Pressure and temperature dependence of viscosity and diffusion
coefficients of a glassy binary mixture

Arnab Mukherjee, Sarika Bhattacharyya, and Biman Bagchi®
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore -12, India

Extensive isothermal-isobaridNPT) molecular dynamics simulations at many different
temperatures and pressures have been carried out in the well-known Kob—Andersen binary mixture
model to monitor the effect of pressuiie) and temperatur€l) on the dynamic properties such as

the viscosity 7) and the self-diffusion;) coefficients of the binary system. The following results
have been obtainedi) Compared to temperature, pressure is found to have a weaker effect on the
dynamical properties. Viscosity and diffusion coefficients are found to eaponentiallywith
pressure up to a certain high pressure after which the nature of exponential dependence changes.
This change is rather sharfii) With temperature, on the other hand, both viscosity and diffusion
show super-Arrhenius dependence. Viscosity and diffusion coefficients fit well also to the mode
coupling theory(MCT) prediction of a power law dependence on the temperature. The MCT critical
temperature T.;) for both the two dynamical properties are significantly higher than the
corresponding critical temperatufig obtained by fitting to the Vogel—-Fulcher—TammafuFT)
equation.(iii) The critical temperature for viscosityT{) is considerably larger than that for the
diffusion coefficients Tgi) implying the decoupling between diffusion and viscosity in deeply
supercooled liquid(iv) The nature of the motion of small particles change from continuous to
hopping dominated once the larger ones are fro@@rThe potential energy of the system shows a
minimum against density at a relatively high density when the latter is changed by applying pressure
at a constant temperature.

I. INTRODUCTION pressure of the system. The advantage of Kob—Andersen
model is that it is not only a simple model system, but it does
Dynamics in supercooled liquid has remained one of thewot form a crystalline state, thus detailed simulations can
most inquisitive but obscure subjects of recent scientific insafely be carried out. Although there have been several stud-
terest. Dramatic slowing down of dynamics from normal toies on this particular system in the p&st® no detailed in-
supercooled liquid has attracted an enormous number afestigations of the effects of pressure on the dynamic prop-
studies in the supercooled liquid regim&Many anomalies erties of the system seems to have been carried out—most
in supercooled liquid arise from an interplay between thestudies focused on the temperature dependence. The non-
different dynamical cooperativity in different region3em-  Arrhenius temperature dependence of inverse diffusivity ob-
perature dependence of categorizes a system directly to tained earlit suggests that the above model is a weakly
strong or fragile according to the dependence being Arrhenfragile model according to Angell fragility concet.
ius or super-Arrhenius. The concept of fragility is often con-  The pressure dependence of the dynamical propetties
nected to the free energy landscape, configurational entropynd D; is found to be weaker than the temperature depen-
and hopping dynamics:® In contrast, the pressure depen- dence., andD; vary exponentially with pressure. But after
dence of transport properties has drawn much less attentiai certain high pressure, there is a clear break in the strength
than their temperature dependence. Answers to many quesf exponentiality, i.e., there is a change in slope ofgn(
tions regarding pressure dependence are either not known ggainst pressure. This change is rather sharp and we have
ill-understood. For example, viscosity is known to show andiscussed the probable origin of this change. The relatively
exponential dependence on the pressure in the normal liquigleak pressure dependence has been analyzed from a differ-
state. What happens to this dependence as the glass transitigi angle by plotting; against density£) where density has
is approached? What is the correlation between the pressupgen changed by varying pressure at two different tempera-
and the temperature dependence of viscosity and diffusiongires. We find that variation i with p is significantly large
We are not aware that these questions have been answerigehe temperature is low. Otherwise, at high temperature, the

satisfactorily yet. density dependence of dynamical properties dnd D) is
In this work, extensive NPT molecular dynami@4D)  surprisingly weak.
simulations have been carried out on the well-known Kob— Mode coupling theory seems to work for a large range of

