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Distribution of fluorescence resonance energy transfer (FRET) efficiency between the two ends of a

Lennard-Jones polymer chain both at equilibrium and during folding and unfolding has been calculated, for

the first time, by Brownian dynamics simulations. The distribution of FRET efficiency becomes bimodal during

folding of the extended state subsequent to a temperature quench, with the width of the distribution for the

extended state broader than that for the folded state. The reverse process of unfolding subsequent to a upward

temperature jump shows different characteristics. The distributions show significant viscosity dependence which

can be tested against experiments.

1 Introduction

Dynamics of polymer folding and unfolding in solution is a
problem of much current interest.1–3 Although some aspects of
polymer folding appears to be understood, detailed experi-
mental study of the folding scenario (especially the initial part)
is still not available. Given the complexity of the problem, the
computer simulations could consider only relatively simple
models, such as a necklace of Lennard-Jones or square-well
beads. In addition to its own intrinsic interest, the collapse of
polymers from poor solvents has served as a theoretical model
of protein folding in the early stages.4–8

In a notable recent development, fluorescence resonance
energy transfer (FRET) has been combined with single mole-
cule spectroscopic (SMS) technique to provide a powerful
novel approach to study the dynamics of folding. Deniz et al.,9

reported studies of dynamics of protein folding by observing
FRET in time domain from a single donor–acceptor (D–A)
pair. In the measurement of Deniz et al., the subpopulations9–11

of the folded and denatured states of the protein chymotrypsin
inhibitor 2 (CI2) were obtained as the concentration of the
denaturant (guanidinium chloride) was varied. The most
interesting result was that at the intermediate concentration
of the denaturant, the distribution of Forster efficiency
becomes bimodal. It was concluded that this bimodal distribu-
tion is the signature of the ‘‘two state’ nature of CI2 folding
transition. We were curious to know whether such a bimodal
distribution can be observed (a) for simple models like col-
lapsing homopolymers and (b) whether it can originate from
dynamics alone. To answer these questions, we have carried out
extensive Brownian dynamics (BD) simulations of FRET in
single macromolecules. We find, surprisingly, that even such a
simple system shows a bimodal distribution in the excitation
transfer efficiency, for chosen sets of parameter values. The
double peak is similar to the ones observed in experiments.9

The bimodal distribution is observed not only during folding
but also at equilibrium near the h temperature. The results
obtained here should help in designing future experiments.
The usually assumed mechanism for FRET is the Forster

energy transfer (FET).12,13 The rate of this transfer depends on
the separation (R) between the energy donor and the energy
acceptor. This rate, k(R), can be written as,12

k(R)~krad
RF

R

� �6

(1)

where RF is the Forster radius and krad is the radiative rate,
which is typically in the range 108 to 109 s21 for the commonly
used chromophores. The rate of energy transfer becomes equal
to KF when R~ RF. For a given D–A pair, RF can be obtained
by the usual method of overlap between the fluorescence and
the absorption spectra of the D–A pair.12 For commonly used
chromophores, RF is fairly large, often as large as 50 Å. This
means that the rate is very large when the donor–acceptor pair
is separated by a short distance. This may actually be a
limitation of the Forster expression which is strictly valid when
the separation between the D–A pair is much larger than their
size. However, the above limitation shall have a minor effect in
the present study which is qualitative in nature and aims at
exploring the general aspects of the energy transfer efficiency
distribution during folding.
In writing eqn. (1), the standard averaging over the

orientations of the transition dipole moments has been carried
out. In standard FRET experiments, the macromolecule is
doped with a D–A pair in suitable locations along the chain.13

