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Distribution of fluorescence resonance energy transfer~FRET! efficiency between the two ends of
a stiff homopolymer chain is calculated by Brownian dynamics simulations. We show that the
various collapsed and/or ordered conformations~spherical, rod, and toroidal! of a stiff polymer
chain can be effectively distinguished by using the fluorescence resonance energy transfer
technique. In particular, FRET efficiency distribution is unimodal at low chain stiffness~where
collapsed structure is disordered! but becomesbimodal with increasing chain stiffness, when
ordered structures are formed. We have also presented a simple theoretical analysis for the
evaluation of the structural parameters.
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I. INTRODUCTION

The structures of a collapsed homopolymer are a sub
of much current interest.1–12 In particular, the effect of chain
stiffness on the collapse transition has been extensively s
ied by Noguchi and Yoshikawa2,7 by performing multica-
nonical Brownian dynamics simulations.13 They found that a
semiflexible polymer exhibits various structures such a
rod, toroid, and also a fused structure between a toroid a
rod. They have also reported that in the case of chains w
intermediate stiffness, the coil state changes first into a s
in which rod and toroid shapes coexist. In the long time, o
the rod structure survives at this intermediate stiffness.
high stiffness, only the toroid structure is stable.

The free energies of these structures are widely se
rated from one another,14 so these structures can be cons
ered as representative of true minima of the free-energy
face. The existence of the above-mentioned structures
been confirmed by using various models such as the
lattice circular chain model by Kuznestovet al.3 and the
bond-fluctuation model by Ivanovet al.4,5 Although aspects
such as the kinetic path from coiled structure to either tor
or the rod structures are still unclear, the morphologi
variation in a homopolymer chain has been well studied
complete phase diagram representing the transition betw
various structural morphology of homopolymer chain h
also been reported by Noguchi and Yoshikawa.2

In a notable recent development, fluorescence reson
energy transfer~FRET! has been combined with the ad
vances in single molecule spectroscopic~SMS! technique15

to provide a powerful, novel approach to study the dynam
of polymers and proteins.16–21Denizet al.16 reported studies
of dynamics of protein folding by observing FRET in th
time domain from asingledonor–acceptor~D–A! pair. Win-
nik and co-workers8,9 carried out a critical evaluation of di
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rect energy transfer as a tool for analysis ofnanoscale mor-
phologies in polymersin block copolymer interfaces.

While the age-old paradigm in polymer chemistry h
been that a polymer chain assumes conformation dictate
the random walk of its chain segments, recent single m
ecule spectroscopic studies by Huet al.1 and simultaneous
theoretical analysis have shown that structures of collap
polymers in thin films are defective cylinders. These no
structures arise as a result of a competition between c
stiffness and chemical defects along the chain. Similar st
ies in the solution phase have not yet been carried out
perimentally, although simulations have shown that the
dered structures are highly likely at high chain stiffness.

There is, however, no clear experimental approach ye
detect these alternate structures. In this study, we explore
possibility whether the fluorescence resonance energy tr
fer ~FRET! between a donor and an acceptor chromoph
embedded at the two ends of a polymer chain can serve
probe to identify and study the structural morphology of t
polymer chain. We find that FRET can indeed differentia
between the disordered collapsed state and the ordered s
such as toroid or rod. This can be achieved by measuring
FRET efficiency distribution. The recent study of Den
et al.16 demonstrated that the single molecular spectrosc
can be used to obtain the FRET efficiency distribution.

