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Long time molecular dynamics simulations of one-dimensional Lennard-Jones systems reveal that
while the diffusion coefficient of a tagged particle indeed goes to zero in thevery long time, the
mean-square displacement is linear with time at short to intermediate times, allowing the definition
of a short time diffusion coefficient@Lebowitz and Percus, Phys. Rev.155, 122~1967!#. The particle
trajectories show intermittent displacements, surprisingly similar to the recent experimental results
@Wei et al., Science287, 625~2000!#. A self-consistent mode coupling theory is presented which can
partly explain the rich dynamical behavior of the velocity correlation function and also of the
frequency dependent friction. The simulations show a strong dependence of the velocity correlation
function on the size of the system, quite unique to one dimensional interacting systems. Inclusion of
background noise leads to a dramatic change in the profile of the velocity time correlation function,
in agreement with the predictions of Percus@Phys. Rev. A9, 557 ~1974!#.
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I. INTRODUCTION

Diffusion in one-dimensional~1D! fluids, sometimes
also referred to as ‘‘single file systems,’’1 is a subject of grea
current interest, not only from practical importance as tra
port in zeolites and nanotubes,2–5 but also as a problem o
great, long standing fundamental importance.6–12 The first
theoretical study was carried out by Jepsen6 who presented
an analytical solution for the velocity correlation function
hard rods. Lebowitz and Percus11 studied a short time limit
of this function and derived expressions for short time dif
sion coefficient. Note that in the limit of infinite system th
transmission rate of a signal across the system is also infi
and thus this short time diffusion should persist for an in
nitely long time. Bishopet al.13 calculated the diffusion co
efficient in 1D ~D refers to the dimensionality! Lennard-
Jones fluids. Earlier we have presented a simulation
mode coupling theory analysis of this problem and in p
ticular investigated the origin of thet23 time ~t! dependence
of the velocity time correlation function in the long time
Recently, several studies have been devoted to diffusio
zeolite channels and nanotubes.2,4 Here one often studies dif
fusion in low fluid concentration but there is a backgrou
noise term which can alter the diffusion behavior. Very
cently, diffusion has been studied in the limit of high loadi
~meaning high fluid concentration!, which makes the two
different schools on one-dimensional diffusion to converg

Diffusion coefficient~D! in 1D can be defined by any o
the following two definitions,

D5 lim
t→`

1

2t
^Dx2~ t !& ~1!

a!Electronic mail: bbagchi@sscu.iisc.ernet.in
b!Also at the Jawaharlal Nehru Center for Advanced Scientific Resea

Jakkur, Bangalore.
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`

dt^v~0!v~ t !&, ~2!

where^Dx2(t)& is the mean-square displacement~MSD! of a
tagged particle, andv(t) is the velocity at timet.

The self-diffusion coefficient in liquids shows strong d
pendence on dimensionality. As is well-known, the se
diffusion coefficient exists and well-defined in three dime
sion for interacting fluids, but it diverges in tw
dimension.14,15 The situation is interesting and complicate
even controversial in 1D where it should have been the s
plest. The claim of the existence of a well-definedshort time
diffusion coefficient in 1D, an expression of which has be
given by Lebowitz and Percus11 for hard rods and a table
which has been given for Lennard-Jones fluids by Bish
et al.,13 is surprising given that the tagged particle motion
expected to be highly correlated with its nearest neighb
which shall form unsurmountable cages to its motion. Th
the diffusion should show a sub-diffusive behavior in t
long time. It has been predicted~and confirmed in simula-
tions!. There is, however, an additional aspect to diffusion
1D which is the effect of noise on diffusion. This later d
velopment is motivated by diffusion in zeolites and nan
tubes. The diffusion scenario changes drastically in the p
ence of noise. The interplay between noise and inter-part
interaction has been a subject of several studies.2

The Jepsen expression6 for the velocity autocorrelation
function ~VACF! for pure hard rods showed that thelong
time VACF decays as 1/t3, in contrast to the 1/tD/2 depen-
dence reported for the two~D52! and three~D53! dimen-
sions. It is important to note that although the Jepsen solu
is exact, it is obtained in the limit ofN→` while keeping the
time fixed, whereN is the number of the particles present

h,
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the system. As shown earlier by Hahn and Ka¨rger,2 the
mean-square displacement~MSD! of a tagged hard rod obey
the following interesting limit:2

^x2&`5
1

6
~12r l !2

N

r2 , ~3!

