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Recent time domain experiments which allow selective study of the relaxation of slower
subpopulations among the distributions of local, inhomogeneous regions, have shown the existence
of a length scale~;2–3 nm! beyond which the liquid behaves like a homogeneous liquid. Here we
use the density functional theory to calculate the probability of creating a soft localized density
fluctuation~density droplet!. Theoretical calculation shows that the free energy penalty for creating
a local inhomogeneity of small size is much less than that for a large size and that a dense
supercooled system is unlikely to sustain inhomogeneity of a length,l f , which is larger than 5s,
wheres is the molecular diameter. We have calculated both the equilibrium and the nonequilibrium
~subsequent to photobleaching! orientational correlation functions with the theoretically obtained
inhomogeneous distributions. The nonequilibrium distribution relaxes at a slower rate. A simple two
state exchange model has been used to mimic the relaxation of the slow regions to equilibrium; the
model shows that the diffusional exchange cannot be the mechanism for the extremely slow
relaxation process very near to the glass transition temperature. These results have been compared
with recent experimental results.
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I. INTRODUCTION

Supercooled liquids are usually obtained by rapid
cooling liquids sufficiently below their melting point. Whil
relaxation of the various response functions in a liquid ab
the melting point is exponential-like, the most striking fe
ture of many supercooled liquids is the markedly nonex
nential nature of this decay.1 Although there have been var
ous types of explanation for this anomalous behavior,
most widely accepted one assumes the existence of spa
heterogeneous dynamics in the supercooled state.2–7 Re-
cently photobleaching techniques2,3 have been combined
with time resolved optical spectroscopy to study the ro
tional dynamics of the various probe molecules of differe
sizes in supercooled o-terphenyl~OTP!. It has been con-
cluded from these experiments that the structure of the
percooled OTP supports spatially heterogeneous distribu
of long-lived, slowly relaxing domains. These studies a
indirectly show that at the glass transition temperature (Tg)
there exists a length scale~;2.5 nm! beyond which the liq-
uid is homogeneous.8 Recently, Trachtet al.9 developed a
model independent four-dimensional solid-state NMR
periment that directly measures the length scale of dyna
heterogeneities and they found a length scale of the s
order ~;3 nm! for poly~vinyl acetate! ~PVAc! at Tg110 K.
The nature and origin~or even the precise definition! of this
inhomogeneity is not clear at this point.

The photobleaching techniques allow one to selectiv
bleach the ‘‘fast’’ regions and thus allow one to study t

a!Author to whom correspondence should be addressed; electronic
bbagchi@sscu.iisc.ernet.in. Also at the Jawaharlal Nehru Centre for
vanced Scientific Research, Bangalore.
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relaxation of the ‘‘slow’’ regions. With time, these slow re
gions redistribute themselves and again an equilibrium
tribution is reached. The time taken by the nonequilibriu
distribution created by photobleaching to return to equil
rium can be measured by following the rotational motion
probes located in these regions, given, of course, that
labeled probes do not leave the ‘‘domains.’’ Ediger a
co-workers2–4 have reported that the time to return to equ
librium ~which they call an exchange time,tex) can become
considerably larger than the average orientational relaxa
time at equilibrium, as the glass transition is approach
from higher temperatures.

In this study, we use the density functional theory~DFT!
of classical statistical mechanics10 to calculate the free en
ergy cost to create localized inhomogeneous regions, e
characterized by a density different from the average den
of the liquid and their various sizes. DFT is ideal for stud
ing free energy costs of soft density fluctuations which c
lead to heterogeneity. It should be noted here that the den
need not be the only choice to describe the origin of th
heterogeneities.11 We find that indeed there exists a max
mum length scale of heterogeneity in the supercooled liq
and this length scale is of the same order as has been
served in other experiments.8,9 This length scale has a ver
simple and appealing explanation within DFT. This length
sufficiently small to be energetically favored by the sha
peak in the static structure factor (S(k)), but not large
enough to encounter the energy cost due to the very
compressibility of dense liquids. We will discuss this point
length later on. While DFT provides some insight into t
possible reason for the nonexistence of heterogeneous
gions beyond a size, it does not, at least in the form stud
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here, provide also the reason why regionsbelowcertain sizes
are not relevant. This might be due to the fact that den
fluctuations in small regions are not relevant. Molecules i
small region need not be involved in the cooperative slow
down,12 a characteristic feature near the glass transition t
perature (Tg).