Andersen mOdé'l8 by Varying both the temperature and the temperature variation ob and Di . The power law depen_
dence of viscosity »=C,*(T—TZ) " 7»] and diffusion co-
dElectronic mail: bbagchi@sscu.iisc.ernet.in efficients [Di=CDi*(T—TCDi)7Di] agree reasonably well




with the simulation results except for viscosity at high tem- Frequency dependent viscosity is obtained by Laplace
perature where the agreement is weak. On the other hand, th@nsformingzn(t)

critical temperatures, botR? andT?i obtained from MCT is "

higher than those obtained from the VFT fitting. MCT seems  7(z)= f dtexp(—zt) n(t). (©)]

to breakdown in deeply supercooled liquid region well be- 0

fore the glass transition. VFT also estimates a higher criticapacroscopic viscosity is the zero frequency limit 9z).
temperature value for viscosity when compared to those of = The self-diffusion coefficient, on the other hand, is the
diffusion coefficients. This supports the observed deviatiorproperty of a single tagged particle. It can be obtained from

from the well-known Stokes—Einstein law in the proximity mean square displacem&MSD) and is formulated by Ein-
of the glass transition temperature®Both VFT and MCT  gtein as

predict higher critical temperature of diffusion for the bigger
particles than that of smaller ones. This implies that the
smaller particles remain mobile even when bigger particles
are almost frozen. ) - o
One of the main motivations of the present study is toAnpther way of ca_llculatlng. diffusion coefficient is from ve-
inquire about the presence of any dynamic signature of thoCity autocorrelation functiofVACF),*!
crossover from diffusive to the free energy landscape domi- 1 (=
nated regime in the macroscopic transport propefasie Di=§j dt(v;(0)-vi(t)), (5)
from the well-known hopping such as viscosity and diffu- 0
sion. We found that both these two transport properties showyhere v; is the velocity of theith particle. However, the
a remarkable change in their dependence on pressure. ThIACF approach is not a numerically viable method to calcu-
change seems to indicate some changes in the mechanism|gfe the diffusion coefficient values in the supercooled liquid
the transport processes. A sharp change in the time correlgegion?? So, we mainly calculated diffusion coefficients
tion function of the stress of the system is noticed at lowfrom MSD.
temperatures and high pressures. The simulations also find We have carried out a series of very long molecular dy-
the emergence of a power law like behavior in the intermenamic simulations at constant press(iR, temperaturgT)
diate time decay of the stress time correlation function at theind constant total number of particlé$)>>~?in the Kob—
lowest temperature simulated. Andersen modélof binary mixtures which is well-known as
Arrangement of the rest of the paper is as follows. Basica good glass former. We have taken a set of total 500 par-
definitions of viscosity and diffusion coefficients and the de-ticles (solventA + soluteB particles with 0.2 solute com-
tails of simulation are given in Sec. Il. Section Il contains position. The particles interact via a modified Lennard-Jones
the detailed discussion and the results of temperature argbtential which sets a cutoff radius outside which, the
pressure dependence of diffusion coefficients and viscosityyotential energy is 0. The particular form of the potential is
Moreover, some of the static properties have also been digjiven by®
cussed here. In Sec. 1V, the emergence of hopping dynamics 1 5 1
in the supercooled liquid region is discussed. Section V is i:46”[ (ﬂ) _(ﬂ) }+[6(ﬂ)
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dedicated to the discussion on the nonexponential nature of

stress relaxation in the supercooled liquid. Finally, we con- \6

clude the paper in Sec. VI with a brief discussion. _ 3(&)
Cc

o\ 12
(riry)?— 7(%) +4

C

6
] )

where the cutoff distance, in this particular case has been
II. BASIC DEFINITIONS AND DETAILS OF SIMULATION taken as equal to 266 Use of above potential form takes
care of the fact that both potential and force are continuous at

Viscosity is calculated according to the miCroScopic €X-yhe cytoff distancei andj denote two different particles.
pression formulated in terms of stress autocorrelation funcgjzes of the particles are,,=1.00, 0pp=0.887, 0ag

. H 9,20 . . .
tion, given by =0.80. The two different particles are more attractive than

7(t)=(VkgT) X o®P(0)a*A(t)), (1)  the similar oneseaa=1.0¢, egg=0.5¢, epg=1.5¢. Masses
of the two different particles are same, i.enj,=mg=1.0.
All distances and interaction energies are scaled by the big-
ger solvent parametersrf, andepp).

