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The dynamics in the isotropic phase of the liquid crystal 1-isothiocyanato-~4-propylcyclohexyl!
benzene~3-CHBT! are investigated from very short time~;1 ps! to very long time~.100 ns! as
function of temperature. The data decay exponentially only on the longest time scale~.10 ns!. The
temperature dependence of the long time scale exponential decays is described well by the Landau–
de Gennes theory of the randomization of pseudo-nematic domains that exist in the isotropic phase
of liquid crystals near the isotropic to nematic phase transition. Over the full range of times, the data
are fit with a model function that contains a short time power law. The power law exponent is
temperature independent over a wide range of temperatures. Integration of the function gives the
empirical polarizability–polarizability~orientational! correlation function. A preliminary theoretical
treatment of collective motions yields a correlation function that indicates that the data can decay as
a power law at short times. The power law component of the decay reflects intradomain dynamics.
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I. INTRODUCTION

Dynamics in liquid crystals in the isotropic phase ha
been studied widely in the last thirty years. Most of this wo
has focused on the slow time scale dynamics using meas
ments in the time and frequency domains.1–8 de Gennes,
using Landau theory of phase transitions, explained the t
perature dependence of the slowest time scale expone
orientational relaxation in relation to the nematic–isotro
~NI! transition.9 As the NI transition is approached from
above, orientational relaxation slows dramatically.10 Al-
though the isotropic phase is macroscopically homogene
on a distance scale short compared to a correlation lengtj,
nematiclike order exists. Locally, molecules form ‘‘pseud
nematic domains.’’ Such domains persist in the isotro
phase up to;50 K over the NI transition temperature. Th
Landau–de Gennes~LdG! theory describes the orientation
randomization of the domains. As the temperature is lo
ered,j increases, and the orientational correlation funct
decays increasingly slowly, diverging at the NI transitio
The LdG theory of long time scale orientational relaxation
well established experimentally using such techniques
depolarized light scattering,3 dynamic light scattering,4

magnetic,5 and electric birefringence,6 dielectric
relaxation,7,8 and the optical Kerr effect.1,2,11

In contrast to the slow time scale dynamics, the nature
orientational relaxation on a time scale fast compared to
LdG relaxation time is not understood. On the fast tim
scale, the nematogens are locally ordered and are underg
orientational relaxation in a nematically ordered enviro
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ment. Only a few experiments have focused on the fa
time scale dynamics of liquid crystals.11–15 Compared to the
experiments presented below, the earlier experiments
limited time range and signal-to-noise ratios~S/N!. Nonethe-
less, the previous transient grating optical Kerr effect exp
ments, which measure the time derivative of t
polarizability–polarizability correlation function,~except on
,1 ps time scales, equivalent to the orientational correlat
function! revealed power law decays at short times and
LdG exponential decay at long times. The data were fit w
a model function consisting of a power law~short time in-
tradomain dynamics! plus an exponential~domain random-
ization!. Theoretical treatments based on single particle
namics produced power law functions,16,17 but, as discussed
below, do not describe the data appropriately.

The data presented below on the liquid crys
1-isothiocyanato-~4-propylcyclohexyl!benzene ~3-CHBT!,
taken with optical heterodyne detected optical Kerr eff
experiments, provide a detailed view of the dynamics on
time scales. It is found that a more complicated model fu
tion than the one employed previously is required to fit t
experimental data. As reported earlier,12,13,16 the short time
behavior of the data is described by a power law, but
fitting function used here makes it possible to obtain a m
accurate description of the power law and the data ove
Over a wide range of temperatures, the power law is ess
tially temperature independent. Integration of the mo
function provides an empirical orientational correlation fun
tion over the full range of times. This model correlatio
function does not contain a power law, but its derivati
does. A preliminary theoretical analysis that calculates
orientational correlation function on fast time scales is ba
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on a description of the collective orientational relaxatio
The theoretical correlation function is not a power law, b
its derivative displays a power law like decay at short tim

II. EXPERIMENT

Optical heterodyne-detected optical Kerr effect~OHD-
OKE! spectroscopy18 was used to measure the liquid crys
orientational relaxation. A pump pulse creates a tim
dependent optical anisotropy that is monitored via a hete
dyne detected probe pulse with a variable time delay. T
OHD-OKE experiment measures the system’s impu
response function, which is the derivative of th
polarizability–polarizability ~orientational! correlation
function.19–22 The methods for the analysis of OHD-OK
data have been described in detail.23 The Fourier transform
of the OHD-OKE signal is directly related to data obtain
from depolarized light scattering,24 but the time domain
OHD-OKE experiment can provide better S/N over a broa
range of times for experiments conducted on very fast
moderate time scales.