where ^x2&` denotes the limiting MSD ast→`. l is the
length of the hard rod andr is the number density. Thus
MSD becomes independent of time in the long time. The
fore, the long time diffusion is zero at any density. Numeri
calculations show that MSD varies linearly with time till th
above saturation occurs. Thus, becauseDx for any particle is
bounded byN/r, one can indeed talk of a short time diffu
sion during which the probability distribution of a tagge
particle position spreads as a Gaussian function, as occu
a truly diffusive process. This was discussed by Jepsen h
self. However, what has not been realized in earlier studie
that the time dependence of the velocity correlation funct
~and also of MSD!, as given by Jepsen, is valid only to th
short time part which depends on the size of the syst
Thus, Jepsen solution fails to describe the rich long ti
decay behavior ofCv(t) discussed later in this paper.

Lebowitz and Percus11 made an exponential approxima
tion for short time VACF for hard rods and predicted that t
short time diffusion should vary asr/(12r l ), wherer is the
number density of rods of lengthl.10 The Jepsen expressio
also gives a nonzero value ofD.6,10,11 The values given by
Bishop et al.13 agree well with the expression of Lebowi
and Percus.11

Unlike for hard rods, no analytical solution exists for 1
LJ rods. Earlier, we carried out the MD simulation16 of the
1D LJ system to verify the short time results of Bishopet al.3

and also to understand the anomalous 1/t3 long time behav-
ior of VACF.6 In the work reported in Refs. 13 and 16, th
upper limit of the integral was selected to be the reg
where VACF becomes mostly noise. However, in this wo
we show that the oscillations in VACF persists for a ve
long timein 1D. By long timewe mean two to three order
of magnitude larger than that considered by Bishopet al.
Thus thediffusion reported by Bishopet al. can be consid-
ered as the short time diffusion. We have also carried o
mode coupling theory analysis to supplement computatio
efforts on diffusion under a continuous potential.

In addition to the 1D Lennard-Jones system, extens
molecular dynamic simulations of 1D hard rods and 1D
pulsive soft spheres are carried out. It is found that at h
density, the results are similar to the ones observed in th
system. We have also carried out a mode coupling the
analysis in order to understand the rich dynamical beha
of the velocity correlation function. The mode couplin
theory has been developed because no exact solution e
for continuous potentials.

Another motivation of the present work is to understa
the recent experimental results of Weiet al.,1 who observed
that the particle self-diffusion is non-Fickian for the lon
periods of time in the single-file diffusion of colloids in one
dimensional channels. They have also observed that altho
the particles execute sizable spatial movements as a fun
-
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of time, the net mean-square displacement remains ne
zero. This has been attributed to the mutual excluded volu
interaction.

The organization of the rest of the paper is as follows.
the next section we describe the simulation details. In S
III the simulation results and discussion part is present
Section IV describes the effects of background noise on
dynamical correlations. Mode coupling theory analysis
presented in Sec. V. We close the paper with a few con
sions in Sec. VI.

II. SIMULATION DETAILS

Simulation details remain almost the same as descri
in our previous study,16 except the striking difference that th
present simulations are carried out for a very long time. N
ertheless, we mention the simulation method in brief.

The simulation system consists of 1000 Lennard-Jo
~LJ! rods placed in a row in one dimension with the initi
velocities sampled from the Maxwellian velocity distribu
tion. The rods move according to Newtonian dynamics a
interact through the pairwise additive Lennard-Jones po
tial,

Vi j ~x!54eF S l

xD 12

2S l

xD 6G , ~4!

where i and j represents two different LJ rods,l being the
length of rod ande is the measure of the interaction. Ma
~m! and length~l! of the rods are scaled to unity. The reduc
units being used in simulations for distance, time, tempe
ture, and the density arex* 5x/ l , t5A(m/e) l , T*
5kBT/e, andr* 5r l , respectively. The time dependent di
fusion D(t), described later, is scaled byl 2/t.

We have studied a wide range of densities starting fr
r*50.1 tor*50.9 atT* 51.0. This system behaves exact
like the point atoms placed at a distance of 1/r interacting in
a volume ofV5L2Nl, whereL is the length of the simu-
lation box andN, the number of LJ rods. Each time th
velocities are updated by using Verlet algorithm withDt
50.0005t at all the densities except forr* 50.1, where we
have usedDt50.002t.