For calculational simplicity, we assume that these h
erogeneous regions are spherical in shape. Although the
assumption lead to the analytical calculations in a more t
table form, it might not represent the actual shape of th
regions. In fact, there have been numerous computer sim
tion studies,13–17 as well as experiments on dense colloid
liquids,18 which show the highly extended nature of the
heterogeneous regions. However, we will see later that
stead of a sharp cutoff if one extends this simplified assu
tion to some extent by assuming the heterogeneous reg
of continuous density distribution, one would get more
less similar results. The molecular dynamics simulat
study of Glotzer and co-workers13–15 shows that particles o
similar mobility are spatially correlated and thus confirm
the existence of dynamical heterogeneities in a superco
binary Lennard-Jones mixture. In particular, it has been
served that the structural relaxation takes place through
cooperative motion of relatively few, fast-moving particl
and these particles form quasi-one-dimensional, string
clusters, whose size increases as the glass transition is
proached. Particles of low mobility also form clusters, b
they are relatively well-ordered and compact, where clus
sizes appear to be insensitive to the temperature. Rece
the three-dimensional time-resolved confocal microscopy
periments on supercooled colloidal liquids and glasses18 con-
firmed the simulation results.

It has already been mentioned that the precise defini
of the local inhomogeneities is not known and the equil
rium local density fluctuations may not necessarily be
only choice to describe these heterogeneities; it could be
scribed as well by the local entropy fluctuations.11,19Another
key assumption we have made in this study is that the h
density regions are associated with low mobility and the l
density regions are associated with high mobility. Equiv
lently, we assume that the dependence of the average r
ation time on the average density of the liquid can be use
determine the local relaxation time in a small localized
gion. However, recent simulation studies of a model bin
Lennard-Jones liquid,15 where the mobility of a particle is
defined by the magnitude of its maximum displacement o
a suitably chosen time interval, demonstrates that the mo
ity is related to small equilibrium fluctuations in the loc
potential energy, and, consequently, in the local composi
of the mixture. Furthermore, it has been argued that parti
of different mobility can be distinguished in terms of th
single particle dynamics where the escape rate of the mo
particles from their local environment is higher than t
other particles of the sample. Consequently, the dynamic
tropy is one of the measures of particle mobilities in sup
cooled liquids.20 Although the simple correlation assume
between the local relaxation time and local density may
be so straightforward, yet several model studies11,19based on
this simple assumption were successful in explaining m
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experimental results specifically the enhancement of tran
tional diffusion nearTg

11 and the anomalous light scatterin
in the glass transition region.19

The present study has several similarities with the be
tiful work of Dasgupta and Valls21 who carried out extensive
Langevin dynamics simulations of binary glass forming li
uids, using a free energy functional given by density fun
tional theory.22 As the same free energy functional has be
used in this work, the density fluctuations considered h
the same weights. Despite these similarities, there are se
differences also. We consider localized fluctuations, wh
Dasgupta and Valls considered extended ones. In addi
these authors did not investigate the size of the domains
did not consider orientational relaxation in these hetero
neous domains.

We have studied orientational relaxation in these sl
domains by using standard hydrodynamics. The relaxatio
the slow domains becomes slower as the glass transition
sity is approached from below. As it is very difficult to ca
culate the relaxation of the slow domains to equilibrium, w
have introduced a simple two-state exchange model23,24 to
mimic the behavior and specifically to study whether t
diffusional exchange is the defining mechanism for this
laxation. One should note that our model is very similar
the two-state model considered by Chang and Sillescu25 to
describe the enhancement of translational diffusion rela
to rotational motion nearTg . They have considered an env
ronmental fluctuation model~EFM! where the environmen
of each molecule fluctuates between only two states, ‘‘slo
and ‘‘fast.’’ The corresponding master equations are of
same form as in our model except we have not conside
the Fickian diffusion term. Our goal is to investigate wheth
the very slow relaxation observed nearTg can be explained
by the simple diffusional exchange mechanism.

