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Important features of the icosahedral reciprocal space have been brought out. All
reciprocal vectors up to sixth generation (by addition of icosahedral vectors) have been
considered. Some more relationships for indexing the icosahedral phase are derived,
and it is shown that the zone law using Cahn indices is also analogous to that valid for
crystals. All important vectors, i.e., up to fourth generation and sixth generation, have
been identified. Poles of all these vectors have been determined and shown to be one
of the zone axes formed by these vectors. The types of indices that the planes and axes
will have in three-dimensional and six-dimensional coordinates is discussed.

I. INTRODUCTION

Excitement was created by the discovery of the icosa-
hedral phase by Shechtman, Blech, Gratias, and Cahn.1

Due to its quasiperiodicity, it was not possible to index
the planes and axes of this phase in the usual way. To be
able to index the reciprocal lattice spots as a combination
of integers, at least six basis vectors are required for the
icosahedral phase. Three systems for the indexing of ico-
sahedral quasicrystals are in vogue. Elser2 and Bancel
et al.3 used six vectors pointing to the vertices of an
icosahedron as the basis vectors. The six vectors chosen
by Elser2 can be obtained by a projection of a cube in six
dimensions to three dimensions. The Bragg vector for
each diffraction peak is expressed as a linear combination
of basis vectors multiplied by integer indices, scaled by a
factor called the quasilattice parameter. The observable
reciprocal space spot nearest to the transmitted beam
along a fivefold direction (vertex vector) is indexed as
(100000). Bancel indices can be obtained from Elser’s by
a t3 deflation. Cahnet al.4 chose a set of three basis
vectors, similar to the cartesian coordinates, pointing to
three of the fifteen twofold axes of the icosahedron. In-
dices that are irrational numbers related to the golden
meant (4 1 + √5/2) are expressed as a combination of
two integers to obtain six integer indices in all. The three
cartesian coordinates are expressed as six integer indices
(h/h8 k/k8 l/l 8) to separate out the integer and the irrational
parts, so that the relationship between the indices and
coordinates ish/h8 4 h+ h8t, k/k8 4 k+ k8t, l / l8 4 l + l8t.

The reciprocal space of the icosahedral quasicrystal
has been studied by many workers. Chattopadhyayet al.5

and Singh and Ranganathan6 have used electron diffrac-
tion patterns for studying the reciprocal space. Dai and
Wang7 have obtained and simulated the Holz lines of
icosahedral quasicrystals. Programs are also available for

the simulation of Kossel patterns of quasicrystals.8 Al-
though Kikuchi maps of the icosahedral phase and their
indexing can readily be simulated, it is important to study
the features and properties of this reciprocal space. Iden-
tifying important reciprocal vectors will help us know the
appearance of these maps with increasing generation
numbers in a simulation. A study of the indices of the
important vectors and zone axes helps us understand the
interrelationship between them and helps us know what
kind of indices to expect for these planes and directions
in three- and six-dimensional space. In the present work
we bring out the important features of the icosahedral
reciprocal space through identification and indexing of
important reciprocal vectors and zone axes.

II. ON THE INDEXING OF THE RECIPROCAL
VECTORS AND THE ZONE AXES

We will consider here the indexing schemes of Elser2

and Cahnet al.4 The Elser indices make use of the full
symmetry of the icosahedral phase by considering it as a
cube in six-dimensional space. On the other hand the
planes and directions are more easily visualized using
Cahn indices. Indices of Elser2 can be obtained from
Cahnet al.,4 and vice versa, by using relationships given
by Cahnet al.4 However, these relationships as given by
them are incorrect and we give below the corrected ones:

n1 = ~h + k8!/2, n2 = ~l + h8!/2, n3 = ~k + l8!/2,

n4 = ~−h + k8!/2, n5 = ~k − l8!/2, n6 = ~−l + h8!/2 ,

(1)
or, vice versa,

h = n1 − n4 h8 = n2 + n6

k = n3 + n5 k8 = n1 + n4

l = n2 − n6 l8 = n3 − n5 . (2)
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In addition to this, we derive some more relationships
useful for indexing the icosahedral planes and directions.
Because the Elser indexing scheme uses basis vectors
that are orthogonal in the six-dimensional space, a zone
law analogous to the cartesian system holds good. Thus
if [abcdef] is a zone axis,

n1a + n2b + n3c + n4d + n5e + n6 f 4 0 . (3)