The usually assumed mechanism for FRET is the Fo¨rster
energy transfer~FET!.22,23 The rate of this transfer depend
on the separation~R! between the energy donor and the e
ergy acceptor. This rate,k(R), can be written as22

k~R!5kradS RF

R D 6

, ~1!

whereRF is the Förster radius andkrad is the radiative rate,
which is typically in the range 108 to 109 s21 for the com-
monly used chromophores. According to the above exp
sion, the rate of energy transfer becomes equal tokrad when
R5RF . For a given D–A pair,RF can be obtained by the
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usual method of overlap between the fluorescence and
absorption spectra of the D–A pair.24 For commonly used
chromophores,RF is fairly large, often as large as 50 Å. Th
means that the rate is very large when the donor–acce
pair is separated by a short distance. This may actually b
limitation of the Förster expression which is strictly vali
when the separation between the D–A pair is much lar
than their size.25

In writing Eq. ~1!, the standard averaging over the o
entations of the transition dipole moments of the D–A p
has been carried out. In standard FRET experiments,
macromolecule is doped with a D–A pair in suitable loc
tions along the chain.23 Excitation transfer can be monitore
by following the fluorescence either from the donor or fro
the acceptor or from both. The time,t rxn , taken for the
excitation transfer to occur depends strongly on the D
separationR, as given byk(R) in Eq. ~1!. For a polymer~or
a protein! in solution, both at equilibrium and during folding
unfolding, R is not only a fluctuating, stochastic function o
time, but also varies in a definite way. In a recent stu
Wong et al.26 showed that in such cases, the distribution
the energy transfer efficiency contains nontrivial and use
information. Note that simulating FRET in real proteins is
exceedingly difficult problem—it is not trivial even for
simple homopolymer—a problem that has eluded theoret
description even today.

In this paper, we present the calculations of the distri
tion of FRET efficiency for Fo¨rster migration among poly
mer ends in various morphological structures. In the n
section the calculation details of FRET efficiency distrib
tion are presented. The model and the simulation details
described in Sec. III. Results for both the equilibrium FRE
and FRET during the quenching are presented in Sec. IV
theoretical analysis of the evaluation of structural parame
is presented in Sec. V. Conclusions are presented in Sec

II. PROBABILITY OF FRET EFFICIENCY
DISTRIBUTION

We define the FRET efficiency (FF) by the following
relation:

FF5
k~R!

k~R!1krn
, ~2!

where krn is the rate which includes radiative~other than
Förster migration! decay rates of the donor–acceptor pa
Note that in this study the nonradiative processes are
taken into consideration.

We next define the probability of FRET efficiency di
tribution P(FF) by the following expression:

P~FF!5
1

N (
i 51

N
d~FF2FF~t rxn!!. ~3!

The above equation is to be understood in the follow
fashion. In each simulation, after choosing a donor–acce
pair at timet50, the pair is followed till the trajectory get
terminated due to the reaction between the donor and ac
tor ~modeling the course of reaction in simulation is d
scribed in the next section!. We denote the time taken for th
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trajectory to get terminated since its generation byt rxn . It is
important to note that in each simulation only onesingle
polymerchain is simulated to obtain one reaction time a
the corresponding donor–acceptor distance, which is t
stored for the calculation of distribution of FRET efficien
cies. The details of embedding the donor and acceptor
the polymer chain are described in the next section. Thus
order to obtain a list of reaction times and their correspo
ing donor–acceptor distance, we had to repeat such sim
tions for N number of independentsingle polymerchains
sampled from an equilibrium distribution. In other words, w
have carried outN different simulation runs with indepen
dent polymer chains to obtainN number of t rxn and the
correspondingR values.

After the execution of simulation, the donor–accep
separation~R! corresponding to each reaction time is used
Eq. ~2! to obtainFF(t rxn), which is the FRET efficiency a
the corresponding timet rxn . This essentially provides an
array of the FRET efficiency corresponding to each react
time obtained from simulations. A histogram of FRET ef
ciencies is obtained by spreadingFF(t rxn) over a bin of
width 0.1. In this way, a continuous probability distributio
@P(FF)# can in principle be obtained from Eq.~3! by taking
the N→` limit—in our case, we get a histogram~Fig. 2!.
Similarly, we define the probability distribution of reactio
times

P~t rxn!5
1

N (
i 51

N
d~ t2t rxn!. ~4!

