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Long time molecular dynamics simulations of one-dimensional Lennard-Jones systems reveal that
while the diffusion coefficient of a tagged particle indeed goes to zero ivene long time the
mean-square displacement is linear with time at short to intermediate times, allowing the definition
of a short time diffusion coefficierit ebowitz and Percus, Phys. Rék5 122(1967)]. The particle
trajectories show intermittent displacements, surprisingly similar to the recent experimental results
[Wei et al,, Science287, 625(2000]. A self-consistent mode coupling theory is presented which can
partly explain the rich dynamical behavior of the velocity correlation function and also of the
frequency dependent friction. The simulations show a strong dependence of the velocity correlation
function on the size of the system, quite unique to one dimensional interacting systems. Inclusion of
background noise leads to a dramatic change in the profile of the velocity time correlation function,
in agreement with the predictions of Perdihys. Rev. A9, 557 (1974].

I. INTRODUCTION and

Diffusion in one-dimensional1D) fluids, sometimes .
also referred to as “single file system$j$ a subject of great D= f dt(v(0)v(t)), 2)
current interest, not only from practical importance as trans- 0
port in zeolites and nanotub®s, but also as a problem of
great, long standing fundamental importafc¥ The first where(Ax?(t)) is the mean-square displaceméisSD) of a
theoretical study was carried out by Jefsemo presented tagged particle, and(t) is the velocity at time.
an analytical solution for the velocity correlation function of The self-diffusion coefficient in liquids shows strong de-
hard rods. Lebowitz and Perctistudied a short time limit pendence on dimensionality. As is well-known, the self-
of this function and derived expressions for short time diffu-diffusion coefficient exists and well-defined in three dimen-
sion coefficient. Note that in the limit of infinite system the sion for interacting fluids, but it diverges in two
transmission rate of a signal across the system is also infinitgimensiont*® The situation is interesting and complicated,
and thus this short time diffusion should persist for an infi-even controversial in 1D where it should have been the sim-
nitely long time. Bishopet al*® calculated the diffusion co- plest. The claim of the existence of a well-defirghbrt time
efficient in 1D (D refers to the dimensionalityLennard-  diffusion coefficient in 1D, an expression of which has been
Jones fluids. Earlier we have presented a simulation angiven by Lebowitz and Perctisfor hard rods and a table
mode coupling theory analysis of this problem and in parwhich has been given for Lennard-Jones fluids by Bishop
ticular investigated the origin of the * time (t) dependence et al,*® is surprising given that the tagged particle motion is
of the velocity time correlation function in the long time. expected to be highly correlated with its nearest neighbors
Recently, several studies have been devoted to diffusion iwhich shall form unsurmountable cages to its motion. Thus
zeolite channels and nanotuésdere one often studies dif- the diffusion should show a sub-diffusive behavior in the
fusion in low fluid concentration but there is a backgroundlong time. It has been predictddnd confirmed in simula-
noise term which can alter the diffusion behavior. Very re-tions). There is, however, an additional aspect to diffusion in
cently, diffusion has been studied in the limit of high loading 1D which is the effect of noise on diffusion. This later de-
(meaning high fluid concentratipnwhich makes the two velopment is motivated by diffusion in zeolites and nano-
different schools on one-dimensional diffusion to converge.tubes. The diffusion scenario changes drastically in the pres-

Diffusion coefficient(D) in 1D can be defined by any of ence of noise. The interplay between noise and inter-particle

the following two definitions, interaction has been a subject of several stutlies.
1 The Jepsen expressfofor the velocity autocorrelation
D= lim= (AxX(t)) (1) fpnction (VACF) for pure r_\ard rods showed thgt theng
tell time VACF decays as 17, in contrast to the 1P’? depen-

dence reported for the twd=2) and three(D=3) dimen-
3Electronic mail: bbagchi@sscu.iisc.emet.in sions. It is important to note that although the Jepsen solution
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the system. As shown earlier by Hahn andrd@? the of time, the net mean-square displacement remains nearly
mean-square displacem&MSD) of a tagged hard rod obeys zero. This has been attributed to the mutual excluded volume
the following interesting limit interaction.

The organization of the rest of the paper is as follows. In

1 the next section we describe the simulation details. In Sec.
<X2>x:g(1—P|)2p7, (3 11 the simulation results and discussion part is presented.
Section IV describes the effects of background noise on the
dynamical correlations. Mode coupling theory analysis is

where (x?),. denotes the limiting MSD a$—. | is the . ;
length of the hard rod ang is the number density. Thus presented in Sec. V. We close the paper with a few conclu-
' _sions in Sec. VI.