It is worth mentioning here that the two-state scena
has often been used as a modeling approach to ration
various kinds of phenomena.26 Particularly, in the context of
glass transition, there are several studies based on
scenario.27–30 Recently Kiefferet al.31 used this concept ex
tensively to fit their experimental results where the tempe
ture dependence of the complex mechanical modulus of v
ous glass forming liquids was determined on a nanom
scale throughout the transition range by using Brillouin lig
scattering. In their approach, which is based on sim
Boltzmann statistics, the system is partitioned between
distinct structural states, one with the characteristics o
viscoelastic fluid, and the other one being rigid and can
spond only elastically. Of course, in a real situation, a dis
bution of structural states can coexist at various degree
supercooling. Furthermore, it was postulated that these lo
ized structural fluctuations are separated by a diffusive in
face; as both states are amorphous in nature there ar
distinct interfaces between these structural domains and
surface tension terms are negligible. In particular, it w
found that there is a gradual structural transition from
glassy to the viscoelastic state at high temperatures.
most remarkable finding of this study is that the temperat
dependence of the inherent structure energies of a bin
Lennard-Jones liquid, studied by Sastryet al.32 using com-
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puter simulations, can be well fit by this two-state model a
thus provides support for the concept that thermodyna
cally driven structural transitions underlie the glass transit
phenomena.

It is interesting to note that the free energy function
form used in this study has also recently been used to in
tigate the stability of a structure in the metastable state wh
is in between the homogeneous liquid state and the reg
crystalline state.33 In that case, the heterogeneous dens
distribution was expressed by the superposition of Gaus
profiles centered on an amorphous lattice and was chara
ized by a variational parametera, which represented the de
gree of localization of the particles in the system. A fr
energy minimum corresponding to a metastable superco
state of less localized structure was found, in addition to
highly localized ‘‘hard sphere glass.’’34 Most interestingly, it
was found that this minimum does not occur if the under
ing lattice is taken as a regular crystalline one. Although t
study supports the view of the existence of a heterogene
density distribution, the absence of a minimum in the cr
talline configuration is surprising, but it might be a patholo
of hard sphere system.

The organization of the rest of the paper is as follow
Section II provides the expressions necessary to calculate
probability distribution of inhomogeneous regions using d
sity functional theory~DFT!. The numerical results of the
probability distribution are presented in Sec. III. Section
describes the rotational dynamics of the molecules in re
ing inhomogeneous domains. The relaxation of nonequi
rium density distribution is described in terms of two-sta
exchange model in Sec. V. Finally, concluding remarks
presented in Sec. VI.

II. PROBABILITY DISTRIBUTION OF
INHOMOGENEOUS REGIONS

The normalized probability distribution having densi
fluctuation (dr) is given by

P~$dr%!5
exp~2bDF~$dr%!!

* dr exp~2bDF~$dr%!!
, ~1!

whereDF5F@r#2F@ r̄# is the excess free energy require
for creating an heterogeneous region of densityr in the uni-
form liquid of densityr̄. b is the inverse of the Boltzman
constant (kB) times the absolute temperature (T).

The heterogeneous regions are spherical in shape a
our assumption and the density fluctuation can be given
proximately by the following Gaussian form:

dr~r !5dr~r50!expS 2
~r 2 r̄ !2

RI
2 D . ~2!

Herer̄ represents the mean position of the fluctuation and
simplicity it is assumed to be taken as the origin (r50).
dr(r50) gives the maximum value of the fluctuation.RI

determines the spread of this fluctuation from the origin.
We have also chosen an alternative form of the den

fluctuation to check the sensitivity of the results of the
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sumption of continuous density distribution. The alternat
distribution is given by the following step function expre
sion:

dr~r !5dr~r50! H~RI2ur u!, ~3!

where similarly the maximum value of the fluctuation
given bydr(r50). H(RI2ur u) is the heaviside step functio
and takes the following simple form:

H~RI2ur u!5
1, RI.ur u

0, RI,ur u.
~4!

