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Extensive isothermal-isobaric~NPT! molecular dynamics simulations at many different
temperatures and pressures have been carried out in the well-known Kob–Andersen binary mixture
model to monitor the effect of pressure~P! and temperature~T! on the dynamic properties such as
the viscosity (h) and the self-diffusion (Di) coefficients of the binary system. The following results
have been obtained:~i! Compared to temperature, pressure is found to have a weaker effect on the
dynamical properties. Viscosity and diffusion coefficients are found to varyexponentiallywith
pressure up to a certain high pressure after which the nature of exponential dependence changes.
This change is rather sharp.~ii ! With temperature, on the other hand, both viscosity and diffusion
show super-Arrhenius dependence. Viscosity and diffusion coefficients fit well also to the mode
coupling theory~MCT! prediction of a power law dependence on the temperature. The MCT critical
temperature (Tc) for both the two dynamical properties are significantly higher than the
corresponding critical temperatureT0

h obtained by fitting to the Vogel–Fulcher–Tammann~VFT!
equation.~iii ! The critical temperature for viscosity (T0

h) is considerably larger than that for the
diffusion coefficients (T0

Di) implying the decoupling between diffusion and viscosity in deeply
supercooled liquid.~iv! The nature of the motion of small particles change from continuous to
hopping dominated once the larger ones are frozen.~v! The potential energy of the system shows a
minimum against density at a relatively high density when the latter is changed by applying pressure
at a constant temperature.
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I. INTRODUCTION

Dynamics in supercooled liquid has remained one of
most inquisitive but obscure subjects of recent scientific
terest. Dramatic slowing down of dynamics from normal
supercooled liquid has attracted an enormous numbe
studies in the supercooled liquid regime.1,2 Many anomalies
in supercooled liquid arise from an interplay between
different dynamical cooperativity in different regions.3 Tem-
perature dependence ofh categorizes a system directly t
strong or fragile according to the dependence being Arrh
ius or super-Arrhenius. The concept of fragility is often co
nected to the free energy landscape, configurational ent
and hopping dynamics.4–6 In contrast, the pressure depe
dence of transport properties has drawn much less atten
than their temperature dependence. Answers to many q
tions regarding pressure dependence are either not know
ill-understood. For example, viscosity is known to show
exponential dependence on the pressure in the normal li
state. What happens to this dependence as the glass tran
is approached? What is the correlation between the pres
and the temperature dependence of viscosity and diffus
We are not aware that these questions have been answ
satisfactorily yet.

In this work, extensive NPT molecular dynamics~MD!
simulations have been carried out on the well-known Ko
Andersen model7,8 by varying both the temperature and th

a!Electronic mail: bbagchi@sscu.iisc.ernet.in
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pressure of the system. The advantage of Kob–Ander
model is that it is not only a simple model system, but it do
not form a crystalline state, thus detailed simulations c
safely be carried out. Although there have been several s
ies on this particular system in the past,6–13 no detailed in-
vestigations of the effects of pressure on the dynamic pr
erties of the system seems to have been carried out—m
studies focused on the temperature dependence. The
Arrhenius temperature dependence of inverse diffusivity
tained earlier6 suggests that the above model is a wea
fragile model according to Angell fragility concept.14

The pressure dependence of the dynamical propertieh
and Di is found to be weaker than the temperature dep
dence.h andDi vary exponentially with pressure. But afte
a certain high pressure, there is a clear break in the stre
of exponentiality, i.e., there is a change in slope of ln(h)
against pressure. This change is rather sharp and we
discussed the probable origin of this change. The relativ
weak pressure dependence has been analyzed from a d
ent angle by plottingh against density (r) where density has
been changed by varying pressure at two different temp
tures. We find that variation inh with r is significantly large
if the temperature is low. Otherwise, at high temperature,
density dependence of dynamical properties (h and D) is
surprisingly weak.