MSD becomes independent of time in the long time. There=
fore, the long time diffusion is zero at any density. Numerical
calculations show that MSD varies linearly with time till the ||, SIMULATION DETAILS

above saturation occurs. Thus, becalgefor any particle is . ] ) . )
bounded byN/p, one can indeed talk of a short time diffu- S|mula_t|on details remain almo.st.the same as described
sion during which the probability distribution of a tagged !N Our previous §tud§7‘? except the striking difference that the
particle position spreads as a Gaussian function, as occurs R{€Sent simulations are carried out for a very long time. Nev-
a truly diffusive process. This was discussed by Jepsen hinf'theless, we mention the simulation method in brief.

self. However, what has not been realized in earlier studies is _ T"€ Simulation system consists of 1000 Lennard-Jones

that the time dependence of the velocity correlation functiorf-J) rods placed in a row in one dimension with the initial
(and also of MSD, as given by Jepsen, is valid only to the velocities sampled from the Maxwellian velocity distribu-
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short time part which depends on the size of the systenfion- The rods move according to Newtonian dynamics and
Thus, Jepsen solution fails to describe the rich long timenteract through the pairwise additive Lennard-Jones poten-
decay behavior o€, (t) discussed later in this paper. tial,

Lebowitz and Percd$ made an exponential approxima- 1\12 /]
tion for short time VACF for hard rods and predicted thatthe ~ Vjj(X)=4e€ (;) - (;
short time diffusion should vary g8 (1—pl), wherep is the
number density of rods of lengih'® The Jepsen expression Wherei andj represents two different LJ rodkbeing the
also gives a nonzero value 6£%1® The values given by length of rod ande is the measure of the interaction. Mass
Bishop et al!® agree well with the expression of Lebowitz (M) and lengthll) of the rods are scaled to unity. The reduced

and Percus! units being used in simulations for distance, time, tempera-
Unlike for hard rods, no analytical solution exists for 1D ture, and the density arex* =x/l, 7=y(m/e)l, T*

LJ rods. Earlier, we carried out the MD simulattbrof the ~ =KkgT/€, andp* = pl, respectively. The time dependent dif-

1D LJ system to verify the short time results of Bisteipal®  fusion D(t), described later, is scaled b3/ 7.

and also to understand the anomalous Ibng time behav- We have studied a wide range of densities starting from

ior of VACF.® In the work reported in Refs. 13 and 16, the p*=0.1 top*=0.9 atT* =1.0. This system behaves exactly
upper limit of the integral was selected to be the regionlike the point atoms placed at a distance qf ibteracting in
where VACF becomes mostly noise. However, in this worka volume ofV=L—NI, whereL is the length of the simu-
we show that the oscillations in VACF persists for a verylation box andN, the number of LJ rods. Each time the
long timein 1D. By long timewe mean two to three orders Velocities are updated by using Verlet algorithm with

of magnitude larger than that considered by Bisteiml. = =0.0005 at all the densities except far* =0.1, where we
Thus thediffusion reported by Bishopet al. can be consid- have used\t=0.002r.

ered as the short time diffusion. We have also carried out a

mode coupl_ing Fheory analysis tp supplement_computationa}ln_ SIMULATION RESULTS AND DISCUSSION

efforts on diffusion under a continuous potential.

In addition to the 1D Lennard-Jones system, extensive  Figure 1 shows the MSD as a function of reduced time at
molecular dynamic simulations of 1D hard rods and 1D re-p* =0.85 andT* = 1.0; inset shows that forshort time It is
pulsive soft spheres are carried out. It is found that at highmportant to note that even thshort timeis 5-10 times
density, the results are similar to the ones observed in the Uarger than theotal simulation time of Bishopet al. This
system. We have also carried out a mode coupling theorfigure reveals many interesting results. MSD is linear in time
analysis in order to understand the rich dynamical behavioeven up to 10r. Beyond 1@, the growth in MSD progres-
of the velocity correlation function. The mode coupling sively decreases and ultimately starts oscillating around
theory has been developed because no exact solution exi€949 which is within 10% of the value predicted by E®).
for continuous potentials. This essentially suggests the trapping of rods by their nearest

