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Recent time domain experiments which allow selective study of the relaxation of slower
subpopulations among the distributions of local, inhomogeneous regions, have shown the existence
of a length scalé~2-3 nnm) beyond which the liquid behaves like a homogeneous liquid. Here we
use the density functional theory to calculate the probability of creating a soft localized density
fluctuation(density droplet Theoretical calculation shows that the free energy penalty for creating

a local inhomogeneity of small size is much less than that for a large size and that a dense
supercooled system is unlikely to sustain inhomogeneity of a leagthwhich is larger than &,

whereo is the molecular diameter. We have calculated both the equilibrium and the nonequilibrium
(subsequent to photobleachjngrientational correlation functions with the theoretically obtained
inhomogeneous distributions. The nonequilibrium distribution relaxes at a slower rate. A simple two
state exchange model has been used to mimic the relaxation of the slow regions to equilibrium; the
model shows that the diffusional exchange cannot be the mechanism for the extremely slow
relaxation process very near to the glass transition temperature. These results have been compared
with recent experimental results.

I. INTRODUCTION relaxation of the “slow” regions. With time, these slow re-
gions redistribute themselves and again an equilibrium dis-
Supercooled liquids are usually obtained by rapidlytripution is reached. The time taken by the nonequilibrium
cooling liquids sufficiently below their melting point. While  gistribution created by photobleaching to return to equilib-
relaxation of the various response functions in a liquid abovgjym can be measured by following the rotational motion of
the melting point is exponential-like, the most striking fea- probes located in these regions, given, of course, that the
ture of many supercooled liquids is the markedly nonexpoygpeled probes do not leave the “domains.” Ediger and
nential nature of this decdyAlthough there have been vari- co-worker&~# have reported that the time to return to equi-

ous types of explanation for this anomalous behavior, th‘ﬁbrium (which they call an exchange time,,) can become

most widely accepted one assumes the existence of S‘p"’u""”%nsiderably larger than the average orientational relaxation
heterogeneous dynamics in the supercooled $tat&Re-

. . . time at equilibrium, as the glass transition is approached
cently photobleaching techniqifeéshave been combined from higher temperatures.

with time resolved optical spectroscopy to study the rota- : : .
tional dynamics of the various probe molecules of different In this study, we use the density functional theddyT)

. . of classical statistical mechantfgo calculate the free en-
sizes in supercooled o-terphenyDTP). It has been con- ergy cost to create localized inhomogeneous regions, each
cluded from these experiments that the structure of the su:= 9y 9 9 '

percooled OTP supports spatially heterogeneous distributioﬁharaCterlzed by a density different from the average density

of long-lived, slowly relaxing domains. These studies a|SOOf the liquid and their various sizes. DFT is ideal for study-

indirectly show that at the glass transition temperaturg) ( :ng dfreehenergy CO.StS of ioﬁlget)nsity fllécrt]uatiorqs Whhicg can
there exists a length scale-2.5 nm) beyond which the lig- €@d to heterogeneity. It should be noted here that the density

uid is homogeneousRecently, Trachtet al® developed a need not be the only choice to describe the origin of these

model independent four-dimensional solid-state NMR eX_heterogeneitieél. We find that indeed there exists a maxi-

periment that directly measures the length scale of dynamiflum length scale of heterogeneity in the supercooled liquid
heterogeneities and they found a length scale of the sanf'd this length scale is of the same order as has been ob-
order (~3 nm) for poly(vinyl acetat¢ (PVAc) at Ty+10 K. gerved in other ex.perlmerﬁ§.Th|s Ie.ng.th scale hgs a very
The nature and origifor even the precise definitipf this ~ Simple and appealing explanation within DFT. This length is
inhomogeneity is not clear at this point. sufficiently small to be energetically favored by the sharp
The photobleaching techniques allow one to selectivelypeak in the static structure factoS(k)), but not large

bleach the “fast” regions and thus allow one to study the€nough to encounter the energy cost due to the very low