III. SIMULATION RESULTS AND DISCUSSION

Figure 1 shows the MSD as a function of reduced time
r* 50.85 andT* 51.0; inset shows that for ashort time. It is
important to note that even thisshort time is 5–10 times
larger than thetotal simulation time of Bishopet al. This
figure reveals many interesting results. MSD is linear in tim
even up to 10t. Beyond 10t, the growth in MSD progres-
sively decreases and ultimately starts oscillating arou
0.45l which is within 10% of the value predicted by Eq.~3!.
This essentially suggests the trapping of rods by their nea
neighbors in 1D. The study ofvery long time VACFis also
revealed by the same conclusion. In Fig. 2 the VACF is pl
ted against the reduced time at the same temperature
density as in Fig. 1. While the main figure shows the f
decay of VACF, the short time decay of VACF is shown
the inset. Note the small, negative tail which persists for
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amazingly long time and is responsible for the zero value
the long time diffusion coefficient. This aspect was missed
earlier simulations.

In order to understand the above aspect, we have ca
out a careful analysis of individual trajectories. Figure
shows such trajectories of 10 adjacent rods up to very l
time, 1000t for r*50.85 andT* 51.0. Curves represent th
trajectory of various~adjacent! rods. As can be seen from
this figure the motion of the adjacent rods arehighly corre-
lated. Such highly cooperative behavior has also been
served recently by Weiet al.1 in their experimental study o
single file diffusion of colloids in a one-dimensional syste
They have observed the trajectories of eight neighboring
ticles in a channel. The trajectories plotted in Fig. 3 lo
quite similar to those reported in the experimental study
Wei et al. More importantly, all the adjacent particles a
found to move together, giving rise to transientlongitudinal
flow or current. These flows cause quite large displacem
but positive flows are as likely as negative flows, so that
mean displacement remains the same. The large flows

FIG. 1. The mean-square displacement~MSD! obtained from MD simula-
tion is plotted against the reduced time. Inset shows the same for a relat
short time. The reduced temperature and density are 1.0 and 0.85, re
tively.
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intermittent; that is, they appear only after large interva
There are smaller flows during this interval.

In order to understand the earlier theoretical predict
of a finite, nonzero short time diffusion constant, we ha
plotted the time dependent diffusion constant against redu
time in Fig. 4. In this case the reduced temperature and d
sities are also 1.0 and 0.85, respectively. The time depen
diffusion coefficient can be defined by any of the followin
two expressions:

D~ t !5
1

2

d

dt
^Dx2~ t !& ~5!

and

D~ t !5E
0

t

dt^v~0!v~t!&, ~6!

where^Dx2(t)& is the mean-square displacement of a tagg
particle,v(t) is the velocity at timet.

Both the definitions give essentially the same result; F
4 has been produced by using the velocity correlation fu
tion @i.e., by using Eq.~6!#. Note the slow approach ofD(t)

ly
ec-

FIG. 3. Typical trajectories of 10 adjacent rods obtained from a very lo
MD simulations of 1D LJ rods.T* 51.0 andr*50.85. Note the highly
correlated motion of the adjacent particles, which follows from the trans
longitudinal current modes.
s
.85
f
t.
FIG. 2. Normalized VACF obtained from simulations i
plotted against the reduced time at reduced density 0
and T* 51.0. Main figure shows the full decay o
VACF while the short time decay is shown in the inse
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FIG. 4. The time dependent diffusion coefficientD(t)
obtained from the simulated VACF@by using Eq.~6!# is
shown against the reduced time. Main figure shows
D(t) for the long time, while the short timeD(t) is
shown in the inset. This figure clearly shows that in t
long time, diffusion goes to zero.T* 51.0 and
r*50.85.
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to zero. Earlier simulations have considered only the sh
time region whereD(t) shows a plateau~shown in the inset
of Fig. 4!, and seem to have missed the long time behav
~main figure!.

We have also carried out extensive molecular dyna
simulations with 1D hard rod and 1D repulsive soft sph
~repulsive! potentials; in the latter case the interaction pote
tial has (l /x)12 form. In both these cases, the quantitati
features change somewhat, but qualitative aspects remai
same:~a! D(t) goes to zero in the long time;~b! a short time
diffusion coefficient can be defined; and~c! VACF exhibits a
small negative region for a long time. We further noticed th
at high density, Lennard-Jones rods behave like hard r
However, at intermediate densities~for, e.g., atr*50.6! the
LJ system does not show any negative region in VA
whereas the hard rods show a negative region. This ca
attributed to the pronounced backscattering in the cas
hard rods.