N To study the temperature dependence of the above sys-

o= [(ppfim)+Fla;], (2)  tem, we have varied reduced temperatlite(kgT/€) from

=1 0.6 to 2.0 keeping the reduced pressBre(e/o®) constant
whereFjﬁ is the B-component of the force acting on thigh  at 10.0. On the other hand, the pressure variation studies
particle and the corresponding position of ftie particle is  were performed at two different constant temperatures. At
a@;, pj is thea-component of the momentum gth particle, T*=1.0,P* is varied from 2.5 to 25.0 and the second study
m being the mass of the particle. Among tobdinumber of  was done aT*=0.5 varyingP* from 0.5 to 4.5. Pressure is
particles present in the systefd; are solvent particledl, kept constant by Anderson’s piston method while, in the case
are solute particles, wheid; +N,=N. of temperature, a damped oscillator method has been adopted

wherea# B8=x,y,z and ¢*# is the off-diagonal element of
the stress tensor, given by



which keeps temperature constant at each and evenfstep.
The piston mass involved here is 0.0087¢%) which is 34+
regarded as optimufit.

In each case, three different initial configurations were
taken to calculate the viscosity and diffusion coefficients.
Diffusion coefficients are calculated from both velocity au-
tocorrelation function and mean square displacement. ButinZ 1ot
the relatively supercooled liquid region, diffusion coeffi-
cients have been calculated from mean square displacemen
for the reason stated earlier. Viscosity is calculated from the
integration of the stress correlation given by Et). Three
different off-diagonal stress correlations have been calcu- 04|
lated from a single run and taken an average over them for
each of the three data set. Thus viscosity is obtained from the
average over nine data sets.

Relatively smaller time step 0.004 (mo3/ksT) has aor
been employed. System equilibration is varied depending ®
upon the temperature and pressure of the system from 2
X 10° to 15X 10° steps and data collection steps varied from
2Xx10° to 15x 1CP.
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IIl. RESULTS AND DISCUSSION

g

Supercooled liquids exhibit many interesting static and er

dynamic properties. In the following subsections, we present
our simulation results. 0o |

A. Radial distribution function

In Figs. 1a) and 1b), we plot all the three partial radial 01, — p
distribution functionsgaa(r), gag(r), ggg(r) of the Kob— r
Andersen model for P*= 2-5(6AA/0'E\A) and P* FIG. 1. Partial radial distribution functions plotted against distance at two
=25.0(epn/0ap). We see a splitting of the second peak of different phase pointsia) T*=1.0 andP*=2.5 and(b) T*=1.0 andP*
gaa(r) andgag(r) at high pressure which is known to be the =25.0. Solid lines arg,g, dotted lines ar@, and dashed lines agyg .
characteristic signature of dense random pac%‘fng’he T_he strong attractive interaction beme&anc{B particles is reflectc_ed in t_he

. . L . highest peak value o,z and least interaction between tBeparticles is
StrUCture_ OngB(_r) is interesting. It has an |n_3|gn|flcant first reflected in the smallest peak valueggfs . In (b) the appearance of the split
peak which originates from the least interactions between thgscond peaks is due to random close packing.
B type of particles. The second peakgyg(r) is higher than
that of the first peak signifying that the predomindB
correlation takes place at the second coordination shell. This ) ) )
second peak also splits in the high pressure region as seen in Mode coupling theory predicts power law dependencies

