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Molecular dynamics simulations of diffusion of isolated tagged spheres in liquid crystalline
molecules have been carried out. While the diffusion is isotropic at density slightly below the
isotropic-nematic phase transition, it is found to become strongly anisotropic very close to the I-N
transition where the diffusion perpendicular to the direction of the order parag(®e) decouples

from the parallel D) component. The diffusion coefficient of the sphere also shows a marked
slowing down as the I-N transition approaches, in accordance with the mode coupling theory
analysis. The variation of the orientational order parameter with the density shows a sharp transition
at a reduced density, where plot of the ratioD,/D, against the reduced densify’ clearly
shows the emergence of anisotropy. could be fitted to a form} —p*)P with a p; which is
slightly larger tharpjy, . The diffusion shows a strong non-Stokesian dependence on the radius of the
spheres, in agreement with recent experiments.

I. INTRODUCTION HereS(t) is the instantaneous order parameter. This slowing
. ) ) ) down has been attributed to the formation of correlated do-
The dynamics of the anisotropic molecdiese consid-  aing where the ellipsoidal or rodlike molecules are nearly
erably more complicated than those of the spherical mOlya el The understanding of the collective dynamics near
ecules because orientational correlations can have profounfla |_N transition has been a subject of interest for a long
effects on both translational and rotational motion of they 4
molecules. The simplest way to characterize the anisotropy |, recent years, several computer simulation studies have
of the molecule is to model it as an ellipsoid. The anisotropy,een carried out in order to obtain an understanding of the
in _the mol_ecu_lar shap_e is then characterized b_y the_aSpeag/namics at the microscopic level. These simulations em-
ratio «, which |s_the ratio of _the length of the major a_>(a§ ployed either a hard repulsive interaction potefital the
to that of the minor a.X|$b), €., x=a/b. When«>1, i.e., Lennard-Jones-like Gay—Berne potential and have been
when the molecule is rodiike, the system can undergo g,ceseffit in producing I-N phase transition with the

phase trans,.ltllon.from nematlp to the |sptrop|c phase. Th'%haracteristics observed by the experiments, although the as-
phase transition is weakly of first order with many character-

o L - . ect ratio of the ellipsoids or the rods simulated were much
istics similar to those observed near the critical point. Thé) P

fientational order paramet&rof this transition can be d smaller than those usually found in the real world. For ex-
?inzd 2;53 order parameterot this transition can be de ample, one finds a good I-N transition for the prolates with

aspect ratiox=3. In Fig. 1, we show the simulated order
1 [N parameter variation with density. The transition occurs
S= m< IZl (3 cos 6,— 1)> , (1) sharply atp* =0.315. The simulation studies have also found
that a power-law-like behavior in orientational relaxation oc-
where#; is the angle of the ellipsoidal axis with the Z-axis of curs near the I-N transitichRecent experimental studies by
an arbitrary space fixed frame. In the isotropic phase, th&ayer and co-worketé have revealed many fascinating as-
value of the order paramet&is zero, whereas in the nem- pects of short and intermediate time of the dynamics near the
atic phase, where the ellipsoids are oriented nearly parallel tpN transition. This includes the observation of a power law
each other, the order parameter is unity. Near the isotropicdecay at intermediate timé3.Generalized hydrodynamic
nematic(l-N) phase transition, the order parameSashows a  equations have been used to understand these results with
dynamic slowing down in the sense that the decay of th&ome degree of success, especially in exploring long time
time correlation function{S(0)S(t)) becomes very slow. orientational dynamics in the isotropic phase. No fully satis-
factory explanation of the intermediate time power law de-
aAuthor to whom correspondence should be addressed; electronic maif@y has yet been put forward, although work in this direction
bbagchi@sscu.iisc.ernet.in is under progres¥