Mode coupling theory seems to work for a large range
temperature variation ofh and Di . The power law depen-
dence of viscosity@h5Ch* (T2Tc

h)2gh# and diffusion co-
efficients @Di5CDi

* (T2Tc
Di)gDi# agree reasonably wel
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with the simulation results except for viscosity at high te
perature where the agreement is weak. On the other hand
critical temperatures, bothTc

h andTc
Di obtained from MCT is

higher than those obtained from the VFT fitting. MCT see
to breakdown in deeply supercooled liquid region well b
fore the glass transition. VFT also estimates a higher crit
temperature value for viscosity when compared to those
diffusion coefficients. This supports the observed deviat
from the well-known Stokes–Einstein law in the proximi
of the glass transition temperature.15–18Both VFT and MCT
predict higher critical temperature of diffusion for the bigg
particles than that of smaller ones. This implies that
smaller particles remain mobile even when bigger partic
are almost frozen.

One of the main motivations of the present study is
inquire about the presence of any dynamic signature of
crossover from diffusive to the free energy landscape do
nated regime in the macroscopic transport properties~aside
from the well-known hopping!, such as viscosity and diffu
sion. We found that both these two transport properties sh
a remarkable change in their dependence on pressure.
change seems to indicate some changes in the mechanis
the transport processes. A sharp change in the time cor
tion function of the stress of the system is noticed at l
temperatures and high pressures. The simulations also
the emergence of a power law like behavior in the interm
diate time decay of the stress time correlation function at
lowest temperature simulated.

Arrangement of the rest of the paper is as follows. Ba
definitions of viscosity and diffusion coefficients and the d
tails of simulation are given in Sec. II. Section III contai
the detailed discussion and the results of temperature
pressure dependence of diffusion coefficients and visco
Moreover, some of the static properties have also been
cussed here. In Sec. IV, the emergence of hopping dynam
in the supercooled liquid region is discussed. Section V
dedicated to the discussion on the nonexponential natur
stress relaxation in the supercooled liquid. Finally, we c
clude the paper in Sec. VI with a brief discussion.

II. BASIC DEFINITIONS AND DETAILS OF SIMULATION

Viscosity is calculated according to the microscopic e
pression formulated in terms of stress autocorrelation fu
tion, given by19,20

h~ t !5~VkBT!21^sab~0!sab~ t !&, ~1!

whereaÞb5x,y,z andsab is the off-diagonal element o
the stress tensor, given by

sab5(
j 51

N

@~pj
apj

b/m!1F j
ba j #, ~2!

whereF j
b is theb-component of the force acting on thej th

particle and the corresponding position of thej th particle is
a j , pj

a is thea-component of the momentum ofj th particle,
m being the mass of the particle. Among totalN number of
particles present in the system,N1 are solvent particlesN2

are solute particles, whereN11N25N.
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Frequency dependent viscosity is obtained by Lapl
transformingh(t)

h~z!5E
0

`

dt exp~2zt!h~ t !. ~3!

Macroscopic viscosity is the zero frequency limit ofh(z).
The self-diffusion coefficient, on the other hand, is t

property of a single tagged particle. It can be obtained fr
mean square displacement~MSD! and is formulated by Ein-
stein as

Di5 lim
t→`

1

6t
^ur i~ t !2r i~0!u2&. ~4!

Another way of calculating diffusion coefficient is from ve
locity autocorrelation function~VACF!,21

Di5
1

3E0

`

dt^vi~0!•vi~ t !&, ~5!

where vi is the velocity of thei th particle. However, the
VACF approach is not a numerically viable method to calc
late the diffusion coefficient values in the supercooled liqu
region.22 So, we mainly calculated diffusion coefficien
from MSD.

We have carried out a series of very long molecular d
namic simulations at constant pressure~P!, temperature~T!
and constant total number of particles~N!23–25 in the Kob–
Andersen model7 of binary mixtures which is well-known as
a good glass former. We have taken a set of total 500
ticles ~solventA 1 soluteB particles! with 0.2 solute com-
position. The particles interact via a modified Lennard-Jo
potential which sets a cutoff radiusr c outside which, the
potential energy is 0. The particular form of the potential
given by26

Ui j 54e i j H F S s i j

r i j
D 12

2S s i j

r i j
D 6G1F6S s i j

r c
D 12

2 3S s i j

r c
D 6G~r /r c!

