) . etficients are small, then the rotational correlation times

l_’;ﬁ’ wh;rgpo tIS tklﬁ averhagg slolr\]/ent dgn3|t;(m(k) s th? th could get decoupled from viscosity. Thus, when one changes
mih coeticient In the spherical harmonic expansion of €y, viscosity through variation of the solvent or the tempera-
direct correlation functiorc(k,) term which is the Fourier

. ture, these coefficients also change, thus leading to a more
transform of the two particle(r —r’,€). The above expres- g g

. ! . . lex d d . Thi t has b dd d earli
sion for the torque is now substituted in E41). The sub- compiex cependence. 1his aspect has been addressed earlier

. : : ; by many, including Zwanzigd.
sequent steps involve an integration by parts and an integra-

tion over angles to obtain the following expression for the

time-dependent friction: Il. MICROSCOPIC EXPRESSION FOR THE SELF-
ke Tp DIFFUSION COEFFICIENT OF A TAGGED SOLUTE
_"B'Fs 2
Crpp(D)= 1673 f dk kz% I+ 1)cim(KF(k,0). The self-diffusion coefficient of the probe is related to

(13)  the friction by the Einstein relation. The total friction on the

. . . be can be decomposed into two parts: one is the binary or
In th k h fac- Probecanbed \ onels
n the above expressidf(k,t) is the dynamic structure fac short time friction determined by the collision with the sur-

he i i ing functi f the liquid. Thi . : .
tor or the intermediate scattering function of the liquid ISroundmg solvent molecules, while the second one is deter-

equation has the structure well-known in the mode COUpIInQnined by structural relaxation. In viscous liquids, it is the

theory of liquid dynamics, although we have not come across o . L
. : L .Second one which is important. An expression for this fric-

this expression before. In dense liquids, most of the contn;[ion can be found by using the Kirkwood's formula. aiven in

bution to this integration comes from the intermediate wave[his case by y 9 9

number regime where the static structure factor of the liquid,

S(k), has a sharp peak. In this region, the dynamic structure 1 ol 1
factor or the intermediate scattering functidi(k,t) can be gS*PP:3kBT fo dt47TV dr dQ
given by the following simple expression:
F(k,t) = S(k)exp — Dok?/S(K)), (14) X (F(r2.0)-F(r..0), (18)

I- whereF(r,Q,t) is the force on the solute probe at positign
with orientation{ at timet. We obtain an expression for the
force from the density functional theory; this is given by

whereDy is the translational diffusion coefficient of the so

vent molecules. If we substitute this expression in &)

for {r ,,,» @nd carry out the integration over wave numker

we get the following expression for the friction:

keTp F(r,Q,t)szTVj dr’ C(r—r",Q)ép(r’,t). (19
__B'Fs 2

Eropp= 167°D, f dk S(k)%“ (1 1)Cim (k). (15) One next follows the same steps as in the previous section to

obtain the following expression for the friction:

_ kBTpS 2
mn;%f Ak SO 11+ 1)cky(K), (16) 5S'pp—mf dk k2, cin(K)S(K). (20

This equation can be recast in the form

where we have used the relation betwegnand the rota- Note that the sum ovdron the right-hand side of the above

tional diffusion coefficientD . This expression has the nice equation starts with=0, while that for rotational friction.the

feature that the terms on the right-hand side are purely statigum over starts from =1. Thus, the first term on the right-

and determined solely by the local correlations. We are nofiand side of Eq(20) is the isotropic term well-known in the

aware of any prior derivation of such an expression. m_odg coupling theory expression of the friction. One expects
We can now address the viscosity dependencerof (his first term to dominate in most cases.

Within mode coupling theory and with the same diffusive N the subsequent steps we elimindg from the ex-

assumption for the dynamic structure factor, one can shol"€SSions ofrg and{s to obtain the following expression for
that the collective part of viscosity is related to translationaltn® ProductrgDs:

diffusion by the following relation: 8 fdks(k)2|m|(|+1)0|2m(k)
keT 05T E T AKIES O (K S

Don= Wf dk KIS’ (k)/S(k)1°S(K). (17) oo _ ,
The above equation is an important result of this work. This
Both 7z and 7 are closely related to the translational provides a microscopic relation between the rotational time
diffusion coefficient of the solvent molecules because it isand the self-diffusion of a tagged probe in dense liquids.
the latter which determines the rate of structural relaxation. Amplitude of rotational friction clearly depends on the
We can use the last two equations to elimir2te, the trans-  spherical harmonic coefficient§;,(k), in addition to the
lational diffusion coefficient, and relate the rotational relax-translational diffusion coefficient of the solvent. Unfortu-
ation time directly to viscosity. One can draw several addi-nately, reliable expressions f@2,,,(k) are hard to obtain.
tional conclusions regarding the viscosity dependencg,of  Approximate analytical forms are available for two model

(21)



systems: dipolar hard spheres and a neat liquid ofhe local structural relaxation of the solvent as the main de-
ellipsoids®?1?? Nevertheless one can easily see the differterminant in the rotational and translational motions of
ence in the dependence of the rotational friction on the intertagged solutes. The theory suggests an alternative explana-
molecular potential from that of translational friction. An- tion for the constancy of the produekDg, often observed
other rather surprising result is that the rotational friction isin experiments.

less local than the translational friction. As mentioned in the Introduction, this coupling between
rotational and translational motions could have direct rel-
IV. RESULTS AND DISCUSSION evance in many experimental measurements. One currently

active area where it is so is the dynamics in restricted

The main results of this paper are given in E¢E3), . 1416 . :
(16), and(21). Although no numerical study of these expres- geometries*® In such systems the .translat|o_nal .mot|on of
érlwe solvent molecules can be restricted, which in turn can

sions has been carried out yet, one can draw sever . ) .

conclusions/conjectures from the nature of the above expre?—ﬁeCt the rotational motion of either the probe or the so!vent

sions. Below, we summarize our main conclusions. molgcules, or both. In fact, the quenchmg of translational

motion has been offered as a possible reason for the observed

(1) We have established that the orientational relaxatiorslow solvation dynamics in aqueous cyclodextrin cavitfes.
time of the solute probe is coupled primarily by the Other examples are motions within reverse micelles or at the
translational diffusion coefficient of the solvent. The surface of aqueous micellé$.In these systems both rota-
clean separation between the static and dynamic terms ffonal and translational motions are found to exhibit a very
a consequence of the form assumedF¢k,t), as given  slow decay, the origin of which is not clearly understood yet,
by Eq. (14). In highly viscous liquids, this form will but quenching of translational motion has been proposed as a
break down. plausible mechanis.

(2) If one is changing the transport properties by increasing
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