Another motivation of the present work is to understandneighbors in 1D. The study ofery long time VACHs also
the recent experimental results of Watial,! who observed revealed by the same conclusion. In Fig. 2 the VACF is plot-
that the particle self-diffusion is non-Fickian for the long ted against the reduced time at the same temperature and
periods of time in the single-file diffusion of colloids in one- density as in Fig. 1. While the main figure shows the full
dimensional channels. They have also observed that althougtecay of VACF, the short time decay of VACF is shown in
the particles execute sizable spatial movements as a functidhe inset. Note the small, negative tail which persists for an



MSD

0.0 014 08 12 16 2.0
0.0 L 1 N 1 L 1 N L t. 1 ) 1 1 200 400 600 800 1000
0 20 40 60 80 100 120 140 t

*
t FIG. 3. Typical trajectories of 10 adjacent rods obtained from a very long
MD simulations of 1D LJ rodsT*=1.0 andp*=0.85. Note the highly

FIG'. 1. The mean-square dlsplacgmGMSD) obtained from MD 3|mula-_ correlated motion of the adjacent particles, which follows from the transient
tion is plotted against the reduced time. Inset shows the same for a rEIat'Ve%ngitudinal current modes

short time. The reduced temperature and density are 1.0 and 0.85, respec-
tively.

intermittent; that is, they appear only after large intervals.

amazingly long time and is responsible for the zero value off here are smaller flows during this interval.

the long time diffusion coefficient. This aspect was missed in In order to understand the earlier theoretical prediction
earlier simulations of a finite, nonzero short time diffusion constant, we have

In order to understand the above aspect, we have carrie‘aoned the time dependent diffusion constant against reduced
out a careful analysis of individual trajectories. Figure 3UMe in Fig. 4.In this case the reduced temperature and den-

shows such trajectories of 10 adjacent rods up to very long!tieS are also 1.0 and 0.85, respectively. The time dependent
time, 100G for p* =0.85 andT* =1.0. Curves represent the diffusion coefficient can be defined by any of the following

trajectory of various(adjacent rods. As can be seen from WO €Xpressions:

this figure the motion of the adjacent rods &ighly corre- 1d

lated Such highly cooperative behavior has also been ob- D=3 a(AXz(t» (5
served recently by Waest al® in their experimental study of

single file diffusion of colloids in a one-dimensional system.and

They have observed the trajectories of eight neighboring par- t

ticles in a channel. The trajectories plotted in Fig. 3 look D(t)=f dr(v(0)v(7)), (6)
quite similar to those reported in the experimental study of 0

Wei et al. More importantly, all the adjacent particles are where(Ax?(t)) is the mean-square displacement of a tagged
found to move together, giving rise to transiéogitudinal  particle,v(7) is the velocity at timer.

flow or current. These flows cause quite large displacement, Both the definitions give essentially the same result; Fig.
but positive flows are as likely as negative flows, so that thel has been produced by using the velocity correlation func-
mean displacement remains the same. The large flows atn [i.e., by using Eq(6)]. Note the slow approach @(t)

1.0
10
0.8 I- 08}
06
0.6 | 5
o 04
= FIG. 2. Normalized VACF obtained from simulations is
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’ 00 and T*=1.0. Main figure shows the full decay of
’ X X ) ) VACF while the short time decay is shown in the inset.
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0.04 FIG. 4. The time dependent diffusion coefficieb(t)

obtained from the simulated VAQBy using Eq(6)] is
shown against the reduced time. Main figure shows the
D(t) for the long time, while the short tim®(t) is
shown in the inset. This figure clearly shows that in the
long time, diffusion goes to zeroT*=1.0 and
p*=0.85.

D(t)