The cross-over of MSD from the linear short time b
havior to the oscillatory, time independent long time beh
ior is of considerable interest. Our simulations show that
cross-over is strongly density dependent. It gets shifted
longer and longer times as the density is increased. In a
tion, the cross-over also shows strong system size de
dence. The latter has already been discussed by Hahn
Kärger,2 who showed that the cross-over MSD scales w
the number of particles~N! as given by Eq.~3!, which seems
to describe the cross-over reasonably well. Thus in the li
of largeN, the cross-over would occur at a very large val
of MSD. Thus, for an infinite system, the short time diffusio
can indeed become a relevant quantity. However, the di
sion coefficient itself is zero in the strict sense because
definition in Eq.~1!. Thus, one should discuss diffusion on
in terms of a time dependent diffusion,D(t). If the short
time diffusion,Dshort is known, then one can approximate
find the cross-over time from Eq.~3! and it is given by

tcross'
N

12Dshort
S 1

r*
21D 2

. ~7!

Thus, MSD shows two different time regimes.
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Jepsen’s analytical solution predicts anN-independent
finite diffusion coefficient. As this solution was obtained
the thermodynamic limit, it is clear that this result corr
sponds to the limit ofN→`. This point is also clear from
the work of Lebowitz and Percus.11 Thus, it is rather impor-
tant to explore the effects of finiteN, both on the diffusion
and the velocity correlation function, in one-dimensional
teracting systems. This will allow an in-depth of understan
ing of the approach to the thermodynamic limit. Note that t
slow approach to the thermodynamic limit is a hallmark
the one-dimensional systems.

In Fig. 5 we show the system size dependence of
velocity time correlation function at densityr*50.6. We
have not discussed the system size dependence of MSD
has been discussed earlier by Hahn and Ka¨rger. The simu-
lated VACF shown in Fig. 5 shows some remarkable fe
tures. For a smaller system the negative dip at intermed
time is quite pronounced while the long time tail is nea
absent. As the size of the system is increased, the neg
dip becomes smaller but a very long time, persisting
appears. The time dependence of this long time tail is wea
than the well-knownt23 tail often discussed in the literature
Thus the reason for the vanishing long time diffusion co
ficient is rather different for the small and large systems.
smaller systems the back flow is stronger and sets in ea
and then decays quickly. In larger systems the back flow
weaker but it persists for a longer time. This is also clea
manifested in the system size dependence of the MSD.2

IV. EFFECTS OF BACKGROUND NOISE

Diffusion in the single file system is often described
theoretical studies in terms of random walk of an isola
particle which is under the influence of a uniform bac
ground noise. In this case, MSD is known to follow a re
tion such as8

^x2~ t !&52FAt, ~8!

where F is the mobility factor of the single file diffusion
Inter-particle interactions modify the ideal behavior.8 It has
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FIG. 5. The simulated velocity time auto correlatio
function for different system size atr*50.6 andT*
51.0 is plotted against reduced time. The solid, sh
dashed and the long dashed lines corresponds to VA
obtained forN532, 64, and 128, respectively.
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been suggested that the MSD of a particle in the single
system with interactions can be related to the absolute v
^usu& for the shift of a noninteracting particles present in t
same one-dimensional channel by,2,9

^x2&5S 12r*

r* D ^usu&. ~9!

Note that the above considerations apply where the parti
in single file are not only interacting among themselves,
are also subject to random noise.

The experiments of Weiet al.1 fall in the intermediate
domain where both interparticle interactions and the ba
ground noise are important. Thus, the long time diffusion
certainly zero for this experimental system. What is not cl
is the existence of the time ranges where Eqs.~3! and ~7!
could be valid. One still expects a time range where a sh
time diffusion exists which goes over to aAt type MSD
behavior at the intermediate time.
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Levitt8 and Percus9 have earlier made the remarkab
prediction that in a one-dimensional system with a rand
background noise, in the long time limit,p(x,t) ~the prob-
ability of finding a particle atx at time t that was atx50 at
t50!, is proportional to t21/4exp(2x2/^x2(t)&), where
^x2(t)&→gt1/2/r. Therefore, the MSD is predicted to have
At dependence. Hahn and Ka¨rger2 incorporated the effect o
random background noise by randomly changing the part
velocity. With this randomized velocity they found that, a
though in the intermediate time the MSD has a linear dep
dence ont, there is a crossover toAt dependence in the long
time. Thus the background noise has a strong effect on
behavior of MSD~and also VACF! and thus on the dynamic
of the system. However, the effects on the VACF have
been investigated.

In order to understand this point we have carried o
further MD simulation where the effect of random noise
taken into account by randomly changing the velocity af
is-
FIG. 6. The time dependence of the mean-square d
placement~MSD! obtained from MD simulation in
presence of the background noise is plotted~main fig-
ure!. Inset~a! shows that in the intermediate time MSD
has a linear dependence on time, while inset~b! shows
that in the long time it goes asAt. The reduced tem-
perature and density are 1.0 and 0.6, respectively.