To observe the full range of liquid dynamics, at ea
temperature several sets of experiments were performed
different pulse lengths and delays. For timest,30 ns, a
mode-locked 5 kHz Ti:Sapphire laser/regenerative ampli
system was used~l5800 nm for both pump and probe!. The
pulse length was adjusted from 75 to 1 ps to improve S
The shortest pulses were used for times 100 fs to a few
of ps. For longer times, a few ps to 600 ps, the pulses w
lengthened to 1 ps. The longer pulses produce more si
for the longer time portions of the data. For intermedia
times, the pulse compression was bypassed, and a 10
pulse was used with a long delay line to obtain times fr
100 ps to 30 ns. For even longer times, a CW diode laser
used for probing, and a fast digitizer~2 ns per point! re-
corded the data. The scans taken over various time ra
always overlapped substantially permitting the data sets t
merged by adjusting only their relative amplitudes. Gr
care was taken, and innumerable tests were made, to a
that the data sets could be combined without error or am
guity. Additional experimental details have been publish
recently.25

3-CHBT was purchased from Aldrich and used witho
further purification except filtration through a 0.2mm disc
filter to reduce light scattering. The sample was sealed un
vacuum in a 1 cmglass cuvette. The cuvette was held in
constant flow cryostat where the temperature was contro
to 60.1 K. Experiments were performed in the isotrop
phase from 315 to 355 K.

III. RESULTS AND DISCUSSION

Figure 1 is a data set taken at 317 K (TNI5314.7 K!
shown on a log–log scale. The data span the range of ti
from 1 ps to 200 ns, that is, over five decades. As discus
further below, at short time the decay is a power law. It th
becomes more gradual at intermediate times of several n
seconds, almost appearing as if the decay is approachi
plateau on the log plot. At still longer times, the decay is
.
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exponential. The long time portion of the data is a sing
exponential decay~see below! as expected from the LdG
theory.

The data can be divided into two time regimes, that
the LdG relaxation time scale and times fast compared to
LdG relaxation time,tLdG. The qualitative explanation fo
the two time regimes has been discussed previously.12 The
following is a brief explanation. In the isotropic phase, t
macroscopic liquid has an order parameter,S50, that is,
macroscopically there is no orientational order. However,
a distance scale short compared toj, and on a time scale
short compared totLdG, there is pseudo-nematic orde
which can be characterized by a local order parameter,SL ,
relative to a local director. When the pump pulseE-field is
applied, the nematogens experience a torque that produc
slight alignment with the field. When the field is remove
the macroscopic system is left withSÞ0. Field free evolu-
tion will reestablishS50.

To understand the origin of the dynamical time scales
is necessary to consider the problem microscopically. Th
are two contributions to the relaxation, intradomain rela
ation and domain randomization~LdG relaxation!. The
E-field induces a small net alignment of the individual mo
ecules. The molecular alignments change the local order
rameter,SL . Unlike S, which is a macroscopic paramete
SL , is nonzero prior to the application of the optical field.SL

defines the local nematic structure relative to the local dir
tor assigned with a given pseudo-nematic domain. Initia
SL5SL

0. Immediately following the application of the field
SL.SL

0. (SL can also be,SL
0, depending on the direction o

the local director relative to the field direction.! The small
alignment of the molecules with the field changesSL , and it

FIG. 1. Optical heterodyne detected optical Kerr effect data displaying
time dependence of orientational dynamics of the liquid crystal, 3-CHBT
317 K on a log plot. The data span the time range 1 ps to 200 ns. At s
time, the data decay as a power law. At long time, the data decay expo
tially. Also shown is a fit to the data using Eq.~1!. The fit is very good over
the broad time range. The residuals of the fit are shown in the inset.
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19.1,
also rotates the direction of the local director. Fast intra
main relaxation occurs, restoring the local order paramete
SL

0. Relaxation of the perturbed local order back toSL
0 occurs

on the fast time scales but leaves the ensemble of dom
local directors still slightly aligned with the direction define
by theE-field. This long-lived anisotropy can only decay b
randomization of the domains and is responsible for the l
time decay described by LdG theory.