HereRI is the radius of the spherical heterogeneous regi
The form of the density functionalF@r# is approxi-

mately given by the following functional Taylor series e
pansion againstr(r ) truncated at the second order term:22,35

bF@r#5bF@ r̄#1E dr @r~r ! ln~r~r !/ r̄ !2dr~r !#

2
1

2E E dr dr 8 c(2)~ ur2r 8u!dr~r ! dr~r 8!, ~5!

whereF@ r̄# is the free energy of the liquid at the uniform
density r̄, and dr(r )5r(r )2 r̄ measures the deviation o
the density fromr̄ at the spatial pointr . b is the inverse of
the Boltzmann constant (kB) times the absolute temperatu
(T). c(2)(r ) is the direct pair correlation function of the un
form liquid of densityr̄. To calculate the direct pair corre
lation function, c(2)(r ), we have used the well-known
Percus–Yevick approximation36 which is appropriate for the
hard sphere liquid.

III. NUMERICAL CALCULATION OF THE
DISTRIBUTION, P„r…

We have calculated the corresponding free energy cos
create density fluctuations of various size. The calculat
has been carried out for both types of density fluctuat
form described in Sec. II. The scaled density of the unifo
liquid, r̄* 5 r̄s3 (s is the hard sphere diameter! is assumed
as 1.04. We have also calculated the probability distribut
for different sizes of the localized region. This has been do
by creating both positive and negative fluctuations in den
relative to the uniform liquid. The density (r* 5rs3) is var-
ied here continuously and the distribution is calculated
using Eq.~1!.

In Fig. 1, we plot the distributionP($dr%) as a function
of dr, for fluctuations of three different sizes,RI54.0s,
RI52.5s and RI51.5s, respectively, wheres is again the
hard sphere diameter. The calculation has been perfor
using the Gaussian form of the density fluctuation~Eq. ~2!!.
It can be seen from this figure that the distribution is nea
Gaussian. This is because the free energy surface is ne
harmonic—interestingly the anharmonicity increases w
decrease in size. The free energy required to create a he
geneous region of small size is much less compared to
for a large size. This large free energy cost to create la
inhomogeneous regions follows directly from the followin
approximate expression for the probability of fluctuation
the wave number dependent density,rk :
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P~$rk%! 5
1

ApS~k!
expS 2

rkrÀk

S~k! D , ~6!

whererk is the spatial Fourier transform ofr(r ),

rk5E dr exp~2 ik.r ! r~r !, ~7!

and S(k) is the static structure factor of the supercool
liquid. In a supercooled liquidS(k) is nearly zero for small
wave numbers~because of very low compressibility!, hence
density fluctuation can take place only in intermediate wa
numbers whereS(k) is large.

As can be seen from Fig. 1, fluctuations of small s
have a broader distribution and the width of the distribut
becomes narrower as size increases. The probability of
ing fluctuations of small size is finite even when the fluctu
tions in density are very high whereas it is almost zero
the large size. For the size,RI54.0s, the spread of the dis
tribution of the localized inhomogeneous regions becom
rather small. This clearly demonstrates that it is easie
create the soft fluctuations and after certain length sc
(l f>5s) the system behaves like a homogeneous liquid

It should be noted here that the distributions calcula
using the step function form of the density fluctuation@Eqs.
~3! and ~4!# also show similar types of behavior.