0.02

0.00

-0.02

-0.04 L 1 " I n 1 L 1 L 1 L 1 L 1 " 1 n 1

to zero. Earlier simulations have considered only the short Jepsen’s analytical solution predicts Ahindependent
time region whereD (t) shows a platea(tshown in the inset finite diffusion coefficient. As this solution was obtained in
of Fig. 4), and seem to have missed the long time behaviothe thermodynamic limit, it is clear that this result corre-
(main figure. sponds to the limit oN—oo. This point is also clear from
We have also carried out extensive molecular dynamithe work of Lebowitz and Percd$ Thus, it is rather impor-
simulations with 1D hard rod and 1D repulsive soft sphereant to explore the effects of finitd, both on the diffusion
(repulsive potentials; in the latter case the interaction poten-and the velocity correlation function, in one-dimensional in-
tial has (/x)*? form. In both these cases, the quantitativeteracting systems. This will allow an in-depth of understand-
features change somewhat, but qualitative aspects remain tirgy of the approach to the thermodynamic limit. Note that the
same:(a) D(t) goes to zero in the long timéh) a short time  slow approach to the thermodynamic limit is a hallmark of
diffusion coefficient can be defined; afeg) VACF exhibits a  the one-dimensional systems.
small negative region for a long time. We further noticed that  In Fig. 5 we show the system size dependence of the
at high density, Lennard-Jones rods behave like hard rodselocity time correlation function at density*=0.6. We
However, at intermediate densitiéfer, e.g., atp*=0.6) the  have not discussed the system size dependence of MSD as it
LJ system does not show any negative region in VACFhas been discussed earlier by Hahn andgka The simu-
whereas the hard rods show a negative region. This can Hated VACF shown in Fig. 5 shows some remarkable fea-
attributed to the pronounced backscattering in the case dfires. For a smaller system the negative dip at intermediate
hard rods. time is quite pronounced while the long time tail is nearly
The cross-over of MSD from the linear short time be- absent. As the size of the system is increased, the negative
havior to the oscillatory, time independent long time behav-dip becomes smaller but a very long time, persisting tail
ior is of considerable interest. Our simulations show that theppears. The time dependence of this long time tail is weaker
cross-over is strongly density dependent. It gets shifted tehan the well-knowrt ~2 tail often discussed in the literature.
longer and longer times as the density is increased. In addiFhus the reason for the vanishing long time diffusion coef-
tion, the cross-over also shows strong system size depeficient is rather different for the small and large systems. In
dence. The latter has already been discussed by Hahn asthaller systems the back flow is stronger and sets in earlier
Karger? who showed that the cross-over MSD scales withand then decays quickly. In larger systems the back flow is
the number of particle@N) as given by Eq(3), which seems weaker but it persists for a longer time. This is also clearly
to describe the cross-over reasonably well. Thus in the limitnanifested in the system size dependence of the MSD.
of large N, the cross-over would occur at a very large value
of MSD. Thus, for an infinite system, the short time diffusion
can indeed become a relevant quantity. However, the diffulV. EFFECTS OF BACKGROUND NOISE
sion F;oeff_icient itself is zero in the str.ict sense bgcause of Diffusion in the single file system is often described in
Qef|n|t|on n Eq..(l). Thus, one ShQUId,d'SCUSS diffusion only theoretical studies in terms of random walk of an isolated
In terms o_f a time erendent diffusioB,(t). If the ;hort particle which is under the influence of a uniform back-
time diffusion, Dshor IS known, then one can approximately ground noise. In this case, MSD is known to follow a rela-

find the cross-over time from E@3) and it is given by tion such a&
N ( 1 )2 2(t)) = 2F
teo~—— =] . 7 (X5(1))=2F i, ()
Cross 12Dsh0r’[ p* ( )

where F is the mobility factor of the single file diffusion.
Thus, MSD shows two different time regimes. Inter-particle interactions modify the ideal behavidt. has
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been suggested that the MSD of a particle in the single file  Levitt® and Percushave earlier made the remarkable
system with interactions can be related to the absolute valugrediction that in a one-dimensional system with a random
(|s|) for the shift of a noninteracting particles present in thebackground noise, in the long time limip(x,t) (the prob-

same one-dimensional channel%y, ability of finding a particle ak at timet that was ax=0 at
1—p* t=0), is proportional to t~Y*exp(—x4(x4(t))), where
<x2>=( f (Is)). 9  (X3(t))— yt*¥p. Therefore, the MSD is predicted to have a
P Jt dependence. Hahn and t§er incorporated the effect of

Note that the above considerations apply where the particlesndom background noise by randomly changing the particle
in single file are not only interacting among themselves, butelocity. With this randomized velocity they found that, al-
are also subject to random noise. though in the intermediate time the MSD has a linear depen-
The experiments of Weet al® fall in the intermediate  dence ort, there is a crossover tgt dependence in the long
domain where both interparticle interactions and the backtime. Thus the background noise has a strong effect on the
ground noise are important. Thus, the long time diffusion isbehavior of MSD(and also VACH and thus on the dynamics
certainly zero for this experimental system. What is not cleaof the system. However, the effects on the VACF have not
is the existence of the time ranges where E@$.and (7)  been investigated.
could be valid. One still expects a time range where a short In order to understand this point we have carried out
time diffusion exists which goes over to & type MSD  further MD simulation where the effect of random noise is