Excitation transfer can be monitored by following the
fluorescence either from the donor or the acceptor or from
both. The time, trxn, taken for the excitation transfer to occur
depends strongly on the D–A separation R, as given by k(R) in
eqn. (1). For a polymer (or a protein) in solution, both at
equilibrium and during folding/unfolding, R is not only a
fluctuating, stochastic function of time, but also varies in a
definite way. In such cases, the distribution of the energy
transfer efficiency contains non-trivial and useful information.
Note that simulating FRET in real proteins is an exceedingly
difficult problem – it is not trivial even for a simple homo-
polymer – a problem that has eluded theoretical description
even today.
We define the FRET efficiency (WF) by the following

relation,

WF~
k(R)

k(R)zkrn
, (2)

where krn is the radiative decay (other than Forster migration)
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of the donor–acceptor pair. We next define the FRET efficiency
distribution P(WF) by the following expression,

P(WF)~
1

N

XN
i~1

d(WF{WF(trxn)): (3)

The above equation is to be understood in the following
fashion. After choosing a D–A pair at time t ~ 0, the pair is
followed till the trajectory gets terminated due to the reaction.

We define this time by trxn. At this time, the existing end-to-end
distance (R) is used in eqn. (2) to calculate WF. This was
followed for N independent trajectories for pairs chosen from
an equilibrium distribution. At the end we distribute the FRET
efficiencies in to the bins of width 0.1. In this way, a continuous
probability distribution (P(WF)) can be obtained from eqn. (3),
by taking the N A ‘ limit – in our case, we get a histogram
(Fig. 1–4). Similarly, we can calculate the probability distribu-
tion of reaction times.15

In this paper, we present the calculations of the distribution
of P(WF) for Forster migration among polymer ends both at
equilibrium and during folding and unfolding. In the next section
we describe the model and the simulation details. In section
III we present the results. We close the paper with a few
conclusions in section IV.

2 Simulation details

2.1 The model

The model polymer chain is made of connected Lennard-Jones
(LJ) beads. While this model homopolymer does not represent
complex richness of a protein, it is known to show interesting
folding kinetics.2,3 The total potential energy can be written
as,2

U~
XN
i~2

Xi{1

j~1

uLJ(rij)z
XN
i~2

ub( ri{ri{1j j) (4)

Fig. 1 The distribution of FRET efficiency (P(WF)), subsequent to a
temperature quench (from e* ~ 0.1 to e* ~ 0.8), obtained from BD
simulations is shown at RF ~ 7, k̃rad ~ 10 and N ~ 80. This
demonstrates the emergence of bimodality in P(WF). Here krn is fixed as
0.0001; the bimodality is present at other values also, but sharpness
depends on the magnitude of the radiative rate.

Fig. 2 The equilibrium FRET efficiency (WF) distribution is shown for
(a) e* ~ 0.3 and (b) e*~ 0.8. k̃rad ~ 10 and RF ~ 7 while krn is fixed as
0.01.

Fig. 3 The equilibrium FRET efficiency distribution (P(WF)) is shown
for e* ~ 0.5, which is close to the h temperature (e�h ~ 0.62). k̃rad, RF

and krn are same as in Fig. 2. This figure demonstrates the emergence of
bimodality even at equilibrium.

Fig. 4 FRET efficiency distribution (P(WF)), subsequent to quench
(from e*~ 0.1 to e*~ 0.8) is shown for k̃rad~ 1 (open bars) and k̃rad~
10 (filled bars). RF ~ 7 and krn are same as in Fig. 2.
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whereN is the number of beads, ri is the position of bead i, rij~
|ri 2 rj|, uLJ(r) is the LJ potential,

uLJ(r)~e
s

r

� �12

{
s

r

� �6
� �

(5)

ub is the bonding potential,

ub~
3kkBT

2b2

X
( ri{rj
�� ��{b)

2
(6)

where s and e are the LJ collision-diameter and the well depth,
respectively, kBT is the thermal energy and k represents the
stiffness of the spring. Here, we use k~ 9, N~ 80, and b~ s.
For convenience, we define e* ~ e/kBT. The unit of time, t, is
b2/D0. Thus, k̃rad (w kradb