To compare the results obtained for hard spheres~Fig. 1!
with the systems interacting via continuous potentials,
aforementioned calculation for the probability distributio
has also been carried out for the Lennard-Jones~LJ! system.
The direct pair correlation function,c(2)(r ), for this system
is calculated by solving the Ornstein–Zernike equation
neat supercooled liquid by using the soft mean spherical
proximation~SMSA!.37 SMSA is known to provide a reason
ably accurate description of static correlation functions
dense liquids. The calculation is performed at a reduced t
peratureT* (5kBT/e) equal to unity and the reduced de

FIG. 1. The normalized probability distribution,P($dr%), plotted as a func-
tion of local density fluctuation,dr, for three different sizes (RI) of the
local inhomogeneities. Note that the reduced density of the uniform liq
r̄* (5 r̄s3) is assumed to be 1.04. The solid triangles denote the calcul
results forRI51.5s, solid diamonds forRI52.5s, and the solid circles for
RI54.0s. The solid lines are simply an aid to the human eye. For furt
discussion, see the text.
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sity of the uniform liquid,r̄* 5 r̄sLJ
3 ~wheresLJ is the LJ

diameter! is set at 1.0142. This system can be mapped i
the hard sphere fluid characterized by a density and temp
ture dependent effective diameter,38 by employing the well-
known Weeks–Chandler–Anderson~WCA! perturbation
scheme.39 In Fig. 2, a comparison is made for a particul
size of the localized region,RI52.5sLJ , which corresponds
to approximately the size of 2.479s (s is the hard sphere
diameter!. It shows that the size of the localized density flu
tuations will be somewhat larger compared to the h
sphere result. In the case of continuous potentials one ha
attractive part and as a consequence there is an increa
spatial correlation length. In addition, the system has n
become more compressible than the hard sphere liquid
thus allows for the persistence of localized fluctuations
larger wavelength.

The results presented above do not consider the sur
tension term which can arise because regions of high den
are likely to be surrounded by regions of low density. T
localized regions which exist in the highly supercooled l
uid can be represented by the ‘‘density droplets’’ much as
the same spirit of the ‘‘entropy droplet’’ picture o
Wolynes.40,41 To create these density droplets one wou
have extra surface energy term in addition to the energy
given by the density functional expression@Eq. ~5!#. Thus the
total free energy of the droplet can be expressed as a func
of the radius of the droplet (RI),

DFT~RI !5DF~$dr%!14pRI
2g, ~8!

whereDF($dr%) is the excess free energy required for cr
ating the droplet of densityr in the uniform liquid of density
r̄ andg is the surface free energy per unit area. Note that

,
ed

r

FIG. 2. The same quantity depicted in Fig. 1 but now the results are c
pared with those calculated for continuous potentials for a particular siz
the heterogeneity. For the continuous potential, the calculation is done
reduced temperatureT* (5kBT/e) equal to unity and the reduced density o
the uniform liquid,r̄* 5 r̄sLJ

3 is set to 1.0142. The calculation is performe
for the heterogeneity of sizeRI52.5sLJ , wheresLJ is the LJ diameter. This
corresponds approximately to the size of 2.479s, wheres is the effective
hard sphere diameter. Open diamonds are the results for the hard s
system and open circles for the continuous potentials. Solid lines are
vided as a guide to the eye. For further details, see the text.
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contributions from both of the two terms in the right ha
side of the above expression are positive. This is in cont
to the conventional classical nucleation theory, where
formation of a new thermodynamically more stable phase
the original mother phase is preferred, but the cost due
surface energy acts against the growth of the embryo of
new phase. As a result of these two competing effects, th
exists a free energy barrier corresponding to a nucleus
critical size. Variation of the excess free energy of the drop
of particular density calculated using the DFT express
@Eq. ~5!# as a function of the droplet radius (RI) is shown in
Fig. 3. As can be seen from this figure, this energygrows
with the radius of the droplet. In order to see the functiona
form of this growth, we have fitted the data to polynomials
RI . The details of the fit parameters are given in the capt
of Fig. 3. While the surface energy term grows asRI

2 , the
cost of the density fluctuation grows asRI

3 . Thus the main
effect of the inclusion of the surface energy term would be
reduce the probability of small size droplets rather than
droplets of large size and the small scale fluctuations
become less probable. However, as the amplitude of th
fluctuations is small and the symmetry of the liquid is alm
preserved, the surface free energy per unit area (g) is ex-
pected to be very small. Consequently, the surface en
contribution should have a less pronounced effect unlike
the case of thermodynamically driven first order transitio