behavior at the intermediate time. taken into account by randomly changing the velocity after
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In(t/) placement(MSD) obtained from MD simulation in
presence of the background noise is plottedin fig-
ure). Inset(a) shows that in the intermediate time MSD

has a linear dependence on time, while inggtshows
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+~ FIG. 7. The normalized velocity autocorrelation func-
> tion both in presencéfull line) and absencédashed
o line) of the background noise is plotted as a function of
reduced time ap*=0.6 andT* =1.0.
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regular time intervalsN, with N=1007r or 1000-. This was in the presence of the random noise. What was not expected
the procedure adopted by Hahn andrdgex? The time de- s the total change in the intermediate time. Note also that the
pendence of MSD is shown in Fig. 6. Simulation resultssmall amplitude long time tail in the VACF disappeaam-
show that although, in the intermediate time, the MSD has gjetely in the presence of the random noise. Instead a tail
linear dependence on time, in the long time it goes/ds  appears which can be fitted to a power-law form with an
This is in agre_ement with theoretical predictions. _However’exponent equal tae=1.3+0.2. Nevertheless, in this case one
the new result is the rather shar.p cross-over form lineaftto can also define a short time diffusion.
depeqdence of mean-square dlsplapement. . In order to understand the effect of noise on the particle
It is also natural that the behavior of VACF will be af- . . h ied out a careful analvsis of indi-
fected by this random noise. This has been addressed to tt)rajectone_s, we have carried ou Y .
Levitt and Percus in two well-known papers. They predicted _dual trajecto_nes, as before. Figure 8 show:_; such trajecto-
that the random noise will give rise to a power-law long time”fS of 10 adjflcent rods up to very Iong. tlme,. #0lor
decay of the VACFC,(t)=t™ ¢, with a=3/28° However, P :Q.85 andT*=1.0. If one study a one—d|menS|opaI sys-
we are not aware of any detailed computational study of th&8M in the presence of noise, one finds that the noise damp-
effects of random noise on VACF. Figure 7 displays the de£ns oscillations in the trajectories as shown in Figc@m-
cay behavior of this correlation both in the presence and ifPare with Fig. 3. Although the nature of the oscillations
the absence of the random noise. As can be seen from th@ghserved here is in agreement with the recent experimental
figure, the decay of random noise modulated correlatiorstudy of Weiet al,! one needs to do further detailed inves-
function is much faster. This behavior is of course expectedigation in this direction.

72

FIG. 8. Typical trajectories of 10 adjacent rods in pres-
ence of background noise obtained from a very long
MD simulations of 1D LJ rods are showh* =1.0 and
p*=0.85. Note that in presence of noise, the correlated
motion of the adjacent particles lost.
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V. MODE COUPLING THEORY ANALYSIS

1
R (t)=—~ | [dq'/(2 L(q’
The success of the mode coupling theory in describing n(t) P f [dg'/(2m) ]Lyala’)

the diffusion both in 3D and 2D motivated us to extend it to

’ —4
the 1D systems. MCT correctly predicts the diffusion coeffi- +(pa?mp)e(a’) Fwg
cient in 3D and could predict that in 2D, although the time X[F(q’,t)—F%q’,t)]C/(q’ 1), (14
dependent diffusion exists, the long time diffusion coefficient
diverges due to the transverse current mode. and

As observed in simulation§presented in the previous
section, in 1D the VACF shows a long time negative tail and Rp|(t)=f [dq’/(Zw)]c(q’)[y'd(q)
the time dependent diffusion in the long time is oscillatory.

The total diffusion coefficient is found to be zero. It is clearly +(pg?mB)c(q’) g 2

nontrivial to capture this behavior from a microscopic theory

and mode coupling theory is the only theoretical scheme X[Fs(q’,t)—FO(q’,t)]iF(q’,t), (15)
available to analyze these results. In order to calculate either dt

VACF or the diffusion coefficient with MCT, we need the Wherey'd(q) is the distinct part of the second moment of the

3’."2 !cl))artt_lcle fd're? correlatul)_'n funct(;orm,(i[(), &;ﬂd the rad[:ll longitudinal current correlation function, which is given by
istribution function,g(x). Here x denotes the separation the following equation:

between the centers of two LJ rods. In order to make the
2

calculations robust we have used théx) obtained from | p
simulations. The frequencyz) dependent velocity correla- va(Q) =~ Ej dxcogqx)g(x) gzv(X), (16)
tion function C,(z) is related to the frequency dependent ) ) ) ) )
friction by the following generalized Einstein relatidh, and w%'s the well-known Einstein frequency in 1D and is
iven
Co(2)= 2] (10) o 2
)= ————, d
v p
m(z+{(2)) ‘*’3:Ej dxg(x) gz v(X). (17

where{(z) is the frequency dependent friction.