2/D0) is also dimensionless. In this
study we have chosen k̃rad ~ 1 and 10. This choice of k̃rad
corresponds to the experimentally observed krad values, a bit
biased towards higher values. For example, in a solvent with
viscosity (g) equal to 1 cp, the radius of monomer molecules (R)
equal to 4 Å, k̃rad ~ 1 corresponds to a krad of 0.76 ns21 while
k̃rad ~ 10 corresponds to that of 7.6 ns.14 R is scaled by b, the
bead diameter, as usual. In viscous solvents, the viscosity can
be much higher, and the k̃rad can be even larger than 10.
The time evaluation of the polymer chain is done according

to the following equation of motion,

rj(tzDt)~rj(t)zFj(t)DtzDXG(t) (7)

where rj(t) is the position of jth bead at time t and the
systematic force on j is denoted by Fj(t). The random Brownian
displacement, DXG(t), is taken from a Gaussian distribution
with zero mean and 2Dt variance. The time step, Dt, is varied
from 0.0001 t to 0.0005 t. The scheme of Noguchi and
Yoshikawa2 has been used to investigate the polymer folding.
In this method, the equilibrium configuration obtained at e* ~
0.1 is quenched by decreasing the temperature instantaneously
to different values of e*, higher than 0.62 which is the h
temperature in this model. The time dependent total energy, the
root mean square end-to-end distance (R2) and the radius of
gyration (R2

g) were all monitored to follow the progress of
folding. The results presented here are the average over 10,000
of such trajectories with different initial configuration. More
details on the simulation scheme can be found elsewhere.15 To
simulate FRET , we have probed many combinations of RF

and k̃rad. We have selected RF ~ 7, which is near the maximum
in R2P(R) (we denote it by R0), where P(R) is the end-to-end
distribution. Another important parameter which affects
FRET is k̃rad. Large k̃rad values result in the higher efficiency
of FRET. In this study we have mostly dealt with k̃rad ~ 10.

2.2 Time scales

FRET in polymers involves several different time scales. Two
time scales, tFfold and tFun, are required to describe the average
survival probability of FRET in the folded and unfolded states,
respectively.15 These two time scales are widely separated
from each other, due to the sensitivity of survival time to the
separation between the two ends. The third relevant time in this
problem is tqfold, the time required for the polymer to fold
subsequent to the quench. For FRET to be useful in the study
of folding, this tqfold should be intermediate and well-separated
from the other two times. Two additional time scales k21

rad and
b2/D0 come from Forster energy transfer and Brownian
dynamics, respectively. While krad is fixed, b2/D0 can be
varied by changing viscosity (g).

3 Results and discussion

Results for the distribution during folding process (subsequent
to the quench from e* ~ 0.1 to e* ~ 0.8) are shown in Fig. 1. In
this figure the simulated probability distribution of FRET

efficiency P(WF) during folding is plotted at RF ~ 7 and k̃rad ~
10. One sees a clear bimodal distribution in the FRET
efficiency. The first peak at low efficiencies arises from the
extended state while the one at high efficiencies arises from the
folded configurations. Note also that the distribution for the
extended state is broad while that from the collapsed state is
narrow. This is expected on physical grounds and has been
observed in experiments. This bimodality is found to depend
critically on the value of krn which is a consequence of several
competing time scales in the FRET.
Results presented in Fig. 1 can be better understood from

Fig. 2 where we have plotted the equilibrium FRET efficiency
distribution in the extended (unfolded) and the collapsed
(folded) states, at RF ~ 7 and k̃rad ~ 10. It is observed that the
time taken for FRET is much larger in the unfolded state
(Fig. 2a), compared to that in the folded state (Fig. 2b). This is
reflected in the (ensemble averaged) survival probability (Sp(t))
of D–A pair (not shown), which is extremely fast in the col-
lapsed state and very slow in the extended state. The reason for
the observed (nearly) exponential distribution for the unfolded
state (Fig. 2a) lies in the choice of RF. Since maximum
probability for end-to-end distance (obtained by maximizing
R2P(R)) is at R # 7.3, for the given temperature and inter-
action strength. Thus, at RF ~ 7, there is significant population
already at this distance. If we change RF to small (like RF ~ 1)
or large (like RF ~ 10) values, the exponential distribution will
be replaced by a Gaussian type distribution. This sensitivity of
the distribution to RF can be exploited in experiments. The
distribution of reaction efficiencies in the folded state (Fig. 2b),
however, is not exponential. The initial fast fall in the pro-
bability is followed by a somewhat slower decay.
Both at high (e* # 0.1–0.3) and low temperatures (e* # 0.8–