IV. ROTATIONAL DYNAMICS IN RELAXING
INHOMOGENEOUS DOMAINS

As discussed in Sec. I, the nonexponential decay of
orientational correlation functions can be described, at le
partly, considering spatial heterogeneous dynamics of the
percooled liquid and this has been confirmed recently by

FIG. 3. The relative excess free energy,bDF, as a function of the drople
radius (RI) for a fluctuations of fixed amplitude,dr* 50.05. This excess
free energy has been calculated using Eq.~5!, where the Percus–Yevick
approximations~PY! is used for the direct pair correlation function. Ope
circles are the calculated values and the solid line is the cubic polynomi
in RI . The fit parameters are as follows:bDF50.010 9420.062 93RI

10.0071RI
210.238 71RI

3 . Note that the free energy is scaled bykBT
(51/b) andRI is scaled bys (s is the hard sphere diameter!. For detailed
discussion, see the text.
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photobleaching experiments.2,3 We assume that the local in
homogeneities having different relaxation times are
scribed by different local densities.

The density dependence of the relaxation times for
percooled liquids is often described by the well-know
Vogel–Tammann–Fulcher~VTF! equation,42

t~r!5t0 expS C

rg2r D , ~9!

where the constantC is proportional to the activation energ
for the relaxation rate.rg is the density at the glass transitio
point.

The orientational correlation function averaged over
probability distribution of the local relaxation times,P(t),
can be expressed as

^C2R~ t !&5E dtP~t! expS 2
t

t2R~t! D
[E drP~r! expS 2

t

t2R~r! D , ~10!

wheret2R(r) defines the rotational relaxation times in th
domains having different local densities. It is assumed to
given by the following expression:36

t2R~r!5
1

6DR~r!
5

8ph~r!R3

6kBT
. ~11!

In the above expression,DR is the local rotational diffusion
coefficient and the last equality results by using the we
known Debye relation,DR5kBT/8phR3, where R is the
molecular radius. The density dependence of the visco
h(r), is assumed to described by the VTF equation.

The average rotational correlation time is calculated
usual by integrating the orientational correlation function

^t2R&5E
0

`

dt ^C2R~ t !&. ~12!

It was observed in recent experiments of Edigeret al.2,3

that the average rotational correlation time increases with
fraction of probe molecules that have been photobleach
This led them to conclude that there exists a spatially hete
geneous distribution of local relaxation times and the
crease in the correlation time is due to the selective dest
tion of subset of probe molecules in more mob
environments. To study the effect of this selective ph
tobleaching on the rotational dynamics of the molecules
have created a nonequilibrium probability distribution
density by tagging only the slow regions relative to the u
form liquid. This is shown by the hatched area in Fig. 4. W
have used the respective normalized distributions thus
tained to calculate the equilibrium and nonequilibrium orie
tational correlation function̂C2R(t)&. Figure 5 displays the
decay behavior of these correlation functions for a particu
size of the local inhomogeneity,RI52.5s, at the average
density of the liquid,r̄* 51.04~glass transition densityrg* is
taken as 1.1!. The decay is nonexponential in nature and t
value of the average correlation time has increased almos
a factor of 1.8 in the nonequilibrium ensemble. Figure

fit
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clearly shows that this difference in average correlation ti
will increase as we continue to approach the glass trans
density. The physical origin of this increase is easy to und
stand. With the increase in density, although the faster
gions become increasingly slow, the slower regions beco
slower at a faster rate due to the divergence in relaxa
time near the glass transition point. Thus the structure of
supercooled liquid becomes dynamically more hetero
neous as the density increases toward the glass trans
density.

Even in the idealistic model described above, it is no
trivial to formulate the relaxation of the nonequilibrium di
tribution of density to the equilibrium one. In order to have
qualitative idea about how this relaxation can explain
experimental results, we have carried out an approxim

FIG. 4. Schematic representation of the unnormalized nonequilibrium
tribution of density for a particular size of the inhomogeneity,RI52.5s.
The tagging of only slow regions relative to the uniform liquid in the no
malized equilibrium distribution is shown by the hatched area.