P(t rxn) can be obtained in a similar way to that ofP(FF).
The only difference in this case is that the reaction tim
(t rxn) should be distributed instead of FRET efficiencies
to the bins accordingly to form the histogram. In this stu
we report only the results on FRET efficiency distributio
The results on distribution of reaction times in a similar sy
tem can be found in our earlier study.27

III. SIMULATION DETAILS

A. The model

The model polymer chain is made of connect
Lennard-Jones~LJ! beads. This model homopolymer
known to show folding kinetics.1,2 The total potential energy
of the polymer chain can be written as2

U5Ub1ULJ1Us , ~5!

whereUb represent the bonding potential

Ub5(
i 52

N

b~ ur i2r i 21u!2. ~6!

We setb5400 in this study. The interaction between no
bonded beads is represented by the Lennard-Jones-type
tential

uLJ~r !5eF S s

r D 12

2S s

r D 6G , ~7!
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where s and e are the LJ collision diameter and the we
depth, respectively.N is the number of beads,r i is the posi-
tion of beadi, and r i j 5ur i2r j u. The stiffness is introduced
through the bending potential,Us

Us5S~cosu21!2, ~8!

whereS represents the stiffness of the spring. Here, we
N560, andb5s, and change the chain stiffness by varyi
S from 1 to 10. For convenience, we definee* 5e/kBT,
where kBT is the thermal energy. The unit of time,t, is
b2/D0 . Thus,k̃rad([kradb

2/D0) is also dimensionless. In thi
study we have setk̃rad51. This choice ofk̃rad corresponds to
the experimentally observedkrad values. For example, in a
solvent with viscosity~h! equal to 1 cp, the radius of mono
mer molecules~R! equal to 4 Å,k̃rad51 corresponds to akrad

of 0.76 ns.27 R is scaled byb, the bead diameter, as usual.
viscous solvents, the viscosity can be much higher, and
k̃rad can be even larger than 10.

The time evaluation of the polymer chain is done a
cording to the following equation of motion:28,29

r j~ t1Dt !5r j~ t !1F j~ t !Dt1DXG~ t !, ~9!

wherer j (t) is the position of thejth bead at timet, and the
systematic force onj is denoted byF j (t). The random
Brownian displacement,DXG(t), is taken from a Gaussia
distribution with zero mean and 2Dt variance. The normal-
ized random numbers are generated by the reshuffl
method.30 The time step,Dt, is chosen as 0.0005t. The
scheme of Noguchi and Yoshikawa2 is used to investigate th
structural transition of polymer chain. In this method, t
equilibrium configuration obtained ate*50.1 is quenched by
decreasing the temperature instantaneously to a valu
e*50.9. The time-dependent total energy, the root-me
square end-to-end distance (R2), and the radius of gyration
(Rg) were all monitored to follow the progress of collap
transition. The results presented here are the average
10 000 such trajectories with different initial configuratio
More details on the simulation scheme can be fou
elsewhere.25,31 To simulate FRET, we have probed man
combinations ofRF and k̃rad. We have selectedRF56,
which is near the maximum inR2P(R) ~we denote it byR0!,
whereP(R) is the end-to-end distribution. We have also s
lected another value ofRF away from the maximum in
R2P(R), namelyRF53. Another important parameter whic
affects FRET isk̃rad. Large k̃rad values result in the highe
efficiency of FRET. In this study we have mostly dealt wi
k̃rad51.

IV. RESULTS AND DISCUSSION

Snapshots of polymer chain with various degrees
stiffness as found in BD simulations are shown in Fig. 1. T
average length of rod morphology is found to be 12.65b,
while the average diameter of the toroid is 5.546b. The av-
erage diameter obtained for molten globule is 4.83b. We
have carried out the FRET study in all three different m
phologies of polymer chain and also for two different sets
Förster parameters.
e
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A. Equilibrium FRET