Recently experiments have been performed to study the
dynamics of tagged spheres in rigid colloidal hard rbtls. ,BF(V-'E):VJ dr’f dQ'c(r—r", Q") spn(r',Q,1),
has been observed that in the limit of large volume fractions (5)
of the hard rods, the diffusion of the tagged spheres depends Do o ,
strongly on the size of the spher§awe also find a similar  Where dpn(r’,€2',1) is the fluctuation in the density of the
result. The diffusion coefficient of the sphere show a non."€Mmatogens,
Stokesian dependence on the radius of the sphere. In this 5, -, /a7, (6)
work, molecular dynamics computer simulation of diffusion o
of a few isolated tagged spheres in a liquid of prolate ellip-where p is the average number density of the nematogens,
soids with aspect ratiog=3, has been presented. This sys-c(r—r',Q’) is the two particle direct correlation function
tem undergoes an I-N phase transition at a reduced densi§etween the tagged sphere at positiand the nematogen at
p*=0.315 withT* =1.0, as shown in Fig. 1. The reason for r’ with the orientation2’. We now split{,, further into two
studying the diffusion of tagged spherical molecules in thisterms:
system is to explore the possibility of using this method to £o= N 4 s @
study the dynamics of nematogens near the I-N transftion. pp-=pp - >pp
We have varied the size of the tagged spheres which haghere{)) is the normal part due to isotropic interaction be-
revealed several interesting aspects. As the I-N transition igveen the sphere and the nematog@proximated here as
approached, we find that the total diffusion coefficient of allellipsoids. g;‘gg is the singular part due to I-N transitiogﬁ'gg
the spheres of different sizes decreases, but rather differentlylerives maximum contribution from coupling to the orienta-
We also find that the diffusion coefficient becomes aniso+tional order parameter, that is, to tNey({2(t)) component
tropic very close to the I-N transition region and is also de-of the nematogen density. In the subsequent steps we trans-
pendent on the size of the spheres. form the equations to the wave numbespace, expand both

The rest of the paper is organized as follows. In the nexthe direct correlation function and the density in spherical
section, we discuss the mode coupling theory approach, foharmonics, carry out the angular integrations to obtain
lowed by details about the systems studied, the interaction

potential used and also the_ simulation procedure. Ir_1 Sec. !V, gsing:Af dkk“cgo(k)on(k,t), @)
we present the results and in Sec. V, we conclude with a brief ~ ~#°
discussion.

wherec,, is the (20) component of the wave number depen-
dent direct correlation function between the sphere and the
nematogen and\ is a numerical constant,q(k,t) is the

Il. MODE COUPLING THEORY OF TAGGED PARTICLE orientational intermediate scattering function given by
DIFFUSION NEAR THE ISOTROPIC-NEMATIC

PHASE TRANSITION Fao(k,t) =(Spao( —k,t=0)dpxo(k,1)), €C)
Near the I-N transition, the collective orientational relax- with
ation slows down dramatically. This should certainly affect
the translational diffusion of the tagged spheres. However, 9p(K,2,1)= 2> Spim(K,1)Y|m(Q(1)). (10
we are not aware of any theoretical study of this translation-

rotation coupling. Here we present a theoretical study of this ~ The decay ofi(k,t) becomes very slow at small wave
effect by using the mode coupling thedfy:” We start with  numbers near the I-N transitiof,o(Kk,t) can be approxi-
Einstein’s relation between diffusiai®) and friction coeffi- mated by
cient({) on the sphere

Fadl) = Safiond| ~ | 1y
’ = ex - ’
_ kel @ ? ? S22dK)
¢ where
We split friction ¢ into a short timgbinary) and a collective
term Sood K) =F2o(k,t=0)=(p,o( —k) 5p2o(K)). (12
£=Loint Lpp s €) Thus, theS,,(K) is the orientational structure factor of

, . o the nematogens. Near the I-N transitidgp,ok) shows a
where we have approximated the collective contribution byrapid growth at smalk which can be representedas

the density mode. This should be okay as we treat the effects
of slow orientational density relaxatiod,, can be obtained k3
from Kirkwood’s formula Spod k)= BIZ+KZ (13

1 o
= where
Lop 3kBTVderjo dt(F(r,0).F(r,1)), (4) i
p\d
whereV is the total volume of the system. The fluctuation kg=[<ﬂ) chzo(k=0)}, (14
force F(t) is now obtained from the density functional
theory*® and



p Ill. THE SYSEM AND THE SIMULATION DETAILS
B=1——c,,dk=0). (15
4m We have carried out molecular dynamics simulations of
576 molecules consisting of 572 ellipsoids and 4 spheres
with constant numbeiN), volume(V), and energyE) being
the constraints. The ellipsoids are characterized by the aspect
ké ratio, k which is the ratio of the semimajor axig) to the
So20~ i 2 (16)  semiminor axigb).’
The system is modeled by three different kinds of inter-
Use of Eq.(16) in Eq. (8) shows that any singular contribu- actions. The ellipsoid—ellipsoid interaction is given by the
tion to g;‘:g must come from the rotational diffusion coeffi- Gay—Berne potentiz?t,7 in which the orientation of the ellip-
cient D of the nematogen®y, is related to the rotational soid is also taken into account. The interaction is given by