FIG. 5. The decay behavior of both the equilibrium and nonequilibri
orientational correlation functions,^C2R(t)&, where timet is plotted forRI

52.5s. The average density of the liquid (r̄* ) and the density at the glas
transition point (rg* ) are 1.04 and 1.1, respectively. The solid line indica
the decay at equilibrium and the dashed line immediately after creating
nonequilibrium distribution. In the nonequilibrium ensemble the aver
rotational correlation time has increased and is almost 1.8 times the eq
rium value. Note that the timet is scaled by@ms2/kBT#1/2. For further
discussion, see the text.
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calculation based on a simplified noninteracting, two-st
exchange model, described in the following section.

V. TWO-STATE EXCHANGE MODEL FOR RELAXATION
OF NONEQUILIBRIUM DENSITY DISTRIBUTION

We consider the system consists of only two dynami
states where the dynamics in one of these states is fast
slow in the other. These two states are characterized by
two different densities,r1* andr2* , respectively and by two
local rotation times,t1 andt2 .

Assuming there is an exchange between these two
ferent dynamical regions at a rate,kex, the time dependen
probability distribution for state 1 within this model is give
by the following expression:

p1~ t !5 1
2~11p~ t50!e22kext!, ~13!

and similarly the same for state 2 is given by

p2~ t !5 1
2~12p~ t50! e22kext!, ~14!

wherep(t50)5p1(t50)2p2(t50).
Now the orientational correlation function averaged ov

different time intervals (td) simply can be expressed as

^C2~ t !&~ td!5S i 51
2 pi~ td! expS 2

t

t i
D

5 1
2~11~p1~ td50!2p2~ td50!! e22kextd!

3expS 2
t

t1
D1

1

2
~12~p1~ td50!

2p2~ td50!! e22kextd!expS 2
t

t2
D . ~15!

Here time intervaltd measures the delay time after creating
nonequilibrium distribution which in this model is consid
ered to be represented by slow regions only and thusp1(td

s-

he
e
ib-

FIG. 6. The average ratio of the rotational correlation times in the none
librium ensemble (̂t&neq) to the equilibrium values (^t&eq) as a function of

the scaled average densityr̄* (5 r̄s3) for the regions of size,RI52.5s. The
glass transition density (rg* ) is assumed to be 1.1. The solid line is simp
an aid to the human eye. Note that the correlation times are scale
@ms2/kBT#1/2. For further details, see the text.
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50)50 andp2(td50)51. With an increase in timetd , the
distribution achieves equilibrium when both of the two sta
have equal probabilities,p15p25 1

2.
The time integration of the correlation function aga

gives the average rotational correlation time at timetd ,

^t&neq~ td!5E
0

`

dt ^C2~ t !&~ td!. ~16!

This nonequilibrium average,̂t&neq(td) is a marker of the
relaxation of the distribution. Ediger and co-workers2 found
that this relaxation occurs at a very slow rate and the
change time (tex) shows strong temperature dependence n
the glass transition temperature (Tg). The microscopic
mechanism behind this very slow exchange is yet to be
derstood.

To analyze the origin of this very slow decay, we ha
followed a procedure already used in experiments.3 We start
by defining a normalized correlation function,Ct(td), as

Ct~ td!5
@^t&neq~ td!/^t&eq21#

@^t&neq/^t&eq21#
. ~17!

Ct(td) so defined starts at 1 attd50 and decays to 0 in the
limit of td5`. Using this normalized correlation function
the exchange time can be defined as

tex5E
0

`

dtd Ct~ td!. ~18!

Use of Eqs.~14! and ~15! in Eq. ~16! gives

tex5
1

2kex
. ~19!