Morphological structures shown in Fig. 1 can be d
tected by monitoring the FRET in the corresponding equil
rium configuration. In order to monitor FRET in equilibrium
configuration, FRET is switched on only after the polym
reaches the equilibrium configuration. This has been ensu
by equilibrating the polymer for 93105 Brownian dynamics
~BD! steps. Study of the final states shows formation of va
ous structures, depending on the chain stiffness, as alre
shown in Fig. 1. Results are shown in Fig. 2, where
FRET efficiency @P(FF)# calculated by using Eq.~3! is
plotted for all three different morphologies. Figures 2~a!–
2~c!, correspond toS51, 5, and 10, respectively. In all thes
figuresRF56 andkrn50.5. Similar results are obtained a
other Förster radius values. As shown in these figures,
small value of chain stiffnessP(FF) is unimodal. However,
it becomes bimodal with increasing chain stiffness. The
modal distributions for rod~S55! and toroid ~S510! re-
semble mirror images. Figures 2~a!–2~c! together demon-
strate that the increase in chain stiffness induces a cross
in the distribution from higher efficiencies to lower efficien
cies. This is also in accordance with the study of avera
radius of gyrationRg for the corresponding morphologica
structures, as described later.

The above results can be understood in the follow

FIG. 1. Snapshots of various morphological structures of a homopoly
chain as observed in Brownian dynamics~BD! simulation forN560. The
chain stiffness parameter values areS51 ~spherical!, S55 ~rod!, andS510
~toroid! for the structures shown from top to bottom.
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manner. At lower chain stiffness value~S51!, the most prob-
able morphology of the polymer chain is molten globule
spherical structure~Fig. 1!. Since the end-to-end distance~or
the D–A separation! is small in the molten globule stat
~remember that a smaller D–A separation favors FRET
vice versa!, there is a large probability for the FRET to occu
Thus, in this case the FRET efficiency is large and the s
vival probability for the D–A pair is less. Increasing cha
stiffness results in the diminishing of the peak at higher

FIG. 2. The equilibrium FRET efficiency distribution@P(FF)# obtained
from BD simulations is shown forRF56, k̃rad51, and N560. FRET is
switched on after the polymer reaches equilibrium configuration. Panels~a!,
~b!, and ~c! correspond toS51, 5, and 10, respectively. In all caseskrn

50.5.
r

d

r-

-

ficiencies and also causes the emergence of a relatively b
peak at lower efficiencies@Figs. 2~b! and 2~c!#. The peak at
low efficiencies corresponds to the configurations with lar
D–A separation, while the one at high efficiencies resu
from the configurations with smaller D–A separation. T
bimodality is found to depend critically on the value ofkrn ,
which is a consequence of several competing time scale
the FRET. The emergence of bimodal distribution sugge
the existence of rod/toroidal structures with various end-
end distance. To ensure this, in Fig. 3 we have shown a
snapshots of rod conformation~as found in BD simulations!
in which FRET occurred. For the sake of clarity the two e
beads are shown as larger dark spheres. This figure cle
shows that not only can the two ends of the chain in
rod-like conformation be close to each other~that is, on the
same side!, they can also be far from each other~on the
opposite side!. In fact, there is a distribution of the end-to
end separation even in the rod-like state. Note that ther
also a distribution of the lengths of the rod which seems
indicate that a large number of polymer conformations c
exist in the rod-like form. Nevertheless, the majority of t
rod conformations exists with the two ends either on
same side or at the opposite side. As a result, FRET e
ciency peaks both atF51 andF50 @shown in Fig. 2~b!#.
Toroidal structures also give rise to a distribution, which c
be understood along the same lines.

Figure 4 shows the distribution of radius of gyration

FIG. 3. Snapshots of a few rod-like conformations found in Brownian d
namics simulations, in which FRET occurred. This figure demonstrates
not only can the two ends of the chain in the rod-like conformation be cl
to each other, they can also be far from each other~on the opposite side!.
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which the FRET occurred for various trajectories. We den
this as Rg

rxn to distinguish it fromRg . Figures 4~a!–4~c!
show the result for different stiffness values, 1, 5, and
respectively. In Fig. 5 the average mean-square radiu
gyration obtained from BD simulation is plotted as a fun
tion of chain stiffness for two differentRF values. Triangles
and squares represent the result forRF53 and 6, respec-
tively. This figure also reveals that by decreasing the ch
stiffness, polymer collapses into disordered structures

FIG. 4. The distribution of radius of gyration at which the FRET occurred
shown againstRg

rxn . Panels~a!, ~b!, and~c! correspond toS51, 5, and 10,
respectively.RF56, krn50.5, andN560.
e

,
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FRET becomes more efficient due to the relatively sma
D–A separation.