Fig. 1(b). The last is an interesting result, showing correla-Of the dynamic properties with temperature. We have tried to
tions with the second shell. check the validity of MCT by fitting viscosity with the power

law, »=C,(T—TZ) " ”». Figure Zc) shows the plot of Ing)
against InT—T7). MCT power law dependence of viscosity
gives a poor fit in high temperature region. This was also
We plot temperature dependence of viscosify (n Fig.  observed by Michelet al?” So we fitted the power law de-
2(a). This figure clearly shows a super-Arrhenius behavior ofpendence only uptd*=1.0. Critical temperaturd? pre-
viscosity when Ing) is plotted against the inverse of tem- dicted by MCT is 0.587 which is higher than the critical
perature (I*). This super-Arrhenius behavior classifies thetemperaturel{ obtained from VFT fitting(0.467. So MCT
Kob—Andersen model into a fragile liquid, according to power law actually predicts the divergence of viscosity much
Angell fragility concept. However, the fragility is weak, as before the actual glass transition temperature and so it fails to
observed by Sastf.As the viscosity shows the super- describe transport in the very high viscosity region.
Arrhenius kind of behavior, we try to fip to the Vogel—
Fulcher—TammaniVFT) type of equation as below,

B. Temperature dependence of viscosity

n=A,XexdE,/(T-T{J)], (7)  C. Pressure dependence of viscosity

whereT] is the critical temperature wherg diverges. Fig- The pressure dependence of the dynamical properties is
ure 2b) shows the nice fit of Inf) against (IT—TJ) where  found to be weaker than their temperature dependence. In
TJ is equal to 0.467. From the fitting we obtain the values ofFigs. 3a) and 3b), we have plotted Inf) against pressure

A, andE, as 1.58 and 1.14, respectively. P* for temperatures 1.0 and 0.5, respectively. In both cases,
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7 approximately 80(b) Similar plot as(a) for T*=0.5. Here the change in
588 1 | slope takes place at arouff =3.0 and# around 100.
488 J
£ The interesting fact to note here is that, for both the tempera-
88y T tures, there is a change in coefficient[consequently, a
change in slope in Figs.(& and 3b)] after a certain high
2.88 q .
pressure which also depends upon the temperature of the
ves system. FoiT*=1.0,\ changes from 0.21 to 0.42 while for
' . T*=0.5, A changes from 0.81 to 1.55. That is, at both the
088 , ‘ , ‘ ‘ e temperatures, the change in the strength of pressure depen-
—339 279 219 -159 0.9 039 0.1 dence is significant, about a factor of 2. This may suggest a

In(T-T." . . . .
change in the mechanism of the stress relaxation. This can be

FIG. 2. Temperature dependence of viscositPst 10. (a) In(7) is plotted ~ associated with a crossover from a continuous, viscous
against 1IT*. The simulated values given by the solid circles show super-mechanism of transport to a free energy landscape dominated
Arrhenius behavior. The dotted line gives a guideline to the Arrhenius be‘[ransport. In fact. one can expect such a Change also from the
havior. (b) In(7) is plotted against 1{—TJ). Circles are simulation results ' .

and the solid line is the VFT fitting functiof.] is found to be 0.467. Slope free _VOIume _theor% We are not aware of any prior demc_m'
(E,) and intercept are 1.14 and 0.46, respectivéy.Plot of Inp vs In(T ~ Stration of this change in the pressure dependence of viscos-
—T2). Circles represent the simulation results and the solid line is the fit toity. As discussed later, we find a similar change in the pres-

the MCT power law. MCT critical temperatufi is 0.587. The deviation of  gyre dependence of self-diffusion coefficients dm later
power law is clearly observed in high temperature region. discussions

we find an Arrhenius or exponential dependence of viscosity. Density variation of viscosity
on pressure. So, the functional form of pressure dependence

X ) ) It has been observed that the temperature dependence of
of viscosity () can be written as

viscosity is stronger than the pressure depend&hbeFig.
n=a,Xexg\P*]. (80 4, Inyis plotted against number densitg)(of the system.
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Squares and triangles denote the simulation results where the variation in
density is obtained by changing pressure while keeping the temperature
fixed atT* 1.0 and 0.5, respectively. Solid line is a fit of 4nagainstp to

VFT type of equation. _485

In(D)