compressibility of dense liquids. We will discuss this point at
dAuthor to whom correspondence should be addressed; electronic mai|:engt.h later on. While DFT proy|des some mSIth into the
bbagchi@sscu.iisc.ernet.in. Also at the Jawaharlal Nehru Centre for AdpOSSIble reason for the nonexistence of heterogeneous re-

vanced Scientific Research, Bangalore. gions beyond a size, it does not, at least in the form studied




here, provide also the reason why regiteowcertain sizes experimental results specifically the enhancement of transla-
are not relevant. This might be due to the fact that densityional diffusion nearTé1 and the anomalous light scattering
fluctuations in small regions are not relevant. Molecules in d@n the glass transition regiof.
small region need not be involved in the cooperative slowing  The present study has several similarities with the beau-
down?? a characteristic feature near the glass transition temtiful work of Dasgupta and Valf$ who carried out extensive
perature Ty). Langevin dynamics simulations of binary glass forming lig-
For calculational simplicity, we assume that these hetuids, using a free energy functional given by density func-
erogeneous regions are spherical in shape. Although the latéonal theory?? As the same free energy functional has been
assumption lead to the analytical calculations in a more tracdsed in this work, the density fluctuations considered have
table form, it might not represent the actual shape of thesthe same weights. Despite these similarities, there are several
regions. In fact, there have been numerous computer simulaifferences also. We consider localized fluctuations, while
tion studies:®>~1"as well as experiments on dense colloidal Dasgupta and Valls considered extended ones. In addition,
liquids X which show the highly extended nature of thesethese authors did not investigate the size of the domains and
heterogeneous regions. However, we will see later that indid not consider orientational relaxation in these heteroge-
stead of a sharp cutoff if one extends this simplified assumpreous domains.
tion to some extent by assuming the heterogeneous regions We have studied orientational relaxation in these slow
of continuous density distribution, one would get more ordomains by using standard hydrodynamics. The relaxation of
less similar results. The molecular dynamics simulationthe slow domains becomes slower as the glass transition den-
study of Glotzer and co-workers'°shows that particles of sity is approached from below. As it is very difficult to cal-
similar mobility are spatially correlated and thus confirmsculate the relaxation of the slow domains to equilibrium, we
the existence of dynamical heterogeneities in a supercooledave introduced a simple two-state exchange nfddéto
binary Lennard-Jones mixture. In particular, it has been obmimic the behavior and specifically to study whether the
served that the structural relaxation takes place through theiffusional exchange is the defining mechanism for this re-
cooperative motion of relatively few, fast-moving particles laxation. One should note that our model is very similar to
and these particles form quasi-one-dimensional, stringlikehe two-state model considered by Chang and Silf@siu
clusters, whose size increases as the glass transition is agescribe the enhancement of translational diffusion relative
proached. Particles of low mobility also form clusters, butto rotational motion neaf . They have considered an envi-
they are relatively well-ordered and compact, where clusteronmental fluctuation modéEFM) where the environment
sizes appear to be insensitive to the temperature. Recentlgf each molecule fluctuates between only two states, “slow”
the three-dimensional time-resolved confocal microscopy exand “fast.” The corresponding master equations are of the
periments on supercooled colloidal liquids and gla¥sesn-  same form as in our model except we have not considered
firmed the simulation results. the Fickian diffusion term. Our goal is to investigate whether
It has already been mentioned that the precise definitiothe very slow relaxation observed nély can be explained
of the local inhomogeneities is not known and the equilib-by the simple diffusional exchange mechanism.
rium local density fluctuations may not necessarily be the It is worth mentioning here that the two-state scenario
only choice to describe these heterogeneities; it could be déras often been used as a modeling approach to rationalize
scribed as well by the local entropy fluctuatidh$?Another  various kinds of phenomerfa Particularly, in the context of
key assumption we have made in this study is that the higlglass transition, there are several studies based on this
density regions are associated with low mobility and the lowscenarid’’~3° Recently Kiefferet al! used this concept ex-
density regions are associated with high mobility. Equiva-tensively to fit their experimental results where the tempera-
lently, we assume that the dependence of the average relature dependence of the complex mechanical modulus of vari-
ation time on the average density of the liquid can be used tous glass forming liquids was determined on a nanometer
determine the local relaxation time in a small localized re-scale throughout the transition range by using Brillouin light
gion. However, recent simulation studies of a model binaryscattering. In their approach, which is based on simple
Lennard-Jones liqui® where the mobility of a particle is Boltzmann statistics, the system is partitioned between two
defined by the magnitude of its maximum displacement ovedistinct structural states, one with the characteristics of a
a suitably chosen time interval, demonstrates that the mobiliscoelastic fluid, and the other one being rigid and can re-
ity is related to small equilibrium fluctuations in the local spond only elastically. Of course, in a real situation, a distri-
potential energy, and, consequently, in the local compositiotution of structural states can coexist at various degrees of
of the mixture. Furthermore, it has been argued that particlesupercooling. Furthermore, it was postulated that these local-
of different mobility can be distinguished in terms of the ized structural fluctuations are separated by a diffusive inter-
single particle dynamics where the escape rate of the mobiliace; as both states are amorphous in nature there are no
particles from their local environment is higher than thedistinct interfaces between these structural domains and the
other particles of the sample. Consequently, the dynamic ersurface tension terms are negligible. In particular, it was
tropy is one of the measures of particle mobilities in superfound that there is a gradual structural transition from the
cooled liquids?® Although the simple correlation assumed glassy to the viscoelastic state at high temperatures. The
between the local relaxation time and local density may notnost remarkable finding of this study is that the temperature
be so straightforward, yet several model stuthié®based on  dependence of the inherent structure energies of a binary
this simple assumption were successful in explaining many.ennard-Jones liquid, studied by Sasttal3? using com-