22 7S s i j

r c
D 12

14S s i j

r c
D 6J , ~6!

where the cutoff distancer c in this particular case has bee
taken as equal to 2.5s. Use of above potential form take
care of the fact that both potential and force are continuou
the cutoff distance.i and j denote two different particles
Sizes of the particles aresAA51.0s, sBB50.88s, sAB

50.8s. The two different particles are more attractive th
the similar ones.eAA51.0e, eBB50.5e, eAB51.5e. Masses
of the two different particles are same, i.e.,mA5mB51.0.
All distances and interaction energies are scaled by the
ger solvent parameters (sAA andeAA).

To study the temperature dependence of the above
tem, we have varied reduced temperatureT! (kBT/e) from
0.6 to 2.0 keeping the reduced pressureP! (e/s3) constant
at 10.0. On the other hand, the pressure variation stu
were performed at two different constant temperatures.
T!51.0, P! is varied from 2.5 to 25.0 and the second stu
was done atT!50.5 varyingP! from 0.5 to 4.5. Pressure i
kept constant by Anderson’s piston method while, in the c
of temperature, a damped oscillator method has been ado
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which keeps temperature constant at each and every st23

The piston mass involved here is 0.0027(m/s4) which is
regarded as optimum.23

In each case, three different initial configurations we
taken to calculate the viscosity and diffusion coefficien
Diffusion coefficients are calculated from both velocity a
tocorrelation function and mean square displacement. Bu
the relatively supercooled liquid region, diffusion coef
cients have been calculated from mean square displace
for the reason stated earlier. Viscosity is calculated from
integration of the stress correlation given by Eq.~1!. Three
different off-diagonal stress correlations have been ca
lated from a single run and taken an average over them
each of the three data set. Thus viscosity is obtained from
average over nine data sets.

Relatively smaller time step 0.001t (mAsAA
2 /kBT) has

been employed. System equilibration is varied depend
upon the temperature and pressure of the system fro
3105 to 153105 steps and data collection steps varied fro
23106 to 153106.

III. RESULTS AND DISCUSSION

Supercooled liquids exhibit many interesting static a
dynamic properties. In the following subsections, we pres
our simulation results.

A. Radial distribution function

In Figs. 1~a! and 1~b!, we plot all the three partial radia
distribution functionsgAA(r ), gAB(r ), gBB(r ) of the Kob–
Andersen model for P!52.5(eAA /sAA

3 ) and P!

525.0(eAA /sAA
3 ). We see a splitting of the second peak

gAA(r ) andgAB(r ) at high pressure which is known to be th
characteristic signature of dense random packing.22 The
structure ofgBB(r ) is interesting. It has an insignificant firs
peak which originates from the least interactions between
B type of particles. The second peak ofgBB(r ) is higher than
that of the first peak signifying that the predominantB-B
correlation takes place at the second coordination shell. T
second peak also splits in the high pressure region as se
Fig. 1~b!. The last is an interesting result, showing corre
tions with the second shell.

B. Temperature dependence of viscosity

We plot temperature dependence of viscosity (h) in Fig.
2~a!. This figure clearly shows a super-Arrhenius behavior
viscosity when ln(h) is plotted against the inverse of tem
perature (1/T!). This super-Arrhenius behavior classifies t
Kob–Andersen model into a fragile liquid, according
Angell fragility concept. However, the fragility is weak, a
observed by Sastry.6 As the viscosity shows the supe
Arrhenius kind of behavior, we try to fith to the Vogel–
Fulcher–Tammann~VFT! type of equation as below,

h5Ah3exp@Eh /~T2T0
h!#, ~7!

whereT0
h is the critical temperature whereh diverges. Fig-

ure 2~b! shows the nice fit of ln(h) against (1/T2T0
h) where

T0
h is equal to 0.467. From the fitting we obtain the values

Ah andEh as 1.58 and 1.14, respectively.
.
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Mode coupling theory predicts power law dependenc
of the dynamic properties with temperature. We have tried
check the validity of MCT by fitting viscosity with the powe
law, h5Ch(T2Tc

h)2gh. Figure 2~c! shows the plot of ln(h)
against ln(T2Tc

h). MCT power law dependence of viscosit
gives a poor fit in high temperature region. This was a
observed by Micheleet al.27 So we fitted the power law de
pendence only uptoT!51.0. Critical temperatureTc

h pre-
dicted by MCT is 0.587 which is higher than the critic
temperatureT0

h obtained from VFT fitting~0.467!. So MCT
power law actually predicts the divergence of viscosity mu
before the actual glass transition temperature and so it fai
describe transport in the very high viscosity region.