Here density is changed by varying both temperature at fixed
pressure 10.0 and varying pressure at fixed temperatures 1.( -ss5}
and 0.5. Even at higher density, viscosity of the system is
found to vary weakly with density at high temperature,
whereas a sharp rise in viscosity with density is observed in
the low temperature region, at a fixed pressure. We have
analyzed trajectories for the system at two different thermo-
dynamic state pointsT*=0.6, P*=10.0 andT*=1.0, P* ' ' ' '
=15.0) with the same densityp&1.27). While the low R C)
temperature system shows hopping mediated diffusion, the
high T* system shows mostly continuous diffusion, with oc-
casional small jumps. Thus, the dynamics of the two systems
are entirely different. The high* system seems to exhibit,
even at such high density, normal liquidlike behavior. These &
results seem to show that the temperature is indeed the more= -
dominant variable among the two parameters. This point has
recently been discussed by Kivelson, Tarjus and
co-workeré® who suggested that the much stronger tempera-
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ture dependence can be taken as an indication of the inad- oD
equacy of the mode coupling theory which is essentially . ‘ ‘ ‘ ‘2
based on a hard sphere model. This point needs further study =825 245 ];?%_T ) 085 005

FIG. 5. Temperature dependence of diffusion coefficients. In each case be-
low, circles and squares denote A and B particles, respectit@lyin D;

In the supercooled liquid, diffusion coefficients show p_Iotted against I7" shows sup_er_-Arrhen_ius _depende_nc_:e of diffu_sion coeffi-
non-Arrhenius temperature dependence which is of Coursgents on temperatg‘reb) VFT fitting of diffusion coefficients. IrD; is plot-
WeII-known6’1° However. we have calculated this depen-ted against 1/{—-T."). Solid lines show the VFT fitting function. Critical

. . . .temperaturél'g' obtained from the fit is 0.368 fok and 0.367 foB type of
dence at different pressures. The results are depicted in I:Igarticles.(c) Diffusion coefficients fitted to MCT equation. I is plotted

5@) by plo_tting_ In©;) ag_a_inSt r*. T_he curved figures sig-  against INT—T2"). Solid lines show the MCT fitting function. Critical tem-
nify that diffusion coefficients of this system follow super- peraturesT-A and T2 are 0.608 and 0.607, respectively.

Arrhenius behavior with temperature. So diffusion coeffi-
cients have been fitted to VFT type of equation as given by

Di=Ap X exd —Ep /(T-Tgh], (9)

E. Temperature dependence of diffusion coefficients

In Fig. 5b), we plot In(;) against[l/(T—Tg‘] where
TEA and TC?B are 0.368 and 0.367, respectively. The critical
where Tgi (i=1,2 signifiesA,B type of particles are the temperatures obtained from diffusion coefficienTﬁ%) are
critical temperatures for diffusion coefficients. less than the corresponding critical temperature obtained
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that, in a binary mixture, small particles can remain mobile
when bigger particles have already stopped their motion, the
difference we find between the two temperatures is rather
small. This is not to be confused with the observation that the
small ones remain more mobile even after the glass transi-

. . . . . . . . tion. But since the difference in the transition temperature is
45 095 145 195 preiﬁfe@*) 295 345 395 445 small, one can perhaps define a temperature range where the

motion of both the particles undergo a qualitative change.

=731

-7.81

-831

-8.81
0.

FIG. 6. Pressure dependence of diffusion coefficientD; s plotted

against pressur®* for (@) T*=1.0 and(b) T*=0.5. Circles and squares F. Pressure dependence of diffusion coefficients
denoteA and B patrticles, respectively. Solid lines represent the fitting to

Arrhenius equation(a shows there is a change in slopePdt=21.5 while Like the viscosity, the diffusion coefficients also show an
(b) shows the similar change in slopefat=3.0. exponential dependence on pressure. In Fi¢gs. &nd Gb),
we plot InD; against pressureP(*) at temperatures 1.0 and
- ) ) L 0.5, respectively. Just as in viscosity, there is a change in the
from fitting viscosity values TJ=0.467). This signifies the slope of Arrhenius dependence at a certain high pregsaee
decoupling of diffusion and viscosity in the proximity of piq 3 for comparison This crossover has been observed for