puter simulations, can be well fit by this two-state model andsumption of continuous density distribution. The alternative
thus provides support for the concept that thermodynamidistribution is given by the following step function expres-
cally driven structural transitions underlie the glass transitiorsion:

phenomena. _ _

It is interesting to note that the free energy functional dp(r)=3dp(r=0) H(R,=r]), ©)
form used in this study has also recently been used to invesvhere similarly the maximum value of the fluctuation is
tigate the stability of a structure in the metastable state whiclgiven by sp(r=0). H(R,—|r|) is the heaviside step function
is in between the homogeneous liquid state and the regula@nd takes the following simple form:

crystalline staté® In that case, the heterogeneous density 1, R>r|
distribution was expressed by the superposition of Gaussian H(R,—|r|)= b (4)
profiles centered on an amorphous lattice and was character- 0, Ri<]rl.

ized by a variational parameter, which represented the de- HereR, is the radius of the spherical heterogeneous region.
gree of localization of the particles in the system. A free  The form of the density functionaF[p] is approxi-
energy minimum corresponding to a metastable supercoolegately given by the following functional Taylor series ex-

state of less localized structure was found, in addition to thyansion against(r) truncated at the second order tefhi®
highly localized “hard sphere glass*Most interestingly, it

was found that this minimum does not occur if the underly-BF[p]:BF[;]+f dr[ p(r) In(p(r)/_)— Sp(r)]

ing lattice is taken as a regular crystalline one. Although this

study supports the view of the existence of a heterogeneous

1
density distribution, the absence of a minimum in the crys- - Ef f drdr’ c@(|r—r'|)dp(r) Sp(r’), ®)
talline configuration is surprising, but it might be a pathology -
of hard sphere system. whereF[p] is the free energy of the liquid at the uniform

The organization of the rest of the paper is as fOHOWS-densityE and 5p(l’)=p(l‘)—; measures the deviation of

Section Il provides the expressions necessary to calculate tteﬁe density frorr;at the spatial point. g is the inverse of

probability distribution of inhomogeneous regions using den- :
sity functional theory(DFT). The numerical results of the the Boltzmann constankg) times the absolute temperature