C. Pressure dependence of viscosity

The pressure dependence of the dynamical propertie
found to be weaker than their temperature dependence
Figs. 3~a! and 3~b!, we have plotted ln(h) against pressure
P! for temperatures 1.0 and 0.5, respectively. In both ca

FIG. 1. Partial radial distribution functions plotted against distance at
different phase points.~a! T!51.0 andP!52.5 and~b! T!51.0 andP!

525.0. Solid lines aregAB , dotted lines aregAA and dashed lines aregBB .
The strong attractive interaction betweenA andB particles is reflected in the
highest peak value ofgAB and least interaction between theB particles is
reflected in the smallest peak value ofgBB . In ~b! the appearance of the spli
second peaks is due to random close packing.
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we find an Arrhenius or exponential dependence of visco
on pressure. So, the functional form of pressure depend
of viscosity (h) can be written as

h5ah3exp@lP!#. ~8!

FIG. 2. Temperature dependence of viscosity atP!510. ~a! ln(h) is plotted
against 1/T* . The simulated values given by the solid circles show sup
Arrhenius behavior. The dotted line gives a guideline to the Arrhenius
havior. ~b! ln(h) is plotted against 1/(T2T0

h). Circles are simulation results
and the solid line is the VFT fitting function.T0

h is found to be 0.467. Slope
(Eh) and intercept are 1.14 and 0.46, respectively.~c! Plot of lnh vs ln(T
2Tc

h). Circles represent the simulation results and the solid line is the fi
the MCT power law. MCT critical temperatureTc

h is 0.587. The deviation of
power law is clearly observed in high temperature region.
ty
ce

The interesting fact to note here is that, for both the tempe
tures, there is a change in coefficientl @consequently, a
change in slope in Figs. 3~a! and 3~b!# after a certain high
pressure which also depends upon the temperature of
system. ForT!51.0, l changes from 0.21 to 0.42 while fo
T!50.5, l changes from 0.81 to 1.55. That is, at both t
temperatures, the change in the strength of pressure de
dence is significant, about a factor of 2. This may sugge
change in the mechanism of the stress relaxation. This ca
associated with a crossover from a continuous, visc
mechanism of transport to a free energy landscape domin
transport. In fact, one can expect such a change also from
free volume theory.28 We are not aware of any prior demon
stration of this change in the pressure dependence of vis
ity. As discussed later, we find a similar change in the pr
sure dependence of self-diffusion coefficients also~see later
discussions!.

D. Density variation of viscosity

It has been observed that the temperature dependen
viscosity is stronger than the pressure dependence.29 In Fig.
4, lnh is plotted against number density (r) of the system.

-
-

o

FIG. 3. Pressure dependence of viscosity.~a! ln h is plotted against pressure
for T!51.0. The circles are simulation results and the solid lines are fi
Arrhenius behavior. The change in slope takes place at aroundP!519.0 and
h approximately 80.~b! Similar plot as~a! for T!50.5. Here the change in
slope takes place at aroundP!53.0 andh around 100.
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Here density is changed by varying both temperature at fi
pressure 10.0 and varying pressure at fixed temperature
and 0.5. Even at higher density, viscosity of the system
found to vary weakly with density at high temperatur
whereas a sharp rise in viscosity with density is observe
the low temperature region, at a fixed pressure. We h
analyzed trajectories for the system at two different therm
dynamic state points (T!50.6, P!510.0 andT!51.0, P!