The Cahn indexing scheme uses an orthogonal set of
three basis vectors in the three-dimensional space and
therefore the zone law of the cartesian system can be
extended to it. Thus the orthogonality condition between
the reciprocal (h/h8 k/k8 l/l 8) and the real space vector
(u/u8 y/y8 w/w8) becomes

hu + h8u8 + ky + k8y8 + lw + l8w8
+ t~hu8 +h8u + h8u8 + ky8 + k8y + k8y8 + lw8
+ l8w + l8w8! = 0 . (4)

In this equation there are two type of terms: a set of
integers and a set of irrational numbers. For this condi-
tion to hold, the sum of integers and the irrational num-
bers must separately be zero. This leads to a simple
relation analogous to crystals and Eq. (3):

hu + h8u8 + ky + k8y8 + lw + l8w8 4 0 . (5)

The zone axis between two reciprocal vectors (h1/h18
k1/k18 l1/l18) and (h2/h28 k2/k28 l2/l28) is

u = k1l2 − k2l1 + k81l82 − k82l81

u8 = k1l82 − k2l81 + k81l2 − k82l1 + k81l82 − k82l81

y = l1h2 − l2h1 + l81h82 − l82h81

y8 = l81h2 − l82h1 + l1h82 − l2h81 + l81h82 − l82h81

w = h1k2 − h2k1 + h81k82 − h82k81

w8 = h81k2 − h82k1 + h1k82 − h2k81 + h81k82 − h82k81 .
(6)

Because the Cahn indexing system uses essentially the
cartesian coordinate system, similar vectors or axes can
have up to five kinds of indices related by a fivefold
rotation matrix. For Cahn indices this matrix for the ro-
tation axis [1/0 0/1 0/0] is given as

R = 1⁄2 1
1 0 −1 1 0 1
0 1 1 0 1 1

−1 1 0 1 −1 0
1 0 1 1 0 −1
0 −1 1 0 −1 1

−1 −1 0 1 1 0

2 .

(7)

Because a fivefold axis is the rotation axis itself, it has
only one form of Cahn or cartesian indices. The twofold
and threefold axes lie on vertices of the Moebius triangle
and have two forms of indices each. The zone axes that
lie on the sides of the Moebius triangle (i.e., the zone
axes containing twofold vectors) have cartesian or Cahn
indices in three forms. The axes that lie inside the tri-
angle have five forms of indices.

III. IMPORTANT FEATURES OF THE
ICOSAHEDRAL PHASE RECIPROCAL SPACE

To simulate the diffraction patterns of an icosahedral
phase Chattopadhyayet al.5 used the Landau generation
scheme as described by Nelson and Sachde.9 In this
scheme, all the reciprocal vectors are sequentially gen-
erated by a combination of the vertex vectors of an ico-
sahedron. As the generation number increases, the
intensities of the reciprocal spots are expected to fall.
Thus the most important reciprocal vectors, correspond-
ing to most intense spots, will have the lowest generation
numbers. Kikuchi lines/Holz lines corresponding to these
low generations will be observed most intensly. Let us
now point out which are these vectors.

A. Important vectors

Table I lists all possible vectors up to the sixth gen-
eration. Each type of vector is given a name V1, V2, etc.,
and its length is given with respect to the vertex vector
V1 whose length is taken as unity. There are 12 first-
generation vectors (V1), corresponding to the fivefold
directions. There are 60 different combinations of two
vertex vectors. These 60 combinations generate only 30
second-generation vectors, the twofold vectors (V2), be-
cause each twofold direction can result from two differ-
ent combinations of two-vertex vectors. For example, the
vectors (110000) and (001001) point in the same twofold
symmetry direction. The magnitude of the vectors ob-
tained by these two different combinations is scaled byt.