P X . . i . )
probability distribution are presented in Sec. Ill. Section IV(T)' C_( )(_r) s the d!regt pair correlation fun.ctlon of.the unt-
describes the rotational dynamics of the molecules in relax©rm liquid of dené;typ. To calculate the direct pair corre-
ing inhomogeneous domains. The relaxation of nonequilipiation function, ¢*(r), we have used the well-known
rium density distribution is described in terms of two-statePerCUS_YeV'C,k gpproxmatla'ﬁwmch is appropriate for the
exchange model in Sec. V. Finally, concluding remarks aré1ard sphere liquid.

presented in Sec. VI.
Ill. NUMERICAL CALCULATION OF THE

DISTRIBUTION, P(p)

Il. PROBABILITY DISTRIBUTION OF We have calculated the corresponding free energy cost to
INHOMOGENEOUS REGIONS create density fluctuations of various size. The calculation
has been carried out for both types of density fluctuation

The normalized probability distribution having density form described in Sec. Il. The scaled density of the uniform

fluctuation (6p) is given by liquid, p* = po? (o is the hard sphere diametds assumed
exp(— BAF({6p})) as 1.04. We have also calculated the probability distribution
P Sp)) = ’ 1 ; . : iy
({dp}) Fdp exp— BAF({op]) (1) for different sizes of the localized region. This has been done

o by creating both positive and negative fluctuations in density
where AF=F[p]—F[p] is the excess free energy required relative to the uniform liquid. The densityt = pa?) is var-

for creating an heterogeneous region of dengitp the uni-  ied here continuously and the distribution is calculated by
form liquid of densityp. g is the inverse of the Boltzmann Uusing Eq.(1). S .
constant kg) times the absolute temperaturg)( In Fig. 1, we plot the distributiof?({5p}) as a function

The heterogeneous regions are spherical in shape as p&r op, for fluctuations of three different size&, =4.0o,

our assumption and the density fluctuation can be given ag®i=2.50 andR,=1.50, respectively, wherer is again the
proximately by the following Gaussian form: hard sphere diameter. The calculation has been performed

_ using the Gaussian form of the density fluctuati&a. (2)).
(r=r)? It can be seen from this figure that the distribution is nearly
op(r)= 5p(r=0)exp< TR ) (2 Gaussian. This is because the free energy surface is nearly
o ' harmonic—interestingly the anharmonicity increases with
Herer represents the mean position of the fluctuation and fodecrease in size. The free energy required to create a hetero-
simplicity it is assumed to be taken as the origin=0). geneous region of small size is much less compared to that
op(r=0) gives the maximum value of the fluctuatioR, for a large size. This large free energy cost to create larger
determines the spread of this fluctuation from the origin.  inhomogeneous regions follows directly from the following
We have also chosen an alternative form of the densitgpproximate expression for the probability of fluctuation of
fluctuation to check the sensitivity of the results of the as-the wave number dependent densijty;
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FIG. 1. The normalized probability distributioR({ p}), plotted as a func-

tion of local density fluctuationgp, for three different sizesR|) of the FIG. 2. The same quantity depicted in Fig. 1 but now the results are com-
local inhomogeneities. Note that the reduced density of the uniform liquidpared with those calculated for continuous potentials for a particular size of
p*(=pa®) is assumed to be 1.04. The solid triangles denote the calculate¢the heterogeneity. For the continuous potential, the calculation is done at a
results forR, = 1.5, solid diamonds foR,=2.50, and the solid circles for  reduced temperatu® (=kgT/€) equal to unity and the reduced density of
R,=4.00. The solid lines are simply an aid to the human eye. For furtherthe uniform liquid,p* = po?; is set to 1.0142. The calculation is performed
discussion, see the text. for the heterogeneity of siZ®,=2.50 ;, whereo; is the LJ diameter. This
corresponds approximately to the size of 2.47/%hereo is the effective

hard sphere diameter. Open diamonds are the results for the hard sphere
system and open circles for the continuous potentials. Solid lines are pro-
pkp—k> ©6) vided as a guide to the eye. For further details, see the text.