515.0) with the same density (r51.27). While the low
temperature system shows hopping mediated diffusion,
high T! system shows mostly continuous diffusion, with o
casional small jumps. Thus, the dynamics of the two syste
are entirely different. The highT! system seems to exhibi
even at such high density, normal liquidlike behavior. The
results seem to show that the temperature is indeed the m
dominant variable among the two parameters. This point
recently been discussed by Kivelson, Tarjus a
co-workers29 who suggested that the much stronger tempe
ture dependence can be taken as an indication of the i
equacy of the mode coupling theory which is essentia
based on a hard sphere model. This point needs further s

E. Temperature dependence of diffusion coefficients

In the supercooled liquid, diffusion coefficients sho
non-Arrhenius temperature dependence which is of cou
well-known.6,10 However, we have calculated this depe
dence at different pressures. The results are depicted in
5~a! by plotting ln(Di) against 1/T!. The curved figures sig
nify that diffusion coefficients of this system follow supe
Arrhenius behavior with temperature. So diffusion coe
cients have been fitted to VFT type of equation as given

Di5ADi
3exp@2EDi

/~T2T0
Di !#, ~9!

where T0
Di ( i 51,2 signifiesA,B type of particles! are the

critical temperatures for diffusion coefficients.

FIG. 4. Density dependence of viscosity. ln(h) is plotted against densityr.
Circles denote the simulation results where the density variation is obta
by changing temperature while keeping the pressure fixed atP!510.0.
Squares and triangles denote the simulation results where the variati
density is obtained by changing pressure while keeping the temper
fixed atT! 1.0 and 0.5, respectively. Solid line is a fit of lnh againstr to
VFT type of equation.
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In Fig. 5~b!, we plot ln(Di) against@1/(T2T0
Di# where

T0
DA andT0

DB are 0.368 and 0.367, respectively. The critic

temperatures obtained from diffusion coefficients (T0
Di) are

less than the corresponding critical temperature obtai

ed

in
re

FIG. 5. Temperature dependence of diffusion coefficients. In each case
low, circles and squares denote A and B particles, respectively.~a! ln Di

plotted against 1/T! shows super-Arrhenius dependence of diffusion coe
cients on temperature.~b! VFT fitting of diffusion coefficients. lnDi is plot-
ted against 1/(T2T0

Di). Solid lines show the VFT fitting function. Critica
temperatureT0

Di obtained from the fit is 0.368 forA and 0.367 forB type of
particles.~c! Diffusion coefficients fitted to MCT equation. lnDi is plotted
against ln(T2Tc

Di). Solid lines show the MCT fitting function. Critical tem
peraturesTc

DA andTc
DB are 0.608 and 0.607, respectively.
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from fitting viscosity values (T0
h50.467). This signifies the

decoupling of diffusion and viscosity in the proximity o
glass transition and the breakdown of Stokes–Einstein
which support the fact that viscosity increases much fa
than the decrease in diffusion coefficient.

Diffusion coefficients can also be well fitted to the MC
power law given by

Di5CDi
3~T2Tc

Di !g, ~10!

whereTc
DA andTc

DB are 0.608 and 0.607, respectively. lnDi

against ln(T2Tc
Di) is plotted in Fig. 5~c!.

There are two points to note here. First, these transi
temperatures from diffusion are higher than that obtain
from fitting viscosity to MCT power law where the critica
temperature is 0.587. Second,Tc

Di ’s are again significantly
larger than the corresponding critical temperaturesT0

Di ob-
tained from the fit to VFT type equation.

Another interesting observation is that the critical te
peratures obtained from fitting to both MCT and VFT form
show higher transition values for the bigger particles th
that for smaller particles, i.e.,T0

DA , Tc
DA.T0

DB , Tc
DB . While

this is consistent with the MCT prediction by Bosseet al.30

FIG. 6. Pressure dependence of diffusion coefficients. lnDi is plotted
against pressureP! for ~a! T!51.0 and~b! T!50.5. Circles and square
denoteA and B particles, respectively. Solid lines represent the fitting
Arrhenius equation.~a! shows there is a change in slope atP!521.5 while
~b! shows the similar change in slope atP!53.0.
w
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n
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that, in a binary mixture, small particles can remain mob
when bigger particles have already stopped their motion,
difference we find between the two temperatures is rat
small. This is not to be confused with the observation that
small ones remain more mobile even after the glass tra
tion. But since the difference in the transition temperature
small, one can perhaps define a temperature range wher
motion of both the particles undergo a qualitative change

F. Pressure dependence of diffusion coefficients

Like the viscosity, the diffusion coefficients also show
exponential dependence on pressure. In Figs. 6~a! and 6~b!,
we plot lnDi against pressure (P!) at temperatures 1.0 an
0.5, respectively. Just as in viscosity, there is a change in
slope of Arrhenius dependence at a certain high pressure~see
Fig. 3 for comparison!. This crossover has been observed
both A and B type of particles and at both the two tempe
tures.