-

of
FIG. 7. The normalized velocity autocorrelation func
tion both in presence~full line! and absence~dashed
line! of the background noise is plotted as a function
reduced time atr*50.6 andT* 51.0.
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regular time intervals,N, with N5100t or 1000t. This was
the procedure adopted by Hahn and Ka¨rger.2 The time de-
pendence of MSD is shown in Fig. 6. Simulation resu
show that although, in the intermediate time, the MSD ha
linear dependence on time, in the long time it goes asAt.
This is in agreement with theoretical predictions. Howev
the new result is the rather sharp cross-over form linear toAt
dependence of mean-square displacement.

It is also natural that the behavior of VACF will be a
fected by this random noise. This has been addressed t
Levitt and Percus in two well-known papers. They predic
that the random noise will give rise to a power-law long tim
decay of the VACF,Cv(t)}t2a, with a53/2.8,9 However,
we are not aware of any detailed computational study of
effects of random noise on VACF. Figure 7 displays the
cay behavior of this correlation both in the presence and
the absence of the random noise. As can be seen from
figure, the decay of random noise modulated correlat
function is much faster. This behavior is of course expec
a
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by
d

e
-
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his
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d

in the presence of the random noise. What was not expe
is the total change in the intermediate time. Note also that
small amplitude long time tail in the VACF disappearscom-
pletely in the presence of the random noise. Instead a
appears which can be fitted to a power-law form with
exponent equal toa51.360.2. Nevertheless, in this case on
can also define a short time diffusion.

In order to understand the effect of noise on the parti
trajectories, we have carried out a careful analysis of in
vidual trajectories, as before. Figure 8 shows such traje
ries of 10 adjacent rods up to very long time, 700t for
r*50.85 andT* 51.0. If one study a one-dimensional sy
tem in the presence of noise, one finds that the noise da
ens oscillations in the trajectories as shown in Fig. 8~com-
pare with Fig. 3!. Although the nature of the oscillation
observed here is in agreement with the recent experime
study of Weiet al.,1 one needs to do further detailed inve
tigation in this direction.
s-
ng

ted
FIG. 8. Typical trajectories of 10 adjacent rods in pre
ence of background noise obtained from a very lo
MD simulations of 1D LJ rods are shown.T* 51.0 and
r*50.85. Note that in presence of noise, the correla
motion of the adjacent particles lost.
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V. MODE COUPLING THEORY ANALYSIS

The success of the mode coupling theory in describ
the diffusion both in 3D and 2D motivated us to extend it
the 1D systems. MCT correctly predicts the diffusion coe
cient in 3D and could predict that in 2D, although the tim
dependent diffusion exists, the long time diffusion coefficie
diverges due to the transverse current mode.

As observed in simulations~presented in the previou
section!, in 1D the VACF shows a long time negative tail an
the time dependent diffusion in the long time is oscillato
The total diffusion coefficient is found to be zero. It is clear
nontrivial to capture this behavior from a microscopic theo
and mode coupling theory is the only theoretical sche
available to analyze these results. In order to calculate ei
VACF or the diffusion coefficient with MCT, we need th
two particle direct correlation function,c(x), and the radial
distribution function,g(x). Here x denotes the separatio
between the centers of two LJ rods. In order to make
calculations robust we have used theg(x) obtained from
simulations. The frequency~z! dependent velocity correla
tion function Cv(z) is related to the frequency depende
friction by the following generalized Einstein relation,17

Cv~z!5
kBT

m~z1z~z!!
, ~10!

wherez(z) is the frequency dependent friction.
In mode coupling theory, the full friction is decompose

into a short and a long time part. Short time part arises fr
the binary collisions of tagged particle with the surroundi
solvents and the long time part originates from the correla
recollisions. Final expression for the frequency depend
friction used to calculate both VACF and time depend
diffusion is given by18

z~z!5zB~z!1zR~z!, ~11!

wherezB(z) is the binary part of the zero frequency frictio
zR(z) is the ring collision term, which contains the contrib
tions from the repeated collisions to the total friction. T
expression ofzR(z) in 1D will be similar to that in 3D and
2D16,17but without the presence of the term that contains
contribution from the transverse current to the total frictio
Replacing the expression ofzR(z) in the above equation th
total friction can be written as

z~z!5
zB~z!1Rrr~z!2zB~z!Rr l~z!

