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Distribution of fluorescence resonance energy tran$f®ET) efficiency between the two ends of

a stiff homopolymer chain is calculated by Brownian dynamics simulations. We show that the
various collapsed and/or ordered conformati¢sherical, rod, and toroidabf a stiff polymer

chain can be effectively distinguished by using the fluorescence resonance energy transfer
technique. In particular, FRET efficiency distribution is unimodal at low chain stifffiebere
collapsed structure is disordejedut becomesbimodal with increasing chain stiffness, when
ordered structures are formed. We have also presented a simple theoretical analysis for the
evaluation of the structural parameters.

I. INTRODUCTION rect energy transfer as a tool for analysisnahoscale mor-
phologies in polymer@é block copolymer interfaces.

The structures of a collapsed homopolymer are a subject While the age-old paradigm in polymer chemistry has
of much current interest.*?In particular, the effect of chain  been that a polymer chain assumes conformation dictated by
stiffness on the collapse transition has been extensively studhe random walk of its chain segments, recent single mol-
ied by Noguchi and Yoshikawid by performing multica- ecule spectroscopic studies by tetial’ and simultaneous
nonical Brownian dynamics simulatioh$They found that a  theoretical analysis have shown that structures of collapsed
semiflexible polymer exhibits various structures such as @olymers in thin films are defective cylinders. These novel
rod, toroid, and also a fused structure between a toroid and structures arise as a result of a competition between chain
rod. They have also reported that in the case of chains witktiffness and chemical defects along the chain. Similar stud-
intermediate stiffness, the coil state changes first into a staties in the solution phase have not yet been carried out ex-
in which rod and toroid shapes coexist. In the long time, onlyperimentally, although simulations have shown that the or-
the rod structure survives at this intermediate stiffness. Atlered structures are highly likely at high chain stiffness.
high stiffness, only the toroid structure is stable. There is, however, no clear experimental approach yet to

The free energies of these structures are widely sepadetect these alternate structures. In this study, we explore the
rated from one anothéf,so these structures can be consid-possibility whether the fluorescence resonance energy trans-
ered as representative of true minima of the free-energy sufer (FRET) between a donor and an acceptor chromophore
face. The existence of the above-mentioned structures hasmbedded at the two ends of a polymer chain can serve as a
been confirmed by using various models such as the offprobe to identify and study the structural morphology of the
lattice circular chain model by Kuznestat al® and the polymer chain. We find that FRET can indeed differentiate
bond-fluctuation model by Ivanoet al*° Although aspects between the disordered collapsed state and the ordered states
such as the kinetic path from coiled structure to either toroidsuch as toroid or rod. This can be achieved by measuring the
or the rod structures are still unclear, the morphologicaFRET efficiency distribution. The recent study of Deniz
variation in a homopolymer chain has been well studied. Aet al*® demonstrated that the single molecular spectroscopy
complete phase diagram representing the transition betweean be used to obtain the FRET efficiency distribution.
various structural morphology of homopolymer chain has  The usually assumed mechanism for FRET is thesfeo
also been reported by Noguchi and Yoshik&wa. energy transfefFET).?22 The rate of this transfer depends

In a notable recent development, fluorescence resonane# the separatiofR) between the energy donor and the en-
energy transfefFRET) has been combined with the ad- ergy acceptor. This ratéyR), can be written &3
vances in single molecule spectroscofMS) techniqué® R
to provide a powerful, novel approach to study the dynamics  k(R)= krad(_F
of polymers and proteiné -2 Deniz et al® reported studies R
of dynamics of protein folding by observing FRET in the \hereR. is the Faster radius and,,qis the radiative rate,
time domain from a;'”g'e_dO“Of—aCC?PtO'fD—A) pair. Win- —\yhich is typically in the range foto 1®s ! for the com-
nik and co-worker%® carried out a critical evaluation of di- monly used chromophores. According to the above expres-
sion, the rate of energy transfer becomes equél jpwhen
*Electronic mail: bbagchi@sscu.iisc.ernet.in R=Rg. For a given D—A pairRg can be obtained by the
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usual method of overlap between the fluorescence and theajectory to get terminated since its generationrRy; . It is
absorption spectra of the D—A p&fr.For commonly used important to note that in each simulation only osiagle
chromophoresiR¢ is fairly large, often as large as 50 A. This polymerchain is simulated to obtain one reaction time and
means that the rate is very large when the donor—acceptdhne corresponding donor—acceptor distance, which is then
pair is separated by a short distance. This may actually be stored for the calculation of distribution of FRET efficien-
limitation of the Faster expression which is strictly valid cies. The details of embedding the donor and acceptor into
when the separation between the D—A pair is much largethe polymer chain are described in the next section. Thus, in
than their sizé® order to obtain a list of reaction times and their correspond-