B. FRET during the quenching

It is interesting to explore what happens if one monito
FRET during quenching. The result is shown in Fig. 6. F
ure 6~a! shows theP(FF) for S51, while Figs. 6~b! and 6~c!
show those forS55 andS510, respectively. In this caseRF

is kept fixed at 6,krn50.5, andk̃rad as unity. This figure
reveals that in this case, while FRET can detect the sphe
~or molten globule! structure, the distinction between the ro
and toroidal structures is not straightforward. The reason
this can be traced to the average collapse time.For a spheri-
cal structure, collapse time is found to be much smaller th
that of both rod and toroid. On the other hand, the collaps
times of rod and toroid are comparable to each other. In
case, since FRET is switched on immediately after quen
ing, for rod and toroid conformations there is a large pro
ability for FRET to occur before the polymer collapses in
the equilibrium configuration. Thus, the FRET efficienci
observed in this way might not always correspond to
equilibrium configuration.

V. THEORETICAL ANALYSIS: EVALUATION
OF STRUCTURAL PARAMETERS

Here, we show that the FRET efficiency distribution c
be used in some cases to obtain important structural par
eters, such as the ‘‘average’’ size of the molten globule or
average length of the rod etc. We shall assume that

FIG. 5. The average mean-square radius of gyration at which the F
occurred is shown as a function of chain stiffness for two differentRF values
at krn50.5 for N560. Filled squares represent the case withRF56, while
the results forRF53 are shown by filled triangles.
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Förster energy transfer occurs from an equilibrium distrib
tion which is justified because the particular pair dies w
the energy transfer. We can, therefore, define the distribu
in the following way:

P~F!5E dR P~R!d~F2F~R!!, ~10!

whereR is the donor acceptor separation. Note that we h
definedP(R) as a probability distribution of scalarR, which
is given by

FIG. 6. The distribution of FRET efficiency@P(FF)# during the quenching
obtained from BD simulations is shown forRF56, k̃rad51, and N560.
Panels~a!, ~b!, and~c! represent the case withS51, 5, and 10, respectively
-

n

e

P~R!5
exp~2bF~R!!

* dRexp~2bF~R!!
. ~11!

We next analyze the three morphological structures of po
mer ~molten globule, rod, and toroid! separately.

A. Molten globule

This structure is formed when chain stiffness is lo
Thus, the end-to-end distribution is expected to be Gauss
but with a force constant different from that of Rouse cha
We assume the end-to-end distribution is given by

P~R!5A 3

2p^R2&
expS 2

3R2

2^R2& D . ~12!

In order to proceed further, next we write the Gauss
representation of the delta function

d~F2F~R!!5 lim
s→0

1

sA~2p!
expS 2

~F2F~R!!2

2s2 D .

~13!

Because of sharp variation of the Fo¨rster rate nearRF , we
make the assumption that forR,RF , F(R)'1 while for
thoseR greater thanRF , F(R)'0. This assumption allows
us to writeP(F) as the sum of two terms

P~F!5A 3

2p^R2&
lim

s→0

1

sA~2p!
F E

0

RF
dR

3expS 2
3R2

2^R2& DexpS 2
~F~R!21!2

2s2 D G
1A 3

2p^R2&
lim

s→0

1

sA~2p!
F E

RF

L

dR

3expS 2
3

2

R2

^R2& DexpS 2
~F~R!!2

2s2 D G . ~14!

We can write the above equation as

P~F!5A1 expS 2~F21!2

2s1
2 D 1~12A1!expS 2

F2

2s0
2D .

~15!