This change in the behavior of the transport propert
takes place near a pressure where the hopping mode of t
port also becomes noticeable. This may imply the emerge
of free energy landscape dominated dynamics or may e
signal the crossover predicted by the free volume theory.
have made several other studies to understand this beha
as discussed below.

G. Variation of the total potential energy with density

Figure 7 shows the change in potential energy (U)
against density when the latter is varied either by vary
temperature at constant pressure or vice versa.U decreases
linearly with density when the latter is changed by decre
ing temperature at constant pressure,P!510.0. However,
the change inU by varying pressure shows a minimum at
intermediate density at a constant temperature~both for T!

51.0 and 0.5!. So, even though with increasing pressu
particles pack more densely, the system becomes ener

FIG. 7. Plot of potential energyU against densityr. Circles show mono-
tonic decrease ofU with r, wherer is varied by changing temperature an
keeping the pressure fixed atP!510. Squares and triangles denote t
change inU againstr wherer is varied by changing pressure at a fixe
temperature 1.0 and 0.5, respectively. We see a minimum in potential en
at a particular density when density is changed by varying pressure.
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cally frustrated after it reaches a certain density, even be
the glass transition density. This is a curious result wh
may be of some relevance for glasses formed at high p
sures.

H. Pressure variation with density

In order to pursue this inter-relationship between pr
sure, density and temperature, in Fig. 8 pressure (P!) is
plotted against density (r) for both T!51.0 and 0.5. The
dependence is clearly nonlinear. However, the change
pressure with density appears to be smooth and continu
Thus, the sharp change observed in the pressure depend
of viscosity and self-diffusion is not reflected in the pressu
density graph. Thus, it appears that the change in the vis
ity and self-diffusion is dynamic in origin.

IV. EMERGENCE OF THE HOPPING MODE OF MASS
TRANSPORT

The relaxation of supercooled liquid is much more slu
gish compared to normal liquid. But the emergence of h
ping mode at supercooled liquid becomes a convenient
laxation channel for the system.22,31,32Unlike normal liquid
dynamics where molecular motion is regarded as continu
Brownian motion, there appears in the system a sudd
rather large, displacement of one or more particles in a v
short duration of time. This is commonly known as hoppin
In a deeply supercooled liquid, when a particle’s motion
almost vibrational around a certain point in space, hopp
seems to be the only relaxation mode. So the probab
distribution of particle displacement becomes bimodal sig
fying two distinct dynamical behavior.

In Fig. 9~a!, normalized distribution functionPn(L,t)
3L2 for the smaller particles is plotted against displacem
L for four different temperatures,T!, varying from 1.0 to
0.6. Figure 9~b! shows the same for the bigger particles. He
Pn(L,t) is defined as the normalized probability of displac

FIG. 8. Pressure (P!) is plotted against density (r) for two different tem-
peratures. Circles denote the values atT!51.0 while squares denote those
T!50.5.
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ment of annth particle betweenL and L1dL after timet
from its original position at zero time. Note the emergence
bimodality at low temperatures.

Similarly, Figs. 10~a! and 10~b! show the distribution of
Pn(L,t)3L2 against displacementL for smaller and bigger
particles, respectively, at a constant temperature 0.5. E
figure contains results for different pressures. The typi
time window taken in Figs. 9 and 10 is 500t which is rela-
tively large compared to the time scale of normal liquid.
low temperature and high pressure such as,T!50.6 andP!

525.0, the sharp peak atL50.2 clearly signifies that the
movement of particles in deep supercooled liquid is mos
vibrational in nature. On the other hand, for high temperat
and low pressures, there is a significant amount of displa
ment observed for both types of particles. So, as expec
the continuous distribution at relatively low pressure a
high temperature becomes clearly bimodal in nature
higher pressures and lower temperatures. This signifies
emergence of hopping dominated mass transfer from a c
tinuous, viscosity dominated diffusion mode.