In mode coupling theory, the full friction is decomposed B(t) is the binary part of the friction whose expression is
into a short and a long time part. Short time part arises fromgiven by
the binary collisions of tagged particle with the surrounding
solvents and the long time part originates from the correlated £3(t) = wp exp — %/ 77). (18)
recollisions. Final expression for the frequency dependenthe relaxation timer, is determined from the second deriva-
friction used to calculate both VACF and time dependentjye of ¢8(t), which is given by the following equation:
diffusion is given by?® ,

(D=2 +R) (11 -2 f xS 000800 500

’ 7 3m a2V VI grev

where8(z) is the binary part of the zero frequency friction,
{R(2) is the ring collision term, which contains the contribu-
tions from the repeated collisions to the total friction. The
expression ofR(z) in 1D will be similar to that in 3D and
2D put without the presence of the term that contains th
contribution from the transverse current to the total friction.
Replacing the expression ¢R(z) in the above equation the
total friction can be written as

+iqu L) (S(a)—1) v4(q) (19
471_p 7d ‘}/d 1

éhe static structure facto§(q), appearing in the above ex-
pression is calculated by using the one-dimensional Fourier
transform of the radial distribution function.

The longitudinal current correlation functio@,(q,t), is
related to the dynamic structure factor by the following ex-

B(2)+R,,(2) - B(2DR,(2) pression:
{(2)= B : (12)
1+R,(2)+7(2)RL(2) m2 d2
In the above expressidR,,(z) contains the coupling to the Ci(a,H)=- EZ WF(q’t)- (20)
density and is given by
T It is important to note that at sufficiently long times the only
p B ! ! ! i ifi i i i i
R,,(t)= f[dq 1(2m) 19" c(q’)]? significant contribution to the integral of E(L4) arises from
m small wave numbers. Note that the only existing current
S/t 4\ =S/ , modes are the longitudinal ones and are directly related to
X[Fa,H=Fo(a",DIF (A", 1). (13 F(q,t) through the above equation.
c(q) is the Fourier transform of(x). R (z) contains the As mentioned earlier, we present a MCT analysis of the

contribution of the longitudinal current whil, includes rich time dependence of the,(t) as observed in the simu-
the simultaneous coupling to the density and longitudinalations. A MCT analysis of thé™ 2 decay of the VACF was
current modes. These can be expressed by the following eypresented earliéf. Although the analysis was not complete,
pressions in one dimensidby following the similar proce- it showed that the origin of the™ 3 decay was th&,, term.
dure used in 3R%Y7 In reality the situation is more subtle with all the terms hav-
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ing different time scale of decay. Also note that a factog®df ~ Similarly we substitute Eqi21) in Eq. (20) and then substi-
was missing in Eq(19) of Ref. 16, although the final form tute the expression &,(t) in Eq. (23). After performing the

had the correct time dependence. The presence? ofill wave number integration, EGR3) can be written as
lead to a different power df 4 s
To understand the origin of the complex time depen- Ri(t)=—Camy/zt 3 3C,m\/mt®, (26)

dence of VACF, we have analyzed all the termg§z) in
their asymptotic limit. In all of these analysis the most im-
portant assumption is a Gaussian ansatz Ffq,t). The
simulatedF(q,t) is found to decay mostly as a Gaussian

where the first term on the right hand side does not survive.
If we replace Eq(21) in Eq. (24) and perform the wave
number integration we get

function, given by Csym 3CgV
Ru(t)=— 5\/—t72— 6\/—t"‘. (27)
F(q,t)~exp —aqg’t?). (22) 2 4
The other assumptions are the following. Since in suffi-  Note that in the above equations the pre-factors come

ciently long time the significant contribution arises from with both positive and negative signs. The equations in the
small and intermediate wave numbers, the wave number déime plane need to be Laplace inverted to get the frequency
pendent vertex functions in the integrdSq. (19)] are re-  dependent full frictior{given by Eq.(12)]. A Laplace trans-
placed by constant values which they attaingat0 limit. ~ form of Eq.(10) with the full {(z) will give the VACF. Thus
The decay ofF4(q,t) is assumed to be slow and it is re- it is evident that the time dependenceRy,, R, , andR,,
placed by 1. With the abovementioned assumptions the exwill not directly get translated to the VACF and from the