1

wherep, is the spatial Fourier transform of(r), _
sity of the uniform liquid,p* =pafJ (where o5 is the LJ
Pk:f dr exp(—ik.r) p(r), 7) diametey is set at 1.0142. This system can be mapped into
the hard sphere fluid characterized by a density and tempera-

and S(k) is the static structure factor of the supercooledture dependent effective diamet&ipy employing the well-
liquid. In a supercooled liqui®(k) is nearly zero for small known Q/\/eeka—ChandIer—An_derS(_)(‘WCA) perturbation
wave numbergbecause of very low compressibiliyhence schemé?® In Fig. 2, a comparison is made for a particular

density fluctuation can take place only in intermediate wavesize of the localized regiomR, =2.50 ;, which corresponds
numbers wher&(k) is large. to approximately the size of 2.469(o is the hard sphere

As can be seen from Fig. 1, fluctuations of small sizediametey. It shows that the size of the localized density fluc-
have a broader distribution and the width of the distributiontuations will be somewhat larger compared to the hard
becomes narrower as size increases. The probability of hagphere result. In the case of continuous potentials one has an
ing fluctuations of small size is finite even when the fluctua-attractive part and as a consequence there is an increase in
tions in density are very high whereas it is almost zero forspatial correlation length. In addition, the system has now
the large size. For the siz® =4.00, the spread of the dis- become more compressible than the hard sphere liquid and
tribution of the localized inhomogeneous regions become#hus allows for the persistence of localized fluctuations of
rather small. This clearly demonstrates that it is easier tdarger wavelength.
create the soft fluctuations and after certain length scales The results presented above do not consider the surface
(/1=50) the system behaves like a homogeneous liquid. tension term which can arise because regions of high density

It should be noted here that the distributions calculatectre likely to be surrounded by regions of low density. The
using the step function form of the density fluctuat{@iys.  localized regions which exist in the highly supercooled lig-
(3) and (4)] also show similar types of behavior. uid can be represented by the “density droplets” much as in

To compare the results obtained for hard sphéfas 1)  the same spirit of the “entropy droplet” picture of
with the systems interacting via continuous potentials, théVolynes!®*! To create these density droplets one would
aforementioned calculation for the probability distribution have extra surface energy term in addition to the energy cost
has also been carried out for the Lennard-Jahéssystem.  given by the density functional expressidg. (5)]. Thus the
The direct pair correlation functior(?)(r), for this system total free energy of the droplet can be expressed as a function
is calculated by solving the Ornstein—Zernike equation forof the radius of the dropletR)),
neat.sup_ercooled qu3l§id by u§ing the soft mean spherical ap- AFT(R|)=AF({5p})+47TR|27, @)
proximation(SMSA).” SMSA is known to provide a reason-
ably accurate description of static correlation functions inwhereAF({5p}) is the excess free energy required for cre-
dense liquids. The calculation is performed at a reduced tenting the droplet of density in the uniform liquid of density
peratureT* (=kgT/€) equal to unity and the reduced den- p andy is the surface free energy per unit area. Note that the



photobleaching experiments.We assume that the local in-
homogeneities having different relaxation times are de-
scribed by different local densities.

The density dependence of the relaxation times for su-
percooled liquids is often described by the well-known
Vogel-Tammann—FulchévV TF) equatior*?
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where the constar@ is proportional to the activation energy
for the relaxation ratep, is the density at the glass transition
point.