0.9) the equilibrium P(WF) shows a single peak at lower and
higher FRET efficiencies, respectively. However, at intermedi-
ate temperatures(e* # 0.5–0.6), the equilibrium FRET
efficiency distribution (P(WF)) again shows a bimodal distribu-
tion. This is shown in Fig. 3, where the equilibrium P(WF) is
plotted at e* ~ 0.5. The emergence of bimodality in P(WF),
even at equilibrium, is due to the closeness to the h tempera-
ture (e�h ~ 0.62). This indicates that a ‘‘two-state’ model exists
in this simple system of homopolymer chain, near the h
temperature.
The above observations seem to provide the following

interpretation of the observed bimodality in Fig. 1. As the
polymer collapses subsequent to the quench, the polymer
passes through a succession of configurations. The initial
configurations correspond to the extended state. The polymer
passes through the intermediate state rather fast which shows
the dearth of population at intermediate WF, giving rise to the
bimodality.
The effect of viscosity (g) can be studied by varying the

dimensionless rate k̃rad, defined as kradb
2/D0. At constant krad,

large values of k̃rad represent solution of high viscosity and vice
versa. In Fig. 4, P(WF) is plotted against the FRET efficiency at
two very different values of k̃rad. Open bars show the result for
k̃rad ~ 1, while the filled bars represent that for the k̃rad ~ 10.
Fig. 4 shows that viscosity can have a dramatic effect on FRET
efficiency distribution.
During the unfolding (when the temperature is instanta-

neously raised to e* ~ 0.1 from e* ~ 0.8), P(WF) shows a large
peak at higher efficiencies which is accompanied by a tail
(of smaller peaks) towards lower efficiencies. The probability
distribution of reaction times (subsequent to a temperature
quench) P(trxn) also shows a bimodal distribution. We have
found that one can efficiently study the dynamics of the initial
stages of folding by placing the pair near the chain end where
the nucleation of the collapse starts in nearly all the cases that
we studied. In this case distribution of the reaction efficiency is
not as strongly bimodal as in the case previously mentioned.
We have monitored the variation in the mean square radius
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and the energy during the polymer folding as a function of
time. They show somewhat different behavior. nR2m and nR2

gm
start decaying only after an initial characteristic time delay. The
total energy of polymer chain starts decaying immediately after
the quench and continues to do so till it reaches the final stable
minimum energy configuration. This is because initial decrease
of energy does not require change in R0 – it occurs by
establishing favorable contacts.

4 Conclusion

To conclude, we have shown in this work that a bimodal
distribution of excitation transfer efficiency and of reaction
times emerge during folding and unfolding of model homo-
polymers in solution. The distribution looks surprisingly
similar to the ones observed recently in the folding of real
proteins by single molecule spectroscopy. The extent of
bimodality is found to depend on the values of the Forster
parameters (krad and RF), krn and the value of the diffusion
coefficient (that is, the viscosity). Thus, a study like the one
performed here can be useful in designing FRET experiments
via single molecule spectroscopy. The present study suggests
several exciting future problems. Both for folding and
unfolding, one can initiate the FRET process after a suitable
time lag (t) following the quench and can thus obtain a two
dimensional distribution of P(WF,t), like in NMR or ESR.
FRET may also be able to differentiate between different
collapsed states, like rod and toroid.2,3 Simulations of this can
be carried out by using a stiff polymer chain.2,3 Simulation
study by using more realistic models and also by incorporating
the solvent molecules implicitly, may reveal more information.
Further work in these directions is under progress. Finally,
simulations of P(WF) during folding of real proteins remain a
challenging task.
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