In writing Eqg. (1), the standard averaging over the ori- ing donor—acceptor distance, we had to repeat such simula-
entations of the transition dipole moments of the D—A pairtions for A" number of independergingle polymerchains
has been carried out. In standard FRET experiments, theampled from an equilibrium distribution. In other words, we
macromolecule is doped with a D—A pair in suitable loca-have carried out\V different simulation runs with indepen-
tions along the chaiff Excitation transfer can be monitored dent polymer chains to obtai number of 7,,,, and the
by following the fluorescence either from the donor or fromcorrespondindR values.
the acceptor or from both. The time,,,, taken for the After the execution of simulation, the donor—acceptor
excitation transfer to occur depends strongly on the D—Aseparatio(R) corresponding to each reaction time is used in
separatiorR, as given byk(R) in Eq. (1). For a polymeror  Eq. (2) to obtain®¢(7,4,), which is the FRET efficiency at
a protein in solution, both at equilibrium and during folding/ the corresponding time,,. This essentially provides an
unfolding, R is not only a fluctuating, stochastic function of array of the FRET efficiency corresponding to each reaction
time, but also varies in a definite way. In a recent studytime obtained from simulations. A histogram of FRET effi-
Wong et al?® showed that in such cases, the distribution ofciencies is obtained by spreadi@e(,,,) over a bin of
the energy transfer efficiency contains nontrivial and usefulvidth 0.1. In this way, a continuous probability distribution
information. Note that simulating FRET in real proteins is an[ P(®g)] can in principle be obtained from E(B) by taking
exceedingly difficult problem—it is not trivial even for a the A/—co limit—in our case, we get a histograffig. 2.
simple homopolymer—a problem that has eluded theoreticabimilarly, we define the probability distribution of reaction
description even today. times

In this paper, we present the calculations of the distribu-
tion of FRET efficiency for Foster migration among poly-
mer ends in various morphological structures. In the next
section the calculation details of FRET efficiency distribu-
tion are presented. The model and the simulation details ar(7xn) can be obtained in a similar way to that B{®).
described in Sec. lll. Results for both the equilibrium FRETThe only difference in this case is that the reaction times
and FRET during the quenching are presented in Sec. IV. A7ixn) should be distributed instead of FRET efficiencies in
theoretical analysis of the evaluation of structural parametert9 the bins accordingly to form the histogram. In this study

is presented in Sec. V. Conclusions are presented in Sec. \ive report only the results on FRET efficiency distribution.
The results on distribution of reaction times in a similar sys-
tem can be found in our earlier stutly.

1 N
P(7ixn) = 7.2y Ot Trxn)- @

IIl. PROBABILITY OF FRET EFFICIENCY

DISTRIBUTION
We define the FRET efficiencyd{¢) by the following Il SIMULATION DETAILS
relation:
A. The model
K(R)
FTR(R) Tk 2 The model polymer chain is made of connected

Lennard-Jones(LJ) beads. This model homopolymer is
wherek;, is the rate which includes radiativ@ther than  known to show folding kinetics? The total potential energy
Forster migration decay rates of the donor—acceptor pair.qf the polymer chain can be writtenZas
Note that in this study the nonradiative processes are not
taken into consideration. U=Up+U;+Us, 6)

We next define the probability of FRET efficiency dis-
tribution P(®¢) by the following expression:

N N
P(@F)z%/;l S(Pr—Pr(71yn))- 3) Ub=i§2 b(|ri—ri_1)?. (6)

whereU,, represent the bonding potential

The above equation is to be understood in the followingwe setb=400 in this study. The interaction between non-
fashion. In each simulation, after choosing a donor—acceptdsonded beads is represented by the Lennard-Jones-type po-
pair at timet=0, the pair is followed till the trajectory gets tential
terminated due to the reaction between the donor and accep- " .
tor (modeling the course of reaction in simulation is de- g\ o
scribed in the next sectipnWe denote the time taken for the ( r) ( r )