The orientational correlation function averaged over the
probability distribution of the local relaxation timeB(7),
can be expressed as

10

FIG. 3. The relative excess free energgAF, as a function of the droplet
radius R,) for a fluctuations of fixed amplitudejp* =0.05. This excess (CzR(t)>= J' dTP(T) exp{ _
free energy has been calculated using E5), where the Percus—Yevick
approximationgPY) is used for the direct pair correlation function. Open
circles are the calculated values and the solid line is the cubic polynomial fit
= f dpP(p) exp —

e
7oR(7)

in R,. The fit parameters are as follow@AF=0.010 94-0.062 9&, Tor(p)
+0.007R?+0.238 7R?. Note that the free energy is scaled byT 2R

é_: 1/p) andR, istﬁcat'edt by (o is the hard sphere diameleFor detailed  \yhere 7,5(p) defines the rotational relaxation times in the
iscussion, see fhe fext domains having different local densities. It is assumed to be
given by the following expressioif:

) ; (10

contributions from both of the two terms in the right hand 1 8mn(p)R®
side of the above expression are positive. This is in contrast 2r(P) = 6Dn(p)  6kgT
to the conventional classical nucleation theory, where the ) ) ) o
formation of a new thermodynamically more stable phase il the above expressio is the local rotational diffusion
the original mother phase is preferred, but the cost due tgOefficient and the last equality resul;s by using the well-
surface energy acts against the growth of the embryo of th&nown Debye relationDg=kgT/8w7R", whereR is the
new phase. As a result of these two competing effects, the,@olecglar radius. The den.sny dependence of th_e viscosity,
exists a free energy barrier corresponding to a nucleus of #(p), is assumed to described by the VTF equation.
critical size. Variation of the excess free energy of the droplet ~ 1h€ average rotational correlation time is calculated as
of particular density calculated using the DFT expressiorPS“al by integrating the orientational correlation function as
[Eq. (5)] as a function of the droplet radiug/) is shown in oc
Fig. 3. As can be seen from this figure, this enegggws (72R>=J dt(Cyr(1)). (12
with the radius of the dropletin order to see the functional 0
form of this growth, we have fitted the data to polynomials in It was observed in recent experiments of Edigtaal.z'e’
R, . The details of the fit parameters are given in the captionhat the average rotational correlation time increases with the
of Fig. 3. While the surface energy term growsRfs, the  fraction of probe molecules that have been photobleached.
cost of the density fluctuation grows & . Thus the main  This led them to conclude that there exists a spatially hetero-
effect of the inclusion of the surface energy term would be tageneous distribution of local relaxation times and the in-
reduce the probability of small size droplets rather than therease in the correlation time is due to the selective destruc-
droplets of large size and the small scale fluctuations wilkion of subset of probe molecules in more mobile
become less probable. However, as the amplitude of thessnvironments. To study the effect of this selective pho-
fluctuations is small and the symmetry of the liquid is almosttobleaching on the rotational dynamics of the molecules we
preserved, the surface free energy per unit argaig¢ ex-  have created a nonequilibrium probability distribution of
pected to be very small. Consequently, the surface energyensity by tagging only the slow regions relative to the uni-
contribution should have a less pronounced effect unlike irform liquid. This is shown by the hatched area in Fig. 4. We
the case of thermodynamically driven first order transitionshave used the respective normalized distributions thus ob-
tained to calculate the equilibrium and nonequilibrium orien-
tational correlation functiodC,g(t)). Figure 5 displays the
decay behavior of these correlation functions for a particular
size of the local inhomogeneity,=2.50, at the average
As discussed in Sec. |, the nonexponential decay of thelensity of the liquidp* =1.04(glass transition densityy is
orientational correlation functions can be described, at leagaken as 1.1 The decay is nonexponential in nature and the
partly, considering spatial heterogeneous dynamics of the swalue of the average correlation time has increased almost by
percooled liquid and this has been confirmed recently by tha factor of 1.8 in the nonequilibrium ensemble. Figure 6

11

IV. ROTATIONAL DYNAMICS IN RELAXING
INHOMOGENEOUS DOMAINS
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FIG. 4. Schematic representation of the unnormalized nonequilibrium dis{_:klﬁ' 6. The a\ﬁrage ratio o;the ro'tlgélc')nal colrrelatlon times |fn thg non;aqw—
tribution of density for a particular size of the inhomogeneRy=2.5¢-. ibrium ensemble (7)neq LOt e equilibrium values(fr)eq) as a function o