friction g by

We assume thaB goes to zero aspi— p)P. Therefore, near
the transition,

12

S o9
U :4 1 1 ~ ~ 12
:kB_T (17) e E(r Ul UZ) r_(T(r,U1,uz)+UO
R ik , 6
o
A similar mode coupling calculation is now performed to = o(f,01,00) +ag| |’ (23
obtain the following contribution to the singular part of ro-
tational friction: with
i * = Dgt A 1 [(F.0,+T.0y)2
sini 2 _ R o(Uq,Us,rI :0', 1—— —_—
b gocfo dtf0 dkk2c5,0ex —Szzo(k))’ (18 (Ug,Uz,1) =09 1= 5 x 1+ x(0q.05p)
- + (?ﬂl—fﬁz)z }1/2 (24)
ocfo dkk2c3,4 k) Syod K)/Dg. (19 1— x(0,.0y) ’
_ where
SinceDg depends o9, a self-consistent calculation ,
is required. Here we just carry out a one loop calculation to ~ 0¢=2b, (29
obtain b is the length of the semi-minor axis of the ellipsoid and
5% f gk 0 (20 ai =t
R YL — =
o Bkjt+k X O'f-l-a'f . (26)
{r Is the bare friction. Near the I-N transitioB~=0, so the  The grientation dependent strength parameter is
singular contribution is non-negligibleunlike the transla- o o
tional friction). We rewrite the above equation as €(F,01,0,) = e[ 1— x2(0y.0)] 2
PPN LR N2 (RO 2712
% e (K2B)KZ X (r.ug+r.up)®  (r.ug—r.u,)
é?e'ng‘x—Rf ke (21) T T, T
BJo  k3t(kB) X Ug.Uz X Uz.Uz
(27)

If B goes to zero asp—p)P, then the first loop calcu-
lation predicts a power law slow down &f. This in turn X’ is used to adjust the ratio of side-by-side to end-to-end
predicts that near the I-N transition, the translation diffusionwell depths«’ is the ratio of the potential well depths for the
of a tagged sphere may have a power law dependence of tiséde-by-side and end-to-end configurations. In our simula-
following type: tion, the aspect ratiag=3 with «'=5, and hencey’ =0.382
which is related to<’ as

Drx(pe—p)®, (22)
T \/7_1

where p. is a critical point whereS,,((k) diverges. This X' = . (28
point ShOLilgdzo"e beyond the I-N thermodynamic transition \/7+1

point, piy . Note that t_he _above analysis is oqu qualita- The interaction between the spheres is given by the
tive and the normal contributions can mask the singular ConLennard-JoneS potential

tribution. The main merit of the above analysis is that is

shows the slow down of translational diffusion due to slow

down in rotational diffusion as the I-N transition is ap- U=4eo
proached. This is indeed a good example of translation-

rotation coupling, often discussed in literature. Another pointwhereo is the diameter of the sphenejs the interparticle

of interest is the size dependence of the tagged particle didistance, and is the strength parameter.

fusion. This enters through the sphere-nematogen coupling The interaction between the spheres and ellipsoids is
constantc,y(k) of Eq. (8). modeled by the GB-LJ potentfalwhich is given as

12

0o

r
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FIG. 1. The variation of the orientational order parameter with the reduced Density (p*)
density, p* at a reduced temperatur&} =1.0. The filled circles are the
simulated points. The solid line is for guidance to the eye. FIG. 2. The plot of the ratioD, /D, , against the reduced densipf;, at a

reduced temperaturd,* =1.0. The filled circles, open circles, and filled
triangles represent the simulated points for spheres of radii 0.5, 1.0, 1.5,
respectively. The dashed line gives the corresponding fitting to the simulated

0_( 0) 12 0_( 0) 6 points.
Uce-L1=4€0 r T }’ (30
with whereu; is the unit vector along the axis of thigé molecule,
uj, andu;z being the Cartesian coordinates in an orthogonal
b+R frame,a and B vary between 1 and 3. The order parameter is
o(0)= 7 2 ' 3D then given byX\) whereX is the largest eigenvalue of the
1-X*cos'(6) Q-matrix

where ¢ is the angle between the major axis of the ellipsoid  The order paramet&tcan also be calculated by finding
and the vector joining the centers of the spheres and ththe trace of theQ? matrix as given below:
ellipsoid andb is the length of the semi-minor axis of the

p 9 S=XTrQ?). (36)