11Rr l~z!1zB~z!RL~z!
. ~12!

In the above expressionRrr(z) contains the coupling to the
density and is given by

Rrr~ t !5
rkBT

m E @dq8/~2p!#q82@c~q8!#2

3@Fs~q8,t !2F0
s~q8,t !#F~q8,t !. ~13!

c(q) is the Fourier transform ofc(x). Rll (z) contains the
contribution of the longitudinal current whileRr l includes
the simultaneous coupling to the density and longitudi
current modes. These can be expressed by the following
pressions in one dimension~by following the similar proce-
dure used in 3D!,16,17
g

-

t

.

e
er

e

t

d
nt
t

e
.

l
x-

Rll ~ t !5
1

r E @dq8/~2p!#@gd
l ~q8!

1~rq2/mb!c~q8!#2v0
24

3@Fs~q8,t !2F0~q8,t !#Cl~q8,t !, ~14!

and

Rr l~ t !5E @dq8/~2p!#c~q8!@gd
l ~q!

1~rq2/mb!c~q8!#v0
22

3@Fs~q8,t !2F0~q8,t !#
d

dt
F~q8,t !, ~15!

wheregd
l (q) is the distinct part of the second moment of t

longitudinal current correlation function, which is given b
the following equation:

gd
l ~q!52

r

m E dx cos~qx!g~x!
d2

dx2 v~x!, ~16!

and v0 is the well-known Einstein frequency in 1D and
given by

v0
25

r

m E dxg~x!
d2

dx2 v~x!. ~17!

zB(t) is the binary part of the friction whose expression
given by

zB~ t !5v0
2 exp~2t2/tz

2!. ~18!

The relaxation timetz is determined from the second deriv
tive of zB(t), which is given by the following equation:

v0
2

tz
2 5

r

3m2 E dx
d2

dx2 v~x!g~x!
d2

dx2 v~x!

1
1

4pr E dqgd
l ~q!~S~q!21!gd

1~q!, ~19!

the static structure factor,S(q), appearing in the above ex
pression is calculated by using the one-dimensional Fou
transform of the radial distribution function.

The longitudinal current correlation function,Cl(q,t), is
related to the dynamic structure factor by the following e
pression:

Cl~q,t !52
m2

q2

d2

dt2
F~q,t !. ~20!

It is important to note that at sufficiently long times the on
significant contribution to the integral of Eq.~14! arises from
small wave numbers. Note that the only existing curre
modes are the longitudinal ones and are directly related
F(q,t) through the above equation.

As mentioned earlier, we present a MCT analysis of
rich time dependence of theCv(t) as observed in the simu
lations. A MCT analysis of thet23 decay of the VACF was
presented earlier.16 Although the analysis was not complet
it showed that the origin of thet23 decay was theRll term.
In reality the situation is more subtle with all the terms ha
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FIG. 9. The normalized velocity autocorrelation func
tion obtained from the fully self-consistent mode co
pling theory~line! is plotted against the reduced time a
r*50.85 andT* 51.0. For comparison the result o
simulation~symbols! is also shown.
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ing different time scale of decay. Also note that a factor ofq2

was missing in Eq.~19! of Ref. 16, although the final form
had the correct time dependence. The presence ofq2 will
lead to a different power oft.

To understand the origin of the complex time depe
dence of VACF, we have analyzed all the terms inzR(z) in
their asymptotic limit. In all of these analysis the most im
portant assumption is a Gaussian ansatz forF(q,t). The
simulatedF(q,t) is found to decay mostly as a Gaussi
function, given by

F~q,t !'exp~2aq2t2!. ~21!

The other assumptions are the following. Since in su
ciently long time the significant contribution arises fro
small and intermediate wave numbers, the wave number
pendent vertex functions in the integrals@Eq. ~19!# are re-
placed by constant values which they attain atq→0 limit.
The decay ofFs(q,t) is assumed to be slow and it is re
placed by 1. With the abovementioned assumptions the
pression forRrr(t), Rll (t), andRr l(t) can be written as

Rrr~ t !5C1E dqq2 exp~2q2t2!, ~22!

Rll ~ t !5C2E dqC1~q,t !1C3E dqq2Cl~q,t !

1C4E dqq4Cl~q,t !, ~23!

and

Rr l~ t !5C5E dq
d

dt
F~q,t !1C6E dqq2

d

dt
F~q,t !. ~24!