The tagging of only slow regions relative to the uniform liquid in the nor- the scaled average density(=pa®) for the regions of sizeR, =2.50. The

malized equilibrium distribution is shown by the hatched area. glass transition densitypG) is assumed to be 1.1. The solid line is simply
an aid to the human eye. Note that the correlation times are scaled by

[ma?/kgT]¥2. For further details, see the text.

clearly shows that this difference in average correlation time

will increase as we continue to approach the glass transition

density. The physical origin of this increase is easy to undercalculation based on a simplified noninteracting, two-state
stand. With the increase in density, although the faster reexchange model, described in the following section.

gions become increasingly slow, the slower regions become

slower at a faster rate due to the divergence in relaxation

time near the glass transition point. Thus the structure of th&. TWO-STATE EXCHANGE MODEL FOR RELAXATION
supercooled liquid becomes dynamically more heterogeOF NONEQUILIBRIUM DENSITY DISTRIBUTION

neous as the density increases toward the glass transition We consider the system consists of only two dynamical

density. states where the dynamics in one of these states is fast and

. _Even in the idealistic model described aboy_e, .'t IS NOM 10w in the other. These two states are characterized by the
trivial to formulate the relaxation of the nonequilibrium dis-

. ) o two different densitiesp; andp} , respectively and by two
tribution of density to the equilibrium one. In order to have a L P1 P2 P y y
ualitative idea about how this relaxation can explain thaCC2) otaton timesy, andr,.
q P Assuming there is an exchange between these two dif-

experimental results, we have carried out an approximat%aerent dynamical regions at a rafe,,, the time dependent
probability distribution for state 1 within this model is given
by the following expression:

pa()=3(1+p(t=0)e" o), (13)
and similarly the same for state 2 is given by
P2(t)=3(1—p(t=0) e~ =), (14)

wherep(t=0)=p.(t=0)—p,(t=0).
Now the orientational correlation function averaged over
different time intervals fy) simply can be expressed as

In<Cy (t)>

t
(Ca0)(te) =37, pi(ty) exp( - —_)

Tj

T T T T T =1 = — = -2k X
0 500 1000 1500 2000 2500 2( 1+ (p1(tg=0) = pa(tg=0)) e~ d)
t
t 1
FIG. 5. The decay behavior of both the equilibrium and nonequilibrium xXexp — T_ + 5(1_(p1(td:0)
orientational correlation function$C,(t)), where timet is plotted forR, 1
=2.50. The average density of the liquig{) and the density at the glass t
transition point p}) are 1.04 and 1.1, respectively. The solid line indicates —po(tg=0)) e~ %eldyexg — —|. (15
the decay at equilibrium and the dashed line immediately after creating the T2

none_qulllbrlum d|§trlbgtlon. In_ the nonequmt_)rlum ensemb_le the avera‘g_eHere time intervatd measures the delay time after creating a
rotational correlation time has increased and is almost 1.8 times the equilib- A V9 . . . . . .
rium value. Note that the time is scaled bymo?/kgT]¥% For further ~ Nonequilibrium distribution which in this model is consid-

discussion, see the text. ered to be represented by slow regions only and s,



=0)=0 andp,(ty=0)=1. With an increase in tim&,, the  average density and this growth of the relaxation time is
distribution achieves equilibrium when both of the two statesattributed to an increase of the characteristic height of these

have equal probabilitieg);=p,=3. free energy barriers. The increase in the transition time rises
The time integration of the correlation function again sharply near the glass transition temperature. This is still just
gives the average rotational correlation time at tipe a plausibility.
(nedta)= | dt(Cat) k). 16

. s . VI. CONCLUSION
This nonequilibrium averagé,r)ne{tq) is @ marker of the

relaxation of the distribution. Ediger and co-workefsund In this article, the standard form of density functional
that this relaxation occurs at a very slow rate and the extheory(DFT) has been used to calculate the free energy pen-
change time £,) shows strong temperature dependence neaslty to create soft localized density fluctuations in a hard
the glass transition temperaturel,j. The microscopic sphere liquid. The scaled density has been varied here con-
mechanism behind this very slow exchange is yet to be untinuously from 0.99 to 1.09 where we use the uniform liquid
derstood. of density 1.04 as a reference system.