FIG. 9. Normalized probability distributionPn(L,t)3L2 plotted against
displacementL for different temperatures at a constantP!510.0. The typi-
cal time window is 500t. ~a! Probability distributions for smaller (B) type
of particles.~b! Same plot for the bigger particles (A). With decreasing
temperature the probability distribution becomes bimodal for the sma
particles signifying the crossover from normal to hopping dominated
namics.
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Figures 11~a! and 11~b! depict the displacement trajec
tory of a small particle atT!50.6, P!510.0 andT!50.5,
P!54.5, respectively. The displacement shows continu
movement as well as a sudden hopping. The two figu
show two different kinds of hopping. As mentioned earli
hopping of small particles continue to be rather frequ
even in the deeply supercooled liquid.

Note that sometimes hopping has been used to determ
the glass transition temperature. The present simulations
the other hand, show thatthe glass transition temperature
obtained from fitting to viscosity and diffusion are substa
tially lower than the temperatures where hopping is notic
able. The present study thus seems to show that the em
gence of hopping may occur substantially before the g
transition temperature.

The hopping may have significance in determining
fragility of a liquid.4 It is obvious that if the hopping mod
can contribute substantially to diffusion and stress relaxat
then the temperature dependent studies may reveal an e
nential temperature dependence. The fact that the K
Andersen model is weakly fragile is consistent with t

FIG. 10. Normalized probability distributionPn(L,t)3L2 plotted against
displacementL for different pressures at constant temperatureT!50.5. ~a!
Probability distribution for the smaller particles (B type!. ~b! Probability
distribution for the bigger particles (A type!. At high pressures, in case o
smaller particles, the distribution becomes bimodal. Probability distribu
of bigger particles does not show any significant bimodality.
s
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emergence of hopping in this system before the glass tra
tion temperature. We should state here that we are using
word ‘‘hopping mode’’ to describe collectively all the
hopping—it is not meant to imply a true existence of a we
defined mode, like in hydrodynamics.

V. NONEXPONENTIAL STRESS RELAXATION

The slowing down of the dynamics in a supercooled l
uid is reflected not only in the dynamic structure fact
~which is commonly computed in simulations! but also in the
shear stress relaxation,h(t). The latter is a much more dif
ficult quantity to obtain via simulations. According to MCT
h(t) has a short time~binary contribution! and a long time
~density mode contribution! part. On increasing the degree o
supercooling~either by increasing pressure or by decreas
temperature!, the decay of the stress correlation function
the long time part changes from an exponential to a stretc
exponential~nonexponential! and in the regime closer to
glass transition, the stress, at intermediate times, is predi
to relax by a power law. Stress time correlation function h
been monitored in the present model for different pressu
and temperatures. We have used all three different
diagonal stress tensors@see Eq.~1!# to calculate the averag

n

FIG. 11. Displacement of a smallB type of particle is plotted against timet
at ~a! P!510.0 andT!50.6 and at~b! P!54.5 andT!50.5. Sudden large
displacement in each case is characterized as hopping.
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stress time correlation function. Viscosityh has also been
calculated from the average stress correlation function.
well known that there is much more uncertainty or er
involved in the calculation of viscosity from stress corre
tion in the supercooled region.31 It has also been observe
that unlike in normal liquid, in supercooled liquid the thre
different stress correlation functions (xy,yz,xz) become an-
isotropic, within the time window of the simulations. In Fig
12, the log of normalized stress autocorrelation functio
@ ln Cs(t)# are plotted against log of time@ ln(t)# for eight dif-
ferent temperatures from 0.6 to 0.95 at a constant pres
10.0. Similarly in Fig. 13, lnCs(t) is plotted against ln(t) for
six different pressures from 5.0 to 25.0 at a constant temp
ture 1.0. ThenCs(t) has been fitted to the equation give
below:

Cs~ t !5A exp~2t/t1!1B exp@2~ t/t!b#. ~11!

FIG. 12. Solid lines represent the lnCs(t) vs ln(t) plots for T!50.6 to 0.95
at a constantP!510.0. Cs(t) shows an increasing nonexponentiality as t
temperature is decreased. Dashed lines in each case are the plot of the
function @see Eq.~11!#. The temperature dependence of the stretching
rameterbP @as obtained from the fitting to the Eq.~11!# at constantP!

510.0 is shown in the inset.