glass transition and the breakdown of Stokes—Einstein laygin A and B type of particles and at both the two tempera-
which support the fact that viscosity increases much fastef;, o

than the decrease in diffusion coefficient. This change in the behavior of the transport properties
D|ffu3|on_ coefficients can also be well fitted to the MCT 515 place near a pressure where the hopping mode of trans-

power law given by port also becomes noticeable. This may imply the emergence
Di=CDiX(T—T?i)7, (10) of free energy landscape dominated dynamics or may even

signal the crossover predicted by the free volume theory. We
WhereTSA and TSB are 0.608 and 0.607, respectivelyDn  have made several other studies to understand this behavior,

against In{—T_") is plotted in Fig. %c). as discussed below.
There are two points to note here. First, these transition
temperatures from diffusion are higher than that obtaineds. Variation of the total potential energy with density
from fitting w;cosny to MCT pg\{ver law where. thfe' critical Figure 7 shows the change in potential enerdy) (
temperature is 0.587. Secont, s are again significantly  against density when the latter is varied either by varying
larger than the corresponding critical temperaturgs ob-  temperature at constant pressure or vice vetsdecreases
tained from the fit to VFT type equation. linearly with density when the latter is changed by decreas-
Another interesting observation is that the critical tem-jng temperature at constant pressufé=10.0. However,
peratures obtained from fitting to both MCT and VFT forms the Change inJ by Varying pressure shows a minimum at an
show higher transition values for the bigger particles thanntermediate density at a constant temperatinth for T*
that for smaller particles, i.eTI,'(?A,TCDA>TC?B,TCDB. While  =1.0 and 0.5 So, even though with increasing pressure
this is consistent with the MCT prediction by Bosseal3®  particles pack more densely, the system becomes energeti-
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sure, density and temperature, in Fig. 8 pressuRg) (is % 0.4 08 12 16 2 24 238
plotted against densityp{ for both T*=1.0 and 0.5. The displacement (L)

dependence is clearly nonlinear. However, the change iRiG. 9. Normalized probability distributiof,(L,7)x L2 plotted against

pressure with density appears to be smooth and continuoudisplacement for different temperatures at a constatt=10.0. The typi-
Thus, the sharp change observed in the pressure dependeﬁébﬁme window is 500r. (a) Probability distributions for smaller®) type
of particles.(b) Same plot for the bigger particle\Y. With decreasing

of viscosity and self-diffusion is not reflected in the pressure'temperature the probability distribution becomes bimodal for the smaller

density graph. Thus, it appears that the change in the viscogarticles signifying the crossover from normal to hopping dominated dy-
ity and self-diffusion is dynamic in origin. namics.

IV. EMERGENCE OF THE HOPPING MODE OF MASS , ,
TRANSPORT ment of annth particle betweerh. andL+dL after time 7

from its original position at zero time. Note the emergence of

The relaxation of supercooled liquid is much more slug-bimodality at low temperatures.
gish compared to normal liquid. But the emergence of hop-  Similarly, Figs. 10a) and 1@b) show the distribution of
ping mode at supercooled liquid becomes a convenient reP (L, 7) X L? against displacemertt for smaller and bigger
laxation channel for the systeffi®**2Unlike normal liquid  particles, respectively, at a constant temperature 0.5. Each
dynamics where molecular motion is regarded as continuouigure contains results for different pressures. The typical
Brownian motion, there appears in the system a suddertime window taken in Figs. 9 and 10 is 50@hich is rela-
rather large, displacement of one or more particles in a vergively large compared to the time scale of normal liquid. At
short duration of time. This is commonly known as hopping.low temperature and high pressure suchTds; 0.6 andP*
In a deeply supercooled liquid, when a particle’s motion is=25.0, the sharp peak &t=0.2 clearly signifies that the
almost vibrational around a certain point in space, hoppingnovement of particles in deep supercooled liquid is mostly
seems to be the only relaxation mode. So the probabilitwibrational in nature. On the other hand, for high temperature
distribution of particle displacement becomes bimodal signi-and low pressures, there is a significant amount of displace-
fying two distinct dynamical behavior. ment observed for both types of particles. So, as expected,