The important point here is that the coefficientA1 will con-
tain information about the size of the collapsed polymer
A1 is close to unity, as we find in Fig. 2~a!, clearly the size of
the polymer is less thanRF . In the results presented in Fig
2~a!, RF56b. Thus, the size of the collapsed polymer
considerably less than 6b. Note that the extended Rous
chain will haveA^R2&'7.74 for N560. For the extended
chain, one expects a bimodal distribution and the values
A1 depends on the length of the polymer chain.

For a very large polymer, it is more efficient to place t
donor and the acceptor not at the ends, but some con
distance apart along the chain. This may provide be
resolution.
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B. Rods

When the polymer assumes the rod-like structure at
termediate stiffness, the two ends of the chain can be
formly separated between 0 andL. Thus, it is safe to assum

P~R!5
1

L
, L.R.0. ~16!

Therefore,

P~R!5
1

L E
0

L

dL d~F2F~L !!. ~17!

We again invoke the sharp variation ofF(R) at R5RF to
obtain

P~F!5
1

L E
0

RF
dL d~12F!1

1

L E
RF

L

dL d~F!. ~18!

We can further coarse-grain the delta functions by their
spective Gaussian distributions to obtain

P~F!'A1 expS 2~12F!2

2s1
2 D 1~12A1!expS 2F2

2s0
2 D .

~19!

This is indeed a true representation that is borne out by
2~b!. In the present case, however, we can obtain an exp
sion for A1

A15
RF

Ls1
A2

p
, ~20!

which is needed to obtain the lengthL. From Fig. 2~b! we
find A1'11.5, s1'0.03, and sinceRF56, we get average
L513.87b('2RF), which is in good agreement with simu
lations (12.65b).

An alternative way is to argue that the total amount n
F51 is equal toRF /L. Since this amount is about 0.5@see
Fig. 2~b!#, this again gives a value ofL'12b. Therefore, one
can use the FRET efficiency distribution,P(F), to obtain an
estimate of the length of the rod morphology.

C. Toroid

We can carry out a simple analysis in the same spiri
above to obtain an estimate of the average radius of the
oid, Rtor . While for accurate analysis one needs to emp
the equation of the toroid, here we shall employ a simp
one based on the assumption that the two ends can,
equal probability, be anywhere between 0 and 2Rtor1D,
whereD is the thickness of the toroid. Thus, we can write

P~R!5
1

~2Rtor1D!
. ~21!

Then, an analysis similar to the one performed above lead
the following expression forRtor :

Rtor1D5
RF

2A1s1
A2

p
. ~22!

From Fig. 2~c!, we find A1'6, s1'0.07, D'3, and thus,
averageRtor'3.9b, which is in agreement with the simula
tion result (2.77b).
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The above analyses are only for the case where the D
pair is located at the two ends of the polymer chain. T
analysis is particularly crude for toroid where one shou
consider the equation for the toroid.

VI. CONCLUSION

In this work we have shown that the FRET can serve
a method to obtain information on the various conformatio
of a homopolymer chain. The distribution of excitation e
ergy transfer efficiency is unimodal for low chain stiffne
values, but becomes bimodal with increasing the chain s
ness. The extent of bimodality is found to depend on
values of the Fo¨rster parameters~krad andRF!, krn , and also
the value of the diffusion coefficient~that is, the viscosity!.
The theoretical analyses also reveal that one can use
FRET efficiently distribution to obtain information about th
various morphological structures of polymers.

The present study reveals that while equilibrium FRE
can be used to detect various collapsed structures, F
during the quenching might not do the same. Thus, a st
like the one performed here can be useful in designing FR
experiments via single molecule spectroscopy to carry
the conformational studies of polymers. The present st
suggests several exciting future possibilities. Simulat
study by using more realistic models and also by incorpo
ing the solvent molecules explicitly will certainly revea
more information. Another useful solution is to develop th
oretical models to understand the energy transfer efficie
distribution along the lines recently initiated by Wolynes a
co-workers.32–35 Further work in these directions is i
progress.
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