FIG. 13. Solid lines show the lnCs(t) vs ln(t) plots for P!55.0 to 25.0 at
constantT!51.0. Dashed lines in each case are the plots of the fit
function @see Eq.~11!#. The pressure dependence of stretching parametebT

at constantT!51.0 is shown in the inset.
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The term proportional toA takes into account of the fas
decay and the term proportional toB determines the slow
exponential decay in normal liquid which changes to
stretched exponential form in the supercooled liquid. W
found that the stretching parameterb decreases from 1.0 to
about 0.44 as the liquid is changed from normal to dee
supercooled liquid. Note that the above functional form
not suitable to describe the real short time~ballistic, inertial!
dynamics, but that is no limitation in the present case as
are interested mainly in the longer time aspects of relaxat
The characteristic time of the fast decayt1 is almost constant
in each of the cases, i.e., it is independent of temperature
pressure.

The insets in Figs. 12 and 13 show the dependence ob
on temperature and on pressure, respectively. The stretc
parameterb has been calculated by fitting the stress corre
tion to the above function. Similar type of temperature d
pendence of normalized stress correlation has been discu
recently.33 b varies from 0.44 to 1.0 as expected in theor
and simulations.34,35

Stress correlation functions are often fitted to the pow
law behavior predicted by the ideal mode coupli
theory.36,37 Decay of the stress correlation function depict
in Fig. 12 (P!510) for the lowest temperature (T!50.6)
clearly shows the emergence of the power law at the in
mediate time. The long time part of it has been fitted to V
Schweidler power law@h5 f 2h(t/t)bPL#. The exponent
bPL is found to be 0.22 for this case (T!50.6 and P!

510.0). However, this seems to be just the beginning of
power law in the sense that one needs to go to even lo
temperatures to recover the full power law behavior. W
have not been able to go down to any lower temperatu
Even atT!50.6, P!510, we needed to simulate over 1
million steps and average over three runs to get reliable
tistics. We estimate that the computation cost will increa
by at least one order of magnitude~or more! to lower the
temperature even by 0.02.

The emergence of the power law with such a small
ponent implies the existence of a large separation of t
scale between the initial fast decay and the very slow lo
time decay. Since the time scale of the initial decay is l
than a picosecond~if we may use the parameters for argon!,
this is clearly related to the relaxation in the cage wh
contributes, in this case, about 70% of the total stress re
ation. The power law part contributes less than 10%. T
main point here is that the emergence of power law requ
the establishment of a large separation of time scale betw
the two main relaxation mechanisms. The two relev
points here are the role of particle hopping and the fragi
of the liquid. For more fragile liquid, the separation of tim
scale should be larger, giving rise to power law decay w
smaller exponent, and also, less frequency of hopping.
are not aware of any study correlating these factors.

VI. CONCLUSION

Understanding the dynamics of supercooled liquid is s
a challenge to theoreticians. This problem has remai

ting
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largely misunderstood, despite considerable efforts in rec
years which nevertheless has augmented our understand
great deal.

In this work, we presented results of a large number
simulations of a glassy binary mixture, with an emphasis
the pressure dependence of the static and dynamic prope
The aim has been to characterize the behavior of liquid ra
ing from normal to supercooled region. The Kob–Anders
model has been used as the probe of the study as it is
known for a good glass former. Moreover, the model co
tains disparate sized and differently interacting partic
which allow for many interesting dynamical behavior of t
two particles.

The present study revealed several interesting res
prominent among them is the change in the pressure de
dence of viscosity and self-diffusion coefficients and t
demonstration that the temperature has a much stronge
fect than density in controlling the dynamical properties
the supercooled liquid. Several other results, like the dec
pling between viscosity and self-diffusion and the high
transition temperature prediction by the mode coupl
theory, are known from earlier studies.

The observed sharp change in the pressure depend
of viscosity and diffusion coefficients seems to indicate
change in the mechanism of transport properties in visc
liquids. This change occurs at a pressure where the hop
of particles becomes noticeable. However, the change
also be explained from the free volume theory which env
ages such a change in the transport scenario, arising from
random close packing at very high density. Unfortunately,
have not been able to provide any discriminatory evidenc
favor of one or the other of these two alternatives.
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