In the above equationsCi ( i 51,2.....,6) are constants whic
are independent ofq andt. Now we substitute Eq.~21! in Eq.
~22! and perform the wave number integration to get

Rrr~ t !5
C1Ap

4
t23. ~25!
-

-

e-

x-

Similarly we substitute Eq.~21! in Eq. ~20! and then substi-
tute the expression ofCl(t) in Eq. ~23!. After performing the
wave number integration, Eq.~23! can be written as

Rll ~ t !52C3mApt2323C4mApt25, ~26!

where the first term on the right hand side does not surv
If we replace Eq.~21! in Eq. ~24! and perform the wave

number integration we get

Rr l~ t !52
C5Ap

2
t222

3C6Ap

4
t24. ~27!

Note that in the above equations the pre-factors co
with both positive and negative signs. The equations in
time plane need to be Laplace inverted to get the freque
dependent full friction@given by Eq.~12!#. A Laplace trans-
form of Eq.~10! with the full z(z) will give the VACF. Thus
it is evident that the time dependence ofRrr , Rll , andRr l

will not directly get translated to the VACF and from th
above expressions it is not possible to make an estimat
the weightage of the different terms. But it can be argued t
due to complex time dependence of the recollision term
time dependence ofCV(t) will not be simple and it will have
multiple time scales of decay, in agreement with the simu
tion studies.

While the above analysis could explain the asympto
behavior of the VACF, the decay over the entire time ran
can be explained only by a fully self-consistent mode co
pling theory calculation. In the following we present the r
sults obtained from such a self-consistent calculation. T
only approximation made in these calculations is that thq
dependence ofG(q) can be neglected. While this approx
mation makes the agreement imperfect, one can still see
basic behavior to emerge from the MCT analysis.

In Fig. 9 the normalized VACF obtained from the full
self-consistent mode coupling theory atr*50.85 andT*
51.0 is plotted against the reduced time. For comparis
the VACF obtained from simulation is also shown in th
same figure. As can be seen from the figure, similar to
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FIG. 10. The frequency dependent friction obtaine
from the fully self-consistent mode coupling theor
~line! along with the same obtained from simulatio
~symbols! is plotted atr*50.85 andT* 51.0.
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simulation result~symbols! MCT ~line! also shows a pro-
nounced negative VACF at short to intermediate times.
understand both the short and the long time decay of VA
in more detail, the frequency dependent friction~obtained
from both simulation and MCT! at the same density an
temperature is plotted in Fig. 10 as a function of frequen
~z!. As can be seen from this figure the MCT prediction~line!
is reasonably in good agreement with that obtained from
simulation~symbols!.

However, MCTfails to provide the approach to the ze
value of the long time diffusion coefficient, at finiteN. The
reason is the same as in Jepsen—the thermodynamic
has been invoked in the calculation ofCv(t). In the ideal
scenario, one should calculate aCv(t) that depends onN and
L and one should take the limitN→`, L→` with r5N/L
5 f ixed later.

Note that for applications, the above is not a deficien
since one is interested in the short time diffusion which is
meaningful quantity in the thermodynamic limit.

MCT is known to give reliable results in the thermod
namic limit, particularly in normal liquids~that is, away from
the glass transition temperature!. In the MCT the system size
dependence is usually studied by introducing a cutoff in
lower limit of the wave vectork in the mode coupling inte-
grals. This gives a satisfactory explanation of theN depen-
dence of diffusion in 2D.15 In the present case, such an a
proach will obviously provide only a weakN dependence
because here the contribution comes primarily from the
termediatek. An important source of theN dependence in 1D
systems~unlike that in 2D and 3D systems! could be the
strong system size dependence of the the radial distribu
function and also the two particle direct correlation functio

VI. CONCLUSIONS

In conclusion, we have shown that in a one-dimensio
LJ system diffusion indeed goes to zero in the limit of ve
long time~which, of course, needs to be defined properly!, in
contrast to earlier studies13 that report finite nonzero diffu-
o
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sion in 1D by performing onlyshort timeMD simulations.
Our conclusions are in agreement with studies of Hahn
Kärger,2 except that we have presented the analysis of
velocity time correlation function and a more detailed d
scription of MSD. We find that MSD shows an oscillato
time dependence which is because of thetrappingof the rods
by their nearest neighbors in 1D atlonger times, which is
also consistent with the recent experimental results.1 In ad-
dition, we have presented a fully self-consistent mode c
pling theory which captures much of the rich dynamical b
havior of the velocity correlation function and also of th
frequency dependent friction in one-dimensional strongly
teracting systems.