That is, within the symmetric two-state model,Ct(td) indeed
probes the exchange process. However, in the case of a
symmetric model, this simple relation breaks down andtex is
now given by

tex5
1

k121k21
, ~20!

wherek12 andk21 represent the transition rates between st
1 and state 2 and between state 2 and state 1, respectiv

Ediger and co-workers2,3 speculated that the translation
diffusion of a probe molecule between regions with differe
dynamics could be one of the possible mechanisms of
very slow exchange process observed in experiments. H
ever, such a translational diffusion mediated exchange
scale with the viscosity of the inhomogeneous region. So,tex

will vary similarly as the average equilibrium rotational co
relation time,^t&eq. This does not allow the emergence
the extremely slow relaxation process very near to the g
transition point.2,3

Thus the above analysis shows that there must be s
other mechanism which determines this very slow relaxat
In fact, the recent Monte Carlo simulation studies
Dasgupta and Valls43 for a dense hard sphere system sh
that the slow relaxation near the glass transition can a
from activated transitions over free energy barriers betw
different local minima of the free energy. The time sca
associated with this transition was found to increase with
s

-
ar

n-

on-

e
ly.

t
e

w-
ill

ss

e
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f

e
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e

average density and this growth of the relaxation time
attributed to an increase of the characteristic height of th
free energy barriers. The increase in the transition time r
sharply near the glass transition temperature. This is still
a plausibility.

VI. CONCLUSION

In this article, the standard form of density function
theory~DFT! has been used to calculate the free energy p
alty to create soft localized density fluctuations in a ha
sphere liquid. The scaled density has been varied here
tinuously from 0.99 to 1.09 where we use the uniform liqu
of density 1.04 as a reference system.

It is found that the free energy required is much less
create a local inhomogeneity of small size compared to
for a large size. This is attributed to the sharp maximum
the static structure factorS(k) at intermediate wave number
(ks.2p) and also to the very low compressibility of supe
cooled liquid at low wave numbers. It is shown here that
liquid almost behaves like a homogeneous liquid in t
length scale larger than about 5.0s ~wheres is the molecular
diameter! which agrees qualitatively with the recent expe
mental results.8,9 In addition, it is shown here that the inclu
sion of the surface energy effect will more likely reduce t
probability of small size ‘‘density droplets’’ than the drople
of large size. However, it is suggested that the surface ef
has a very small contribution to the total free energy cost
forming these droplets.

The results obtained for hard sphere liquid using
Percus–Yevick~PY! approximation for the direct pair corre
lation function36 have been compared with the soft me
spherical approximation37 ~SMSA! applied to the dense
Lennard-Jones liquid. The fluctuations are found to be so
what larger in size for the continuous potentials due to
increase in spatial correlation length.

Theoretically obtained inhomogeneous probability dis
butions have been used to calculate both the equilibrium
nonequilibrium orientational correlation functions. We fin
that the spatially heterogeneous distribution of the densit
responsible for the nonexponential nature of the rotatio
relaxation. For nonequilibrium distribution the average ro
tional correlation time of molecules relative to that of equ
librium distribution is found to increase with the avera
density of the liquid. Our theoretical results have been co
pared with the experimental results of Ediger a
co-workers2,3 obtained recently by photobleaching techniqu
Good qualitative agreement is found between the theore
results presented here and the experimental results.

Relaxation of the nonequilibrium distribution has be
studied in a qualitative way using the simple noninteract
two-state exchange model where only two different doma
with different densities were considered. The results obtai
in this model show that the extremely slow relaxation p
cess observed near the glass transition point2,3 cannot be ex-
plained by the translational diffusion of a molecule betwe
regions of different dynamics. It is suggested that the tran
tions between different local minima of the free energy n
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the glass transition could be responsible for this very s
relaxation.

Although we have used the simple two-state model
study the relaxation behavior near the glass transition,
ideal way to consider an inhomogeneous liquid is to cons
a probability distribution of the density as given b
Kawasaki.44 He proposed a probability distribution func
tional P($r%,t) for slow dynamics of the density variabl
r(r ) in the supercooled liquid. This probability distributio
in the density will lead to a probability distribution of th
dynamical variables.
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