There are 160 different combinations of three vertex
vectors. The third-generation vectors are V3 (threefold
vector), V4, and V5. Each of the threefold directions can
also be obtained by the addition of two different combi-
nations of three vertex vectors. The magnitudes of the
vectors obtained by these two different combinations are
scaled byt3. Thus 40 combinations of three-vertex vec-
tors are accounted for by the 20 threefold vectors. There
are 60 each of V4 and V5 vectors.

There are 240 different combinations of four vertex
vectors in an icosahedron. Thirty of these combinations
result in twofold vectors scaled byt and another 30 also
in the twofold directions scaled by 1/t2. Thus 60 of these
combinations result in vectors along the twofold direc-
tions. Sixty combinations generate the V6 vector while
another 60 generate vectors in the same direction with
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lengths scaled by 1/t. The rest of the 60 combinations
result in 60 F directions which will be pointed out on the
stereogram.

There are 192 different combinations of five vertex
vectors. Twelve of these produce vectors along vertex
vectors with lengths (t2 + 1)/t. The rest of the combina-
tions result in three kinds of vectors unidentified in this
study. That there are 60 of each kind of vector indicates
that these vectors, too, lie on the twofold vector traces. In
cartesian coordinates, these vectors are of the kind [1 0
t5], [t2 + 1 0 t3] and [1 0t3 + t].

There are 64 possible combinations of six-vertex vec-
tors. Twenty-four of these result in vectors of two dif-
ferent lengths along the fivefold directions, while 40
others generate vectors of two different lengths along
threefold directions.

We will now draw these vectors on a stereogram.
Singh and Ranganathan6 drew the stereogram of an ico-
sahedral phase with great circles corresponding to four
reciprocal vectors, which are the vertex vector V1, the
edge vector V2, the face vector V3, and the “fourth”
vector, which is V4. These four vectors are also observed
in the Kikuchi bands of Al–Mn icosahedral phase
mapped by Field.10 Figure 1(a) is drawn from their ex-
perimental pattern. This triangle ADK (A is twofold, D is
threefold, and K is fivefold axis) is bounded by twofold
V2 bands. Bands corresponding to vector V1 make zone
axes at A and F. Bands corresponding to V3 make zone
axes at A, I, and M. V4 make zones at A, H, P, F, B, I,
L, and J. In addition, there is one more prominent band,
which is the V6 vector. This band passes through A, G,
Q, D, O, and I. This vector has been shown to be a
fourth-generation vector.

An experimental determination and computer-
simulated Holz line pattern connected from seven pat-
terns covering the whole orientation triangle of the
primitive Al–Mn–Si icosahedral phase has been shown
by Dai and Wang,7 reproduced in Fig. 1(b). It exhibits
the prominent reciprocal vectors V1, V2, and V3. The V4
vector is not identified. Instead, the V5 vector is observed
here which is present in the A pattern and crosses the
twofold vector trace at E. Just as in the V4 vector, there
are seven variants of this vector present in the Moebius
triangle. Two each of these variants are present in the B,
F, I, and P zone axes, just as in the V4 vector.

Figure 1(c) shows a Moebius triangle of an icosahedral
phase stereogram in which traces of all the six vectors
V1–V6 are drawn. The major zone axes A, D, F, and K
are labeled with indices of Cahnet al.4 Table II shows
the indices of reciprocal vector traces present in the Moe-
bius triangle of Fig. 1(c) in Cahnet al.4 and Elser2 nota-
tions. These indices are for a primitive icosahedral phase.
In case of an ordered face-centered icosahedral phase
these indices are doubled due to a doubling of the quasi-
lattice parameter. There is one trace of the vector of type
V1, three of type V2, two of type V3, and seven of type
V4 and V5 and five of the kind V6 in this stereographic
triangle. There is a threefold vector of the kind (111) (or
(1/1 1/1 1/1)), which corresponds to a threefold rotation
axis in a cube. That the V1 vector is a first-generation
vector, V2 is second generation, V3, V4, and V5 are
third-generation, and V6 is a fourth-generation vector is
seen from the addition of the integers in the Elser indices.