: )
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where o and € are the LJ collision diameter and the well
depth, respectivelyN is the number of beads, is the posi-
tion of beadi, andr;;=|r;—r;|. The stiffness is introduced
through the bending potentidllg

Us=S(cosfd—1)?, 8

whereS represents the stiffness of the spring. Here, we use
N=60, andb= o, and change the chain stiffness by varying
S from 1 to 10. For convenience, we defird = e/kgT,
where kgT is_the thermal energy. The unit of time, is
b%/Dyg. Thus K =k:ad?/ Do) is also dimensionless. In this
study we have sek,,4= 1. This choice ok,,4 corresponds to
the experimentally observekl,q values. For example, in a
solvent with viscosity(#) equal to 1 cp, the radius of mono-
mer moleculesR) equal to 4 AK,,;=1 corresponds to lg 4
of 0.76 ns*’ Ris scaled byb, the bead diameter, as usual. In
viscous solvents, the viscosity can be much higher, and the
K.aqg Can be even larger than 10.

The time evaluation of the polymer chain is done ac-
cording to the following equation of motic#:?°

ri(t+At)=r;(t)+F;(t) At+AXS(), 9

wherer;(t) is the position of thgth bead at time, and the
systematic force orj is denoted byF;(t). The random
Brownian displacementAX®(t), is taken from a Gaussian
distribution with zero mean andA2 variance. The normal-
ized random numbers are generated by the reshuffling
method®® The time step,At, is chosen as 0.0085 The
scheme of Noguchi and Yoshikafia used to investigate the FIG. 1. Snapshots of various morphological structures of a homopolymer
structural transition of polymer chain. In this method, thechain as observed in Brownian dynami@&D) simulation forN=60. The
equilibrium configuration obtained at =0.1 is quenched by chain stiffness parameter values &e1 (spherical, S=5 (rod), andS=10
decreasing the temperature instantaneously to a value @Proid for the structures shown from top to bottom.

€°=0.9. The time-dependent total energy, the root-mean-

square end-to-end distancB?), and the radius of gyration o

(Ry) were all monitored to follow the progress of collapse A- Equilibrium FRET

transition. The results presented here are the average over \jorphological structures shown in Fig. 1 can be de-

10000 such trajectories with different initial configuration. tected by monitoring the FRET in the corresponding equilib-
More details on the simulation scheme can be foundjum configuration. In order to monitor FRET in equilibrium
elsewheré>* To simulate FRET, we have probed many configuration, FRET is switched on only after the polymer
combinations ofRg and k4. We have selecte®Rz=6, reaches the equilibrium configuration. This has been ensured
which is near the maximum iR°P(R) (we denote it byRy), by equilibrating the polymer for 8 10° Brownian dynamics
whereP(R) is the end-to-end distribution. We have also se-(BD) steps. Study of the final states shows formation of vari-
lected another value oRr away from the maximum in ous structures, depending on the chain stiffness, as already
R?P(R), namelyRg=3. Another important parameter which shown in Fig. 1. Results are shown in Fig. 2, where the
affects FRET isk;yq. Largek.,q values result in the higher FRET efficiency[ P(®¢)] calculated by using Eq(3) is
efficiency of FRET. In this study we have mostly dealt with plotted for all three different morphologies. Figureg)2
Krag™= 1. 2(c), correspond t&=1, 5, and 10, respectively. In all these

figuresRg=6 andk,,=0.5. Similar results are obtained at

other Faoster radius values. As shown in these figures, for
IV. RESULTS AND DISCUSSION §mal| value of chain st_iffn_esB(d)F_) is unir_nodz_il. However, _

it becomes bimodal with increasing chain stiffness. The bi-

Snapshots of polymer chain with various degrees oimodal distributions for rodS=5) and toroid (S=10) re-

stiffness as found in BD simulations are shown in Fig. 1. Thesemble mirror images. Figurega?—2(c) together demon-
average length of rod morphology is found to be 1B,65 strate that the increase in chain stiffness induces a crossover
while the average diameter of the toroid is 5.646he av- in the distribution from higher efficiencies to lower efficien-
erage diameter obtained for molten globule is $.88Ve cies. This is also in accordance with the study of average
have carried out the FRET study in all three different mor-radius of gyrationRy for the corresponding morphological
phologies of polymer chain and also for two different sets ofstructures, as described later.
Forster parameters. The above results can be understood in the following
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FIG. 2. The equilibrium FRET efficiency distributigrP(®¢)] obtained
from BD simulations is shown foRz=6, ~k,‘.id:l, andN=60. FRET is
switched on after the polymer reaches equilibrium configuration. Péaels
(b), and(c) correspond toS=1, 5, and 10, respectively. In all casks,
=0.5.