In Fig. 9a), normalized distribution functioP,(L,7) the continuous distribution at relatively low pressure and
x L2 for the smaller particles is plotted against displacemenhigh temperature becomes clearly bimodal in nature at
L for four different temperaturest™, varying from 1.0 to  higher pressures and lower temperatures. This signifies the
0.6. Figure %) shows the same for the bigger particles. Hereemergence of hopping dominated mass transfer from a con-
P.(L,7) is defined as the normalized probability of displace-tinuous, viscosity dominated diffusion mode.
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FIG. 11. Displacement of a smaltype of particle is plotted against time
at (@) P*=10.0 andT*=0.6 and atb) P*=4.5 andT*=0.5. Sudden large

FIG. 10. Normalized probability distributioR,(L,7) X L? plotted against
displacement in each case is characterized as hopping.

displacement. for different pressures at constant temperaflite 0.5. ()
Probability distribution for the smaller particle® (type). (b) Probability

distribution for the bigger particlesA(type). At high pressures, in case of
smaller particles, the distribution becomes bimodal. Probability distribution . . . .
emergence of hopping in this system before the glass transi-

of bigger particles does not show any significant bimodality.
tion temperature. We should state here that we are using the
word “hopping mode” to describe collectively all the

Figures 11a) and 11b) depict the displacement trajec- hopping—it is not meant to imply a true existence of a well-
tory of a small particle af*=0.6, P*=10.0 andT*=0.5, defined mode, like in hydrodynamics.

P*=4.5, respectively. The displacement shows continuous
movement as well as a sudden hopping. The two figure§/ NONEXPONENTIAL STRESS RELAXATION

show two different kinds of hopping. As mentioned earlier,
hopping of small particles continue to be rather frequent The slowing down of the dynamics in a supercooled lig-
uid is reflected not only in the dynamic structure factor

even in the deeply supercooled liquid.
Note that sometimes hopping has been used to determiri@hich is commonly computed in simulatiorisut also in the

the glass transition temperature. The present simulations, shear stress relaxatiom(t). The latter is a much more dif-
the other hand, show th#lte glass transition temperatures ficult quantity to obtain via simulations. According to MCT,
obtained from fitting to viscosity and diffusion are substan-»(t) has a short timégbinary contribution and a long time
tially lower than the temperatures where hopping is notice-(density mode contributiorpart. On increasing the degree of
able The present study thus seems to show that the emesupercoolingeither by increasing pressure or by decreasing
gence of hopping may occur substantially before the glasteemperaturg the decay of the stress correlation function in
transition temperature. the long time part changes from an exponential to a stretched
The hopping may have significance in determining theexponential(nonexponential and in the regime closer to
fragility of a liquid.* It is obvious that if the hopping mode glass transition, the stress, at intermediate times, is predicted
can contribute substantially to diffusion and stress relaxationto relax by a power law. Stress time correlation function has
then the temperature dependent studies may reveal an expoeen monitored in the present model for different pressures
nential temperature dependence. The fact that the Koband temperatures. We have used all three different off-
Andersen model is weakly fragile is consistent with thediagonal stress tensofsee Eq(1)] to calculate the average



R ' ‘ ' ' ' ' The term proportional tA takes into account of the fast
-0.34 1 decay and the term proportional B determines the slow

\ exponential decay in normal liquid which changes to a
_ stretched exponential form in the supercooled liquid. We
= ' ] found that the stretching parameigrdecreases from 1.0 to
about 0.44 as the liquid is changed from normal to deeply
el N ] supercooled liquid. Note that the above functional form is
! ' ; N\ ) ) not suitable to describe the real short tifhallistic, inertia)
AT P IR R B AN \, 1 dynamics, but that is no limitation in the present case as we

os| 1 \RR! \ are interested mainly in the longer time aspects of relaxation.
-3.34 | i i

osl® . ! ] The characteristic time of the fast decayis almost constant
0.55 0.75 0.95 RN L . . e
ol T RN ] in each of the cases, i.e., it is independent of temperature and
| | pressure.
454 - ; \ AL : s The insets in Figs. 12 and 13 show the dependeng2 of
-6.86 -4.86 -2.86 -0.86 1.14 3.14 5.14 7.14 . .
In () on temperature and on pressure, respectively. The stretching
FIG. 12. Sold I ¢ the @) vs Inf) plots for T*=0.6 10 0.95 parametelB has been calculated by fitting the stress correla-