ellipsoid
Both lead to the same value &f
R=—, (32) The anisotropic diffusion coefficien3; andD, are cal-
2 culated by finding the parallel and perpendicular components
and of mean square displacements. The parallel and the perpen-
dicular components of MSD are parallel and perpendicular to
_]a —b? the instantaneous orientational direction of the ellipsoids, re-
X= a’+R? (33 spectively. The unit vectors along the direction of average
orientation of ellipsoids are the eigenvectors corresponding
to the maximum eigenvalue obtained by diagonalizing the
2 time dependent Q-matriXNote that there is no ambiguity in
R (34)  finding the eigenvectors for the system with densities above
0.3 in a very long time limit.
The potential has been cut and shifted to half the box-
length. The translational and the rotational equations of MOR, RESULTS AND DISCUSSION
tions are solved by the leap frog algoritffiwith reduced '
moment of inertia being unity* =1/ma {2 All quantities are In Fig. 1, we show the variation of the orientational or-
scaled. The reduced density & =p0’63 and temperature der parameter with the reduced densif§, We see that, the
T* =kgT/€p. All the calculations have been carried out with order parameteS remains nearly zero untip*=0.3 and
a time stepAt=0.002 and at a reduced temperatlfé  there is a sharp rise in the order parametgs*at0.315 and
=1.0. Thesimulations have been carried out for three dif- hence the transition is observedugj=0.315. As the density
ferent sphere radii, 0.5, 1.0, 1.5, and several densities rangs further increased, the order parameter gradually increases
ing from 0.1 to 0.4. toward unity. The time correlation function of the order pa-
The orientational order paramet8has been calculated rameter shows a dramatic slowing down as the I-N transition
by diagonalizingQ,? which is a traceless, symmetric second is approached from the isotropic sitle.
rank tensor with three eigenvalues and is given by The diffusion is expected to become anisotropic as the
N nematic domains appear in the system. However, the local
_i L % order parameter of these domains varies. But, the direction of
Qup=y >, Ujaljp 3 (35 .
i=1 these domains does not vary much on average over a long

with

— a+R
a= \/(b2+R2)

b+R
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024 026 028 030 032 034 036 038 040 042 and 1.5. Anisotropy is clearly seen to arise very close to the
(b) Density (p") region where the I-N transition occurs.
In Fig. 4, we plot the total diffusion coefficient against
0.04 density, p*. This decreases as I-N transition is approached
and becomes very small beyopti~0.33. Abovep* =0.25,
003 the variation of the diffusion coefficient with density is
nearly linear in case of the spheres of radius 1.5. There is no
5 evidence of any dramatic slowing down of the total diffusion
5 0021 H coefficient.
Qi = Figure 5 shows the decay @, with density. From a
0014 nonlinear curve fifsolid line) of the form
T —
0\0 * *
S~ y=Yo+Alp*—p}|". (37)
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FIG. 3. The variation of the paralle}, and the perpendiculaD, compo-
nents of diffusion coefficient with the reduced density,obtained from the
simulations at a reduced temperattfé,= 1.0 for the spheres of different 0.020
sizes.(a) shows the result for spheres with radiusd.fb) represents that
for 1.00,, and(c) for 1.50- In all the figures, filled and open circles represent &
D, andD, , respectively. The error bars are within the radius of the circle. ;20.015 .
2
Qﬂ-
time.D, andD, are defined parallel and perpendicular with %0107
respect to the direction of alignment of these domains on an . ¢
average(globally). The direction of these domains is given 0.005 - . A
by the direction corresponding to the order parameter. In Fig.
2, we plot the ratid, /D, against density. It is observed that 026 058 050 052 034
the ratio remains near unity up to a certain dengifys=0.3 Density (p)

and then increases differently for different sizes. We also

observe that the anisotropy is more clear for spheres of IargﬁjI

size. It is observed that the ratid, /D, varies weakly with
the density only for smaller spheres of radius, 0.5.

G. 5. The plot ifD, againstp* at the reduced temperatufé =1.0. The
ed circles indicate the simulation result and the solid line shows the
nonlinear curve fit to the forny=y,+ (p% —p*)P, with p} =0.327 andp
=2.8.