manner. At lower chain stiffness vald8=1), the most prob-

FIG. 3. Snapshots of a few rod-like conformations found in Brownian dy-
namics simulations, in which FRET occurred. This figure demonstrates that
not only can the two ends of the chain in the rod-like conformation be close
to each other, they can also be far from each otherthe opposite side

ficiencies and also causes the emergence of a relatively broad
peak at lower efficiencielfmigs. 2b) and Zc)]. The peak at

low efficiencies corresponds to the configurations with larger
D—A separation, while the one at high efficiencies results
from the configurations with smaller D—A separation. The
bimodality is found to depend critically on the valuelgf, ,
which is a consequence of several competing time scales in
the FRET. The emergence of bimodal distribution suggests
the existence of rod/toroidal structures with various end-to-
end distance. To ensure this, in Fig. 3 we have shown a few
snapshots of rod conformatigas found in BD simulations

in which FRET occurred. For the sake of clarity the two end
beads are shown as larger dark spheres. This figure clearly
shows that not only can the two ends of the chain in the
rod-like conformation be close to each otligrat is, on the
same sidg they can also be far from each oth@n the
opposite side In fact, there is a distribution of the end-to-
end separation even in the rod-like state. Note that there is
also a distribution of the lengths of the rod which seems to

able morphology of the polymer chain is molten globule orindicate that a large number of polymer conformations can

spherical structuréFig. 1). Since the end-to-end distan@®

exist in the rod-like form. Nevertheless, the majority of the

the D—A separationis small in the molten globule state rod conformations exists with the two ends either on the
(remember that a smaller D—A separation favors FRET andame side or at the opposite side. As a result, FRET effi-
vice versa, there is a large probability for the FRET to occur. ciency peaks both ab=1 and®=0 [shown in Fig. 2Zb)].
Thus, in this case the FRET efficiency is large and the surToroidal structures also give rise to a distribution, which can
vival probability for the D—A pair is less. Increasing chain be understood along the same lines.

stiffness results in the diminishing of the peak at higher ef-  Figure 4 shows the distribution of radius of gyration at
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FRET becomes more efficient due to the relatively smaller
o07 ‘ D—A separation.
0.06 Al (©
] M B. FRET during the quenching
0.05 s . . . .

] - i It is interesting to explore what happens if one monitors
o~ 004 - FRET during quenching. The result is shown in Fig. 6. Fig-
o ] _ . ure §a) shows theP(dg) for S=1, while Figs. 6b) and Gc)

B 0.037 - show those folS=5 andS=10, respectively. In this cade:
6.5 I is kept fixed at 6k,,=0.5, andk,,q as unity. This figure
] . M reveals that in this case, while FRET can detect the spherical
0.01 (or molten globulg structure, the distinction between the rod
] f HHHH and toroidal structures is not straightforward. The reason for
0.00- ; ; A0n< ; :
2 4 6 8 this can be traced to the average collapse tiroe.a spheri-
R™ cal structure, collapse time is found to be much smaller than

that of both rod and toroidOn the other hand, the collapse
times of rod and toroid are comparable to each other. In this
FIG. 4. The distribution of radius of gyration at which the FRET occurred is case. since FRET is switched on immediately after quench-
shown againsR;" . Panels(a), (b), and(c) correspond t&=1, 5, and 10, . f’ d d toroid f fi th . | b
respectivelyR.~ 6, k., = 0.5, andN— 60, ing, for rod and toroid conformations there is a large prob-
ability for FRET to occur before the polymer collapses into
the equilibrium configuration. Thus, the FRET efficiencies

) . ) . observed in this way might not always correspond to the
which the FRET occurred for various trajectories. We denmeequilibrium configuration.

this asRy™" to distinguish it fromR,. Figures 4a)—4(c)
show the result for different stiffness values, 1, 5, and 10
respectively. In Fig. 5 the average mean-square radius Q
gyration obtained from BD simulation is plotted as a func-
tion of chain stiffness for two differeriRz values. Triangles Here, we show that the FRET efficiency distribution can
and squares represent the result Ry=3 and 6, respec- be used in some cases to obtain important structural param-
tively. This figure also reveals that by decreasing the chaireters, such as the “average” size of the molten globule or the
stiffness, polymer collapses into disordered structures andverage length of the rod etc. We shall assume that the