The number of variants of each type of vector that will
exist in a unit stereographic triangle will be half the
number of such triangles it crosses between two twofold

TABLE I. The generation of vectors from the basis vectors.

Generation number Type Example Magnitude of vector, |g| Vector (direction) Number of vectors

First 1 100000 1.0000 V1 (K) 12
Second 1 110000 1.7013 V2 (A) 30

2 001001 1.0515 t−1 V2 (A) 30
Third 1 111000 2.3840 V3 (D) 20

2 00011̄1 0.5628 t−3 V3 (D) 20
3 110001̄ 1.4511 V4 (G) 60
4 110100 1.9734 V5 (O) 60

Fourth 1 111001 2.7528 t V2 (A) 30
2 111̄001̄ 0.6498 t−2 V2 (A) 30
3 111010 2.4060 V6 (I) 60
4 10011̄1 1.4870 t−1 V6 (I) 60
5 110101̄ 2.0000 (F) 60

Fifth 1 011111 2.2361 (t2 + 1)/t V1 (K) 12
2 111011̄ 2.2361 ??? 60
3 111110 2.9288 ??? 60
4 1101̄11̄ 1.1926 ??? 60

Sixth 1 1̄11111 1.2361 2t−1 V1 (K) 12
2 111111 3.2361 2t V1 (K) 12
3 1111̄11̄ 1.8212 2t−2 V3 (D) 20
4 11111̄1 2.9467 2t−1 V3 (D) 20
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zone axes. For example, a V1 trace intersects only two
unit triangles between two twofold A zone axes. A V3
trace crosses four unit triangles between two successive
“A” zone axes. There are two traces of the V3 kind in
each triangle. The V4 and V5 vectors pass 14 triangles.
Seven traces of each kind are present in each triangle.
Only five traces of V6 vectors are observed in a triangle
because each of these traces pass through only ten basic
triangles, instead of 14 like V4 and V5. This is because
these traces also pass through the D axis, which forms a
corner of the unit triangle, just as A.

Vectors V2 and V6 are even parity vectors and thus
follow a t inflation rule for the reciprocal spots along
them. The vectors V1, V3, V4, and V5 are odd parity
vectors. They follow at3 inflation rule in case of the
primitive icosahedral phase andt inflation in case of the
face-centered ordered icosahedral phase. Thus the recip-
rocal spots along these vectors are spaced out in the
primitive phase.

B. The zone axes

As observed in Fig. 1(c), the twofold zone axis A con-
tains traces of all the six kinds of vectors. The zone axis
I contains traces of all vectors except V1. The zone F
contains vectors V1, V2, V4, and V5. Both the zones B
and P contain V2, V4, and V5 and look identical. The
zone D (threefold) contains three variants of V2 and
six of V6. The fivefold zone K is made of five variants of
V2. The zone axes E, G, H, L, N, O, and Q consist of
one variant of V2 and two of either V4, V5, or V6
vectors. The zone axes C, J, and M have V5, V4, and
V3 vectors, respectively, at right angles to one of the
variants of V2.

In addition to the zone axes identified above, there are
a number of intersections inside the triangle. The zones
made by all of these intersections may not be very im-
portant. However, V1 being the most prominent vector,
the zone axes made by it should be important. In addi-
tion, the zone axes made by V3 are also considered here.
The vector V1 makes a zone axis R in which one variant
each of V5 and V6 are present. Another zone axis S is
constituted by one variant each of V1, V4, and V6. These
two zone axes are identified by Field10 as well. The zone
axes made by V3 are T, U, V, and W. A V6 vector trace
crosses V3 at 90° at T. The zone U is formed by one trace
each of V3, V5, and V6; zone V by V3, V4 and V6; and
zone W by V3, V4, and V5.