To analyze the origin of this very slow decay, we have It is found that the free energy required is much less to
followed a procedure already used in experiméniée start  create a local inhomogeneity of small size compared to that

by defining a normalized correlation functio@,(ty), as for a large size. This is attributed to the sharp maximum of
[(Thned t)/{ 7)eq—1] the static structure fact@(k) at intermediate wave numbers
C.(ty= g . (17 (ko=2m) and also to the very low compressibility of super-
({7 ned/(T)eq— 1] cooled liquid at low wave numbers. It is shown here that the

C.(ty) so defined starts at 1 §=0 and decays to 0 in the liquid almost behaves like a homogen_eous liquid in the
limit of ty=c°. Using this normalized correlation function, length scale larger than about &.0whereo is the molecular

the exchange time can be defined as diametey which agrees qualitatively with the recent experi-
mental result§:® In addition, it is shown here that the inclu-

Tor= J'm dty C(ty). (18) sion of.t_he surface energy eff(_act will more likely reduce the

0 probability of small size “density droplets” than the droplets

of large size. However, it is suggested that the surface effect
has a very small contribution to the total free energy cost for
1 forming these droplets.
Tex:Zkex' (19) The results obtained for hard sphere liquid using the
Percus—YevickKPY) approximation for the direct pair corre-
That s, within the symmetric two-state model,(t) indeed  |ation functiorf® have been compared with the soft mean
probes the exchangg process. Ho_wever, in the case of a NO&sherical approximatidd (SMSA) applied to the dense
symmetric model, this simple relation breaks down agds | ennard-Jones liquid. The fluctuations are found to be some-
now given by what larger in size for the continuous potentials due to the
1 increase in spatial correlation length.
T | ko (20 Theoretically obtained inhomogeneous probability distri-
127 72l butions have been used to calculate both the equilibrium and

wherek,, andk,; represent the transition rates between stateonequilibrium orientational correlation functions. We find
1 and state 2 and between state 2 and state 1, respectivelyhat the spatially heterogeneous distribution of the density is

Ediger and co-workefs speculated that the translational responsible for the nonexponential nature of the rotational
diffusion of a probe molecule between regions with differentrelaxation. For nonequilibrium distribution the average rota-
dynamics could be one of the possible mechanisms of th@onal correlation time of molecules relative to that of equi-
very slow exchange process observed in experiments. Howibrium distribution is found to increase with the average
ever, such a translational diffusion mediated exchange wiltlensity of the liquid. Our theoretical results have been com-
scale with the viscosity of the inhomogeneous region.7gp, pared with the experimental results of Ediger and
will vary similarly as the average equilibrium rotational cor- co-workeré= obtained recently by photobleaching technique.
relation time,( 7). This does not allow the emergence of Good qualitative agreement is found between the theoretical
the extremely slow relaxation process very near to the glasesults presented here and the experimental results.
transition point™ Relaxation of the nonequilibrium distribution has been

Thus the above analysis shows that there must be sonsudied in a qualitative way using the simple noninteracting
other mechanism which determines this very slow relaxationtwo-state exchange model where only two different domains
In fact, the recent Monte Carlo simulation studies ofwith different densities were considered. The results obtained
Dasgupta and Valf§ for a dense hard sphere system showin this model show that the extremely slow relaxation pro-
that the slow relaxation near the glass transition can ariseess observed near the glass transition pdicannot be ex-
from activated transitions over free energy barriers betweeplained by the translational diffusion of a molecule between
different local minima of the free energy. The time scaleregions of different dynamics. It is suggested that the transi-
associated with this transition was found to increase with théions between different local minima of the free energy near

Use of Eqgs(14) and(15) in Eq. (16) gives
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