. . O0lia lines represen e Vs In(t) plots tor I "=0.0 to O. . . P _
at a constanP™=10.0. C4(t) shows an increasing nonexponentiality as the tion to the above fu_nctlon. Similar typ(_e of temperatu_re de
temperature is decreased. Dashed lines in each case are the plot of the fittiR@ndence of normalized stress correlation has been discussed
function [see Eq.(11)]. The temperature dependence of the stretching pa—recently.33 B varies from 0.44 to 1.0 as expected in theories
rameter Bp [as obtained from the fitting to the E¢11)] at constantP* and simulationg4-35
=10.0/is shown in the inset. Stress correlation functions are often fitted to the power

law behavior predicted by the ideal mode coupling
stress time correlation function. Viscosity has also been theory***’ Decay of the stress correlation function depicted
calculated from the average stress correlation function. It ig" Fig. 12 (P*=10) for the lowest temperatureT{=0.6)
well known that there is much more uncertainty or errorclearly shows the emergence of the power law at the inter-
involved in the calculation of viscosity from stress correla- Mediate time. The long time part of it has been fitted to Von
tion in the supercooled regich.It has also been observed Schweidler power law 7=f—h(t/7)??]. The exponent
that unlike in normal liquid, in supercooled liquid the three Bp is found to be 0.22 for this caseT{=0.6 andP*
different stress correlation functiongy(,yzxz) become an- = 10.0). However, this seems to be just the beginning of the
isotropic, within the time window of the simulations. In Fig. Power law in the sense that one needs to go to even lower
12, the log of normalized stress autocorrelation functiong€mperatures to recover the full power law behavior. We
[In C(t)] are plotted against log of timdn(t)] for eight dif- have not been able to go down to any lower temperatures.
ferent temperatures from 0.6 to 0.95 at a constant pressufeven atT*=0.6, P*=10, we needed to simulate over 15
10.0. Similarly in Fig. 13, I'C4t) is plotted against Iy for million steps and average over three runs to get reliable sta-
six different pressures from 5.0 to 25.0 at a constant temperdistics. We estimate that the computation cost will increase
ture 1.0. ThenC4(t) has been fitted to the equation given by at least one order of magnituder more to lower the

-0.94

-1.54

In C(t)

below: temperature even by 0.02.
The emergence of the power law with such a small ex-
Co(t)=Aexp(—t/)+B exf — (t/7)F]. (1D ponent implies the existence of a large separation of time
scale between the initial fast decay and the very slow long
—— . : : : time decay. Since the time scale of the initial decay is less

than a picosecongf we may use the parameters for argon
this is clearly related to the relaxation in the cage which
contributes, in this case, about 70% of the total stress relax-
ation. The power law part contributes less than 10%. The
main point here is that the emergence of power law requires
the establishment of a large separation of time scale between
the two main relaxation mechanisms. The two relevant
points here are the role of particle hopping and the fragility
of the liquid. For more fragile liquid, the separation of time
scale should be larger, giving rise to power law decay with
smaller exponent, and also, less frequency of hopping. We
are not aware of any study correlating these factors.

In C(t)

-0.93 1.07 3.07
In (t)

_a7 . .
-6.93 -4.93 -2.93

FIG. 13. Solid lines show the I84t) vs In{) plots for P*=5.0 to 25.0 at VI. CONCLUSION

constantT*=1.0. Dashed lines in each case are the plots of the fitting . . L .
function[see Eq(11)]. The pressure dependence of stretching paranater Understanding the d_ynamlcs O_f supercooled liquid is _5“”
at constanf*= 1.0 is shown in the inset. a challenge to theoreticians. This problem has remained
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