Table III lists one type of index for the zone axes A to
Q in the cartesian system and the corresponding Elser
indices. Cartesian coordinates are given for easy com-
parison among other indices. These can readily be con-
verted to Cahn indices and other equivalent indices can
be generated by using the matrix 7. Determination of the
zone axis indices shows that the poles for the V4 vector

FIG. 1. (a) Kikuchi map of an Al–Mn icosahedral phase.10 (b) Holz
lines map of an Al–Mn–Si icosahedral phase.7 (c) An icosahedral
phase stereogram showing traces of six types of vectors V1–V6 mak-
ing zone axes marked A to W. Indices are assigned to four prominent
zone axes. Indices of all the traces are listed in Table II.
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traces are G zone axes, for V5 vector traces are O zone
axes, and for V6 vectors are I zone axes. Because these
axes fall on the sides of the basic triangle, the cartesian
and Cahn indices of these vectors also assume three
forms and there are 30 axes of each of these kinds in an
icosahedron.

Of the indices of zone axes on the trace of the vector
(010) listed in Table III, midway between the two two-
fold zone axes A [001] and [100] lies the axis I [101].
The mirrorlike nature of this axis has been discussed
earlier by Chattopadhyayet al.5 This axis corresponds to
a cubic twofold axis. On either side of this axis I are axes
with indices permuted [u0w] to [w0u]. However, these
axes are not equivalent in the icosahedral symmetry be-
cause the indices can be cyclically rotated but not per-
muted to find equivalent ones. This can be checked by
the matrix 7. This inequivalence is brought out by very
different Elser indices of these axes. Axes A, E, I, and L
coincide with cubic axes.

The zone axes that are inside the stereographic triangle
in Fig. 1(c) also exhibit simple indices like R[11t],
S[t1t], T[112], and U[11t2], bringing out the importance
of these axes. The axis T[112] coincides with a cubic
axis. The indices of the zone axes R and S made by V1
in Fig. 1(c) go in the sequence [t̄ 1t5] and [t̄ 1 3t2].
Similarly, the indices of the zone axes T, U, V, and W,
made by V3, in Fig. 1(c), follow a trend [1¯ t2 t6 + t2],
[1̄ t2 t5 + t3], [1̄ t2 t5 + 1] and [1̄t2 t4 + 2t].

The cubic coordinates make working with the stereo-
gram much simpler. However, each term involving the
golden meant can be written in many different ways,
which may not be recognized to be the same. This am-
biguity is removed in Cahn indices by separating out the
rational and irrational parts of an index. Furthermore, the
Cahn system uses only integers that are easy to use, as
demonstrated in Sec. II.

IV. CONCLUSIONS

The reciprocal space of the icosahedral quasicrystal
has been studied to identify its important features and the
following conclusions are made.

(1) Reciprocal vectors generated by icosahedral ver-
tex vectors up to six generations are explored. The six
most prominent of these (V1–V6) are recognized in the
available Kikuchi and Holz line maps.

(2) Apart from the first-generation vectors, which are
fivefold, and the second generation, which are all two-
fold, there are three kinds of third-generation vectors,
only one kind being threefold. There are two new kinds
of vectors in the fourth generation but no new kinds of
vectors in the sixth generation.

(3) The types of indices for all these vectors and zone
axes A–W are determined. In order to index, some more
relationships for indexation are derived. It is shown that
in the Cahn system of indexing too the zone law is analo-
gous to that valid for crystals.

TABLE II. Indices of the reciprocal vector traces shown in the stereographic section of the icosahedral phase in Fig. 1(c).