. THEORETICAL ANALYSIS: EVALUATION
F STRUCTURAL PARAMETERS
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This structure is formed when chain stiffness is low.
2-_} { Thus, the end-to-end distribution is expected to be Gaussian,
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FIG. 6. The distribution of FRET efficiendyP(®¢)] during the quenching 01 90

obtained from BD simulations is shown f@®-=6, k;,q=1, and N=60. (15

Panelsa), (b), and(c) represent the case with=1, 5, and 10, respectively. The important point here is that the coefficiemlt will con-

tain information about the size of the collapsed polymer. If

A; is close to unity, as we find in Fig(8, clearly the size of
Forster energy transfer occurs from an equilibrium distribu-the polymer is less thaRg . In the results presented in Fig.
tion which is justified because the particular pair dies with2(a), Re=6b. Thus, the size of the collapsed polymer is
the energy transfer. We can, therefore, define the distributiononsiderably less thanb6 Note that the extended Rouse

in the following way: chain will have \(R?)~7.74 for N=60. For the extended
chain, one expects a bimodal distribution and the values of
p(@):J dR A(R)8(®—D(R)), (100 A, depends on the length of the polymer chain.

For a very large polymer, it is more efficient to place the
whereR is the donor acceptor separation. Note that we havelonor and the acceptor not at the ends, but some contour
definedP(R) as a probability distribution of scal&, which  distance apart along the chain. This may provide better
is given by resolution.



B. Rods The above analyses are only for the case where the D—A

When the polymer assumes the rod-like structure at inpair is located at the two ends of the polymer chain. The

termediate stiffness, the two ends of the chain can be unr’;malysis is particularly crude for toroid where one should

formly separated between 0 ahdThus, it is safe to assume consider the equation for the toroid.

1
P(RI=, L>R>0. (16)  VI. CONCLUSION

In this work we have shown that the FRET can serve as
a method to obtain information on the various conformations
1L of a homopolymer chain. The distribution of excitation en-
P(RI=1 fo dL 5(®—d(L)). (17 ergy transfer efficiency is unimodal for low chain stifiness
values, but becomes bimodal with increasing the chain stiff-
We again invoke the sharp variation #(R) at R=Rr t0  ness. The extent of bimodality is found to depend on the

Therefore,

obtain values of the Fister parameter&,,q andRg), k,,,, and also
1 (Re 1 (L the value of the diffusion coefficierthat is, the viscosity
P(<I>)=Ef dL 5(1—¢)+Ej dL 8(P). (18 The theoretical analyses also reveal that one can use the
0 Re FRET efficiently distribution to obtain information about the
We can further coarse-grain the delta functions by their revarious morphological structures of polymers.
spective Gaussian distributions to obtain The present study reveals that while equilibrium FRET
C(1-®)? _ 2 can be used to detect various collapsed structures, FRET
P(d)~A, exp(—z +(1—A1)GXF( _2> during the quenching might not do the same. Thus, a study
207 20% like the one performed here can be useful in designing FRET

(19 experiments via single molecule spectroscopy to carry out

This is indeed a true representation that is borne out by Fighe conformational studies of polymers. The present study
2(b). In the present case, however, we can obtain an expre§uggests several exciting future possibilities. Simulation

sion forA; study by using more realistic models and also by incorporat-
ing the solvent molecules explicitly will certainly reveal
Alzﬁ \/Z (20) more information. Another useful solution is to develop the-
Loy Vo oretical models to understand the energy transfer efficiency

distribution along the lines recently initiated by Wolynes and
co-workers>2—® Further work in these directions is in
progress.

which is needed to obtain the length From Fig. Zb) we
find A;~11.5, 0;~0.03, and sincdRr=6, we get average
L=13.8M(~2Rg), which is in good agreement with simu-
lations (12.66).

An alternative way is to argue that the total amount neanCKNOWLEDGMENTS
®=1 is equal toR:/L. Since this amount is about 0[See
Fig. 2(b)], this again gives a value af~12b. Therefore, one
can use the FRET efficiency distributidd(®), to obtain an
estimate of the length of the rod morphology.
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