pression forR (), R;(t), andR,(t) can be written as above expressions it is not possible to make an estimate of

the weightage of the different terms. But it can be argued that

Rpp(t)zclf dqof exp( — g2t2), (22) d_ue to complex time depe_ndence of_ the recoll_isio_n term the
time dependence @,,(t) will not be simple and it will have

multiple time scales of decay, in agreement with the simula-
Rll(t):CZJ qul(qyt)"‘Csf dqg?Cy(q,t) tion studies.
While the above analysis could explain the asymptotic
behavior of the VACF, the decay over the entire time range
+C4J dqq'Ci(a,b), (23)  can be explained only by a fully self-consistent mode cou-
pling theory calculation. In the following we present the re-
and sults obtained from such a self-consistent calculation. The
d d only approximation made in these calculations is thatghe
Rp|(t)=C5f dan(q,tHCﬁf dqqz&F(q,t). (24)  dependence of (q) can be neglected. While this approxi-
mation makes the agreement imperfect, one can still see the
In the above equatior8; (i=1,2.....,6) are constants which basic behavior to emerge from the MCT analysis.
are independent af andt. Now we substitute Eq21) in Eq. In Fig. 9 the normalized VACF obtained from the fully

(22) and perform the wave number integration to get self-consistent mode coupling theory at=0.85 andT*
=1.0 is plotted against the reduced time. For comparison,
Cim

R (t)= {3 (25) the VACF obtained from simulation is also shown in the
PP 4 ' same figure. As can be seen from the figure, similar to the
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FIG. 10. The frequency dependent friction obtained
from the fully self-consistent mode coupling theory
(line) along with the same obtained from simulation
(symbols is plotted atp*=0.85 andT* =1.0.

(@)

0 20 40 60 80 100

simulation result(symbolg MCT (line) also shows a pro- sion in 1D by performing onlyhort timeMD simulations.
nounced negative VACF at short to intermediate times. Tdur conclusions are in agreement with studies of Hahn and
understand both the short and the long time decay of VACHKarger? except that we have presented the analysis of the
in more detail, the frequency dependent frictimbtained velocity time correlation function and a more detailed de-
from both simulation and MCJrat the same density and scription of MSD. We find that MSD shows an oscillatory
temperature is plotted in Fig. 10 as a function of frequencytime dependence which is because ofttla@ping of the rods
(2). As can be seen from this figure the MCT predictine) by their nearest neighbors in 1D linger times which is
is reasonably in good agreement with that obtained from thelso consistent with the recent experimental results ad-
simulation(symbols. dition, we have presented a fully self-consistent mode cou-
However, MCTfails to provide the approach to the zero pling theory which captures much of the rich dynamical be-
value of the long time diffusion coefficient, at finité The  havior of the velocity correlation function and also of the

reason is the same as in Jepsen—the thermodynamic limitequency dependent friction in one-dimensional strongly in-
has been invoked in the calculation 6f(t). In the ideal  teracting systems.

scenario, one should calculateg(t) that depends oN and An important outcome of the present study is the discov-
L and one should take the limN—c, L —o with p=N/L  ery of the very slow long time decay of the velocity correla-
=fixed later. tion function. It is this negative ultra-slow decay which even-

~ Note that for applications, the above is not a deficiencyya)ly |eads to the vanishing of the diffusion coefficient. The
since one is interested in the short time diffusion which is theg|g,y, decay observed here is much slower thart tedecay
meaningful quantity in the thermodynamic limit. often discussed earlier. The slow decay becomes progres-
MCT is known to give reliable results in the thermody- gjyely less in amplitude and longer in time span as the size of
namic limit, particularly in normal liquidgthat is, away from  yhe gystem is increased. In addition, the first tithg, that
the glass trangnon tempera_tDJ.rtn th.e MCT t.he system size C,(t) becomes negative moves to longer timeNass in-
dependence is usually studied by introducing a cutoff in the, e a5eq. 1t is likely that there exists a scaling relation be-

Iowler Iir;:?t Of_ the wave erCtOK in th? mode Ciutzllgg inte- tweentseg and N, but this requires further study. Unfortu-
gras. T le?flVgS a Sazt:;&_)alcto:]y explanation o (hepen- nately, the Jepsen solution is not very useful for this purpose
ence of diffusion In 23" In the present case, such an ap- because of the thermodynamic limit already employed. The

proach will obviously pr_o""?'e only a wefakl d_ependence,_ present simulations suggest that the amplitude of the first
because here the contribution comes primarily from the in-