Vector

Indices

Cartesian Cahn Elser

V1 1̄ t̄ 0 1̄/0 0/1̄ 0/0 1̄ 0 0 0 0 0
V2 0 1 0 0/0 0/2 0/0 1 0 0 1 0 0
V2 1̄ 0 0 0/2̄ 0/0 0/0 0 1̄ 0 0 0 1̄
V2 t2 t̄ 1 1/1 0/1̄ 1/0 0 1 0 1̄ 0 0
V3 t2 1 0 1/2 0/1 0/0 1 1 0 0 0 1
V3 0 t̄2 1 0/0 1̄/2̄ 0/1 1̄ 0 0 1̄ 1̄ 0
V4 t2 + 1 t2 0 1̄/2 0/1 0/0 0 1 0 1 0 1
V4 1̄ t̄3 1 1/1̄ 1̄/1̄ 1̄/1 0 1̄ 0 1̄ 1̄ 0
V4 1 t̄3 1 1̄/1 1̄/1̄ 1̄/1 1̄ 0 0 0 1̄ 1
V4 t3 1 1 1/1 1̄/1 1̄/1 1 0 0 0 1̄ 1
V4 t3 1̄ 1 1/1 1/1̄ 1̄/1 0 0 1 1̄ 0 1
V4 t 2̄ 1 0/1 2̄/0 1/0 0 1 1̄ 0 1̄ 0
V4 t̄ 2̄ 1 0/1̄ 2̄/0 1/0 0 0 1̄ 0 1̄ 1̄
V5 1̄ t2 + 1 0 1̄/0 2/1 0/0 0 0 1 1 1 0
V5 t3 t3 1 1/1 1/1 1̄/1 1 0 1 0 0 1
V5 t3 t̄3 1̄ 1/1 1̄/1̄ 1/1̄ 0 1 1̄ 1̄ 0 0
V5 t̄3 t̄3 1 1̄/1̄ 1̄/1̄ 1̄/1 1̄ 1̄ 0 0 1̄ 0
V5 t̄ 2t̄ 1 0/1̄ 0/2̄ 1/0 1̄ 0 0 1̄ 0 1̄
V5 t 2t̄ 1 0/1 0/2̄ 1/0 1̄ 1 0 1̄ 0 0
V5 t2 + 1 0 1 2/1 0/0 1/0 1 1 0 1¯ 0 0
V6 1̄ 1̄ 0 0/1̄ 0/1̄ 0/0 1̄ 1̄ 0 1̄ 0 1̄
V6 t̄2 t̄4 1 0/1̄ 1̄/2̄ 1̄/1 1̄ 1̄ 0 1̄ 1̄ 0
V6 t2 t̄4 1 0/1 1̄/2̄ 1̄/1 1̄ 0 0 1̄ 1̄ 1
V6 t2 t̄2 + 1̄ 1 1/1 2̄/1̄ 1/0 0 1 1̄ 1̄ 1̄ 0
V6 t̄2 t̄2 + 1̄ 1 1̄/1̄ 2̄/1̄ 1/0 1̄ 0 1̄ 0 1̄ 1̄
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(4) The pole of the vector V1 (fivefold) is at K, V2
(twofold) is at A, V3 (threefold) is at D, V4 (third gen-
eration) is at G, V5 (third generation) is at O, and V6
(fourth generation) is at I. In addition, at F is the pole of
another fourth-generation vector.
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TABLE III. Cartesian indices of zone axes A to Q, which lie on the
trace of the twofold reciprocal vector (010), to bring out the relation-
ship between the various axes.

Label

Indices

Cartesian Elser

A (twofold) 0 0 1 0 0 1 0 1̄ 0
B 1 0 t3 1̄ 2 1 1 1̄ 0
C 1 0 t2 + 1 1̄ 3 2 1 2̄ 1̄
D (threefold) 1 0 t2 0 1 1 0 1̄ 0
E 1 0 2 0 1 2 0 2̄ 1
F 1 0 t 1 0 1 1̄ 1̄ 0
G t2 0 t2 + 1 0 0 1 0 1̄ 1
H t 0 2 0 3 0 0 0 1̄
I 1 0 1 0 1 1 0 1̄ 1
J t2 + 1 0 t2 2 2 1 2̄ 1̄ 0
K (fivefold) t 0 1 0 1 0 0 0 0
L 2 0 1 0 2 1 0 1̄ 2
M t2 0 1 1 2 0 1̄ 0 0
N 2t 0 1 0 3 0 0 0 1
O t2 + 1 0 1 1 1 0 1̄ 0 0
P t3 0 1 1 0 1 1̄ 1̄ 2
Q t4 0 1 0 1̄ 1 0 1̄ 2
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