1.00 sphere. From Fig. @), it is clear that orientation of two
particles gets disturbed noticably but not significantly and on
. . . an average, the nematic ordering is retained. In Fig), Gve

0.954 . o o see that the orientation of the ellipsoids with respect to the
director does not change much. It is observed that on addi-
tion of spheres in the system, the LC order gets perturbed

2 " only locally at the surface of the sphere.
e * The order parameter remains very close to zero at very
small densities indicating the isotropy in the system and the
085 orientation of the molecules in the system is random. The
o nematic domains start appearing very close to the I-N tran-
sition region which leads to the anisotropy in the system. The
080 T T T o 5 ..  anisotropy of the diffusion coefficients of the ellipsoids near
(@) Particle Number the I-N transition or in nematic phase is well knotf:**
Here we observe the anisotropy in the diffusion coefficient of
100 g o w'v.*r..’...fr AP, the sphere which is clearly seen in Figs. 233 3(b), and
0.98 ‘*} L Jeded t.%‘-'“ '.’”3 s 3(c) and this is strongly dependent on the size of the sphere.
096 ..?0 '}'.. ?.' e% o ..". _‘o.‘o‘“ .....‘b{' The decoupling of the parallel and the perpendicular diffu-
B g : ~ :‘o - ,S . 0“ sion coefficients can be clearly seen in Fig&)33(b) and
0941 g eqq ; ] e ¢ ° . °® 3(c) near the I-N transition. It is seen that this coupling of the
@ 0929 e e . . parallel and perpendicular components of the diffusion coef-
8 000 N ficient depend on the size of the sphere because it occurs at
] different densities for the spheres with different sizes. The
0.88 strong size dependence of diffusion shown in Figs. 3 and 4
0.86 are in tentative agreement with recent experimental reSults.
4 V. CONCLUSION
0 100 200 300 400 . . . . . . . .
(b) Particle Number While anisotropic diffusion of tagged ellipsoids in the

nematic liquid crystal phase is well-known and has been
FIG. 6. The cosine of the angle made by the ellipsoid with the nematicstydied earlier in simulation‘%5, the same for diffusion of
reco Lo feren sl o e reduced denar 04 eMPETEe  tagged spheres has not been investigated, 1 the best of our
of the angle for the ellipsoids at the surface of the sphere whilshows ~ Knowledge. This is not only of theoretical interest, but has
that for the ellipsoids which are away from the sphere. been studied recently in experiments as well.
The simulations have revealed two results which are of
considerable interest. First, the diffusion becomes anisotropic
The values ofpf andp are calculated which turn out to be very close to the I-N transition. This is because it is only
0.327 and 2.8, respectively. While not much significance cawery near the transition that the order parameter has a sig-
be attached to the value of the exponpritiue to neglect of nificant nonzero value. Second, the anisotropy in particular
various factors, such as finite size effettte value ofp; is  and diffusion in general show a very strong sphere size de-
more trustworthy. The mode coupling theory predicts thatpendence. This can be seen most clearly in Figs. 2 and 3
D, varies as below where the smallest size solutedius=0.5) shows a signifi-
D, %(p—p)P (39) cant anisot_ropy near the transition, bgt the least _anisotropy in
L7PeT P the nematic phase. The largest size sol(tdius=1.5
From the simulation, it is clear that the I-N phase tran-shows different behavior. Here the solute shows detectable
sition takes place at a reduced densif{;=0.315. However, anisotropic diffusion before the transitiof@at the reduced
the nonlinear curve fit to th®, versusp* shows that the density 0.3) which becomes larger in the nematic phase
transition occurs at reduced densigy,=0.327. This is in  (Fig. 2). Another result of some importance is the rate of
agreement with the theoretical analySeé8which find that a  approach of the diffusion to zero which seems to follow a
weakly first order I-N phase transition intervenes before thgower law behavior. While the fitting performed here should
divergence of the orientational structure fac®y;y k). not be taken too seriously, the value of the density where the
In Figs. 6a) and @&b), the orientation of the ellipsoids diffusion goes to zero is found to be 0.327 which appears to
both at the surface of the sphere as well as away from thagree with the theoretical restlithat the system would have
sphere with respect to the nematic director has been exanfaced a criticality if the weakly first order phase transition
ined at the reduced density; =0.4, which is in the nematic did not intervene. This criticality is the divergence of the
LC phase. Figure @) shows the cosine of the angle made by orientational correlation structure fact@&;,(k). The analy-
the individual ellipsoids[which are at the surface of the sis of the orientation of the ellipsoids near the surface of the
sphere within a distance of rb9)] with the nematic direc- sphere shows that the orientation of some of the ellipsoids
tor. Figure Gb) shows the angle made by the remaining el-get perturbed but still on an average, the LC order is main-
lipsoids with the nematic director which are away from thetained.
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