: . . negative dip scales withl asN~" where»~1.0. We know
termediatek. An important source of the dependence in 1D : . . e
systems(unlike that in 2D and 3D systemould be the from simulations that the short time diffusion is independent

: ..~ . of N. Thus, the integral of the long time negative tail must
strong system size dependence of the the radial distribution . e
. . . . . also be independent &f, because the diffusion must be zero
function and also the two particle direct correlation function.. L i .
in the limit of t—oo, at fixedN. Since the pre-factor of the
negative tail decreases WS 7, the contribution from the rest
of the integrand must increase W$. Therefore, the tail of
In conclusion, we have shown that in a one-dimensionaVACF must persist up to a time that grows with while the
LJ system diffusion indeed goes to zero in the limit of veryamplitude of the tail itself decreasesMs”. The situation is
long time(which, of course, needs to be defined propeily  even more interesting in MSD. Here a lengthening of the

contrast to earlier studi&sthat report finite nonzero diffu- decay ofC,(t) implies a corresponding lengthening of the

VI. CONCLUSIONS



cross-over region from the linear short time behavior to thesions. This work is supported in parts by grants from DST
flat long time behavior. This is indeed seen in simulation. and CSIR, India. G.S. thanks CSIR, for a Research Fellow-
The above provides a physical picture behind the apship.

proach of the system dynamics to the lahyémit. Thus, the 10.-H. Wei, C. Bechi 4P Leid Scie8s, 625 (2000

H H HS H H --A. Wel, C. Becninger, an . Lelaerer, Scle f .
theorl_es that invoke .N._m "F"” obta'ur_\ only the short. Ume 28" Hann and J. Keger, J. Phys. Cheml00, 316 (1996; K. Hahn, J.
d|ffu§|on. However, it is a bit surprising that sugh rlch' dy-  Karger, and V. Kukla, Phys. Rev. Leff6, 2762(1996.
namics at smalN as observed here are totally missed if the 3J. Kager and D. M. RuthvenpDiffusion in Zeolites and Other Mi-
thermodynamic limit is taken! croporous SolidgWiley, New York, 1992.

. P . “N. Y. Chen, T. F. Degnan, and C. M. Smithjolecular Transport and
This N dependence of the velocity time correlation func- Reaction in Zeolite§VCH, New York, 1994.

tion is intir_nately cqnnected_ with the validity of the Greenf S5L. V. C. Rees,Proceedings of the 10th International Zeolite Conference
Kubo relation. We find no signature of the breakdown of this (Garmisch-Partenkirchen, 1994

relation here—the diffusion obtained from MSD agrees with 33 \g’; ﬂepse”aJé ’\f']atg- Phy@j 48§ (1963559 5337(1973
. . . : . bIshop an . J. berne, J. em. A .
that obtained from the time integral of the velocity correla- s’ | eyit, phys. Rev. /8, 3050(1973.

tion function, for finiteN simulated here. 93, K. Percus, Phys. Rev. 8 557 (1974).
The present study left several questions unanswered. W&J. W. Haus and H. J. Raveche, J. Chem. PB#s4969(1978.

. 11 H .
have not yet found a way to incorporate the effects of ran- J: L- Lebowitz and J. K. Percus, Phys. R&@5 122 (1967; J. L. Leb-
owitz, J. K. Percus, and J. Sykebid. 171, 224 (1968.

dom noise in the mode COUP“”Q theory f:alculatlorOg(t). 2E. H. Lieb and C. MatticeMathematics Problems in One Dimension:
The N dependence of the tail of thg,(t) is also not under-  Exactly Solvable Models of Interacting Particléscademic, New York,
stood. 1966.

M. Bishop, M. Derosa, and J. Lalli, J. Stat. Phg§, 229 (1981).
14B. J. Alder and T. E. Weinwright, Phys. Rev.14 18 (1970.
ACKNOWLEDGMENTS 153, Bhattacharyya, G. Srinivas, and B. Bagchi, Phys. Let268 394
. ; ~ (2000.
Professor Stuart Rlce. is acknowledged for drawing at 16G. Srinivas and B. Bagchi, J. Chem. Phga2, 7557/(2000.
tention to the works on single file systefRefs. 1 and 8 175 Bagchi and S. Bhattacharyya, Adv. Chem. PHyS, 67 (2009.

The authors thank Professor S. Yashonath for several discu¥i. Sjogren and A. Sjolander, J. Phys.12, 4369(1979.