An important outcome of the present study is the disc
ery of the very slow long time decay of the velocity correl
tion function. It is this negative ultra-slow decay which eve
tually leads to the vanishing of the diffusion coefficient. T
slow decay observed here is much slower than thet23 decay
often discussed earlier. The slow decay becomes prog
sively less in amplitude and longer in time span as the siz
the system is increased. In addition, the first timet fneg that
Cv(t) becomes negative moves to longer time asN is in-
creased. It is likely that there exists a scaling relation
tween t fneg and N, but this requires further study. Unfortu
nately, the Jepsen solution is not very useful for this purp
because of the thermodynamic limit already employed. T
present simulations suggest that the amplitude of the
negative dip scales withN as N2n wheren'1.0. We know
from simulations that the short time diffusion is independe
of N. Thus, the integral of the long time negative tail mu
also be independent ofN, because the diffusion must be ze
in the limit of t→`, at fixedN. Since the pre-factor of the
negative tail decreases asN2n, the contribution from the res
of the integrand must increase asNn. Therefore, the tail of
VACF must persist up to a time that grows withN, while the
amplitude of the tail itself decreases asN2n. The situation is
even more interesting in MSD. Here a lengthening of t
decay ofCv(t) implies a corresponding lengthening of th
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cross-over region from the linear short time behavior to
flat long time behavior. This is indeed seen in simulation

The above provides a physical picture behind the
proach of the system dynamics to the largeN limit. Thus, the
theories that invoke aN→` limit obtain only the short time
diffusion. However, it is a bit surprising that such rich d
namics at smallN as observed here are totally missed if t
thermodynamic limit is taken!

This N dependence of the velocity time correlation fun
tion is intimately connected with the validity of the Green
Kubo relation. We find no signature of the breakdown of t
relation here—the diffusion obtained from MSD agrees w
that obtained from the time integral of the velocity corre
tion function, for finiteN simulated here.

The present study left several questions unanswered
have not yet found a way to incorporate the effects of r
dom noise in the mode coupling theory calculation ofCv(t).
The N dependence of the tail of theCv(t) is also not under-
stood.

ACKNOWLEDGMENTS

Professor Stuart Rice is acknowledged for drawing
tention to the works on single file system~Refs. 1 and 8!.
The authors thank Professor S. Yashonath for several dis
e

-

s

-

e
-

t-

s-

sions. This work is supported in parts by grants from D
and CSIR, India. G.S. thanks CSIR, for a Research Fello
ship.

1Q.-H. Wei, C. Bechinger, and P. Leiderer, Science287, 625 ~2000!.
2K. Hahn and J. Ka¨rger, J. Phys. Chem.100, 316 ~1996!; K. Hahn, J.
Kärger, and V. Kukla, Phys. Rev. Lett.76, 2762~1996!.

3J. Kärger and D. M. Ruthven,Diffusion in Zeolites and Other Mi-
croporous Solids~Wiley, New York, 1992!.

4N. Y. Chen, T. F. Degnan, and C. M. Smith,Molecular Transport and
Reaction in Zeolites~VCH, New York, 1994!.

5L. V. C. Rees,Proceedings of the 10th International Zeolite Conferen
~Garmisch-Partenkirchen, 1994!.

6D. W. Jepsen, J. Math. Phys.6, 405 ~1965!.
7M. Bishop and B. J. Berne, J. Chem. Phys.59, 5337~1973!.
8D. G. Levitt, Phys. Rev. A8, 3050~1973!.
9J. K. Percus, Phys. Rev. A9, 557 ~1974!.

10J. W. Haus and H. J. Raveche, J. Chem. Phys.68, 4969~1978!.
11J. L. Lebowitz and J. K. Percus, Phys. Rev.155, 122 ~1967!; J. L. Leb-

owitz, J. K. Percus, and J. Sykes,ibid. 171, 224 ~1968!.
12E. H. Lieb and C. Mattice,Mathematics Problems in One Dimension

Exactly Solvable Models of Interacting Particles~Academic, New York,
1966!.

13M. Bishop, M. Derosa, and J. Lalli, J. Stat. Phys.25, 229 ~1981!.
14B. J. Alder and T. E. Weinwright, Phys. Rev. A1, 18 ~1970!.
15S. Bhattacharyya, G. Srinivas, and B. Bagchi, Phys. Lett. A266, 394

~2000!.
16G. Srinivas and B. Bagchi, J. Chem. Phys.112, 7557~2000!.
17B. Bagchi and S. Bhattacharyya, Adv. Chem. Phys.116, 67 ~2001!.
18L. Sjogren and A. Sjolander, J. Phys. C12, 4369~1979!.