Also shown in Fig. 1 is a fit to the data using the mod
function

f ~ t !5e2t/tFa1e2t/gS b1S t

td
D 2pD G . ~1!

The exponential multiplying the terms in square brackets
the long time decay, witht5tLdG in the temperature rang
near the NI transition where LdG theory is applicable. T
power law term, witht scaled bytd , which sets the magni
tude of the power law portion, describes the short time
havior ~longer than;1 ps!. The additional exponential, with
the decay constantg, is necessary to obtain the flattening
the curve prior to the LdG decay. All of the terms inside t
square brackets describe the intradomain, non-LdG, de
The intradomain decay leaves a residual anisotropy of
plitude a, which then decays via the domain randomizati
with tLdG. The fit to the 317 K data shown in Fig. 1 uses t
parameters:tLdG536.8 ns,g59.55 ns,p50.73, a51.006,
b50.175, td50.035 ns. Note that the function in Eq.~1!
does an excellent job of describing the data over a w
range of times. The inset shows the residuals of the fit to
data. The function given in Eq.~1! works at all temperatures
and, as will be shown subsequently,26 it describes the data
equally well for three different liquid crystals. The previou
function used to describe the data, the simple sum of a po
law and an exponential, does not accurately reproduce
intermediate time scale data~just prior to the LdG decay! nor
does it properly describe the very long time behavior. It a
contains a fundamental conceptual flaw. At sufficiently hi
temperature, the LdG decay becomes very fast. At e
higher temperature, domains cease to exist, and the d
should become a single fast exponential. With a functio
form that is the sum of a power law and an exponential~the
function used in prior work12,13,16!, making the exponentia
very fast leaves a long time decay that is a power law. Thi
contrary to observation. Even for the decays at mode
temperature, at sufficiently long time, the simple sum o
power law and an exponential leaves a long power law t
The present data are good enough and go out far enough
comparison to the simple sum deviates from the data at l
time. The function in Eq.~1! does not have these problem
The intradomain terms decay, leaving a residual anisotr
that decays exponentially. If the LdG decay becomes v
fast, then the entire function decays exponentially.

Figure 2 displays the temperature dependent data o
log plot. The data sets have been offset vertically for clar
The lowest temperature is the top curve, and each cu
moving downward is at successively higher temperatu
Note that the shortest time portions of each curve look id
tical. At long time, as the temperature is increased, the k
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in the data~onset of the exponential decay! moves to shorter
time. The shortest time portion of the data is a power la
Between the short power law and the long time exponen
in every data set is a region that appears to decay very gr
ally on the log plot.

Figure 3 displays the long time exponential decay tim
tLdG, as a function of temperature. The inset displays
long time portion of the data at 317 K on a semilog plot.
line is shown passing through the data. As can be seen in
inset, the long time portion of the data is described very w
as an exponential decay. Using Eq.~1! to fit the data or fitting
only the long time tail to an exponential gives identical r
sults fortLdG. The LdG theory predicts10

tLdG}
Veff* h~T!

kB~T2T* !g
, ~2!

whereh(T) is the viscosity~see Table I for viscosity data!, T
is the temperature,T* is the transition temperature, which
generally a degree or more belowTNI ,

10 kB is the Boltzmann
constant,Veff* is the effective volume.3,27 The exponentg has
been shown to be 1,11 indicating the validity of mean-field
theory.10 The curve through the data in Fig. 3 is obtain
from Eq. ~2! usingVeff* as a scaling parameter.Veff* does not
change the shape of the curve; it only sets the magnitudeT*
was found to be 312.5 K. Clearly, the long time behavior
described very well by LdG theory, as is expected.

To reveal the power law component of the data mo
clearly, using the fit with Eq.~1!, the contributions from the
two exponentials can be removed. Figure 4 displays
power law portion of one data set~the data in Fig. 1!. In the
figure, the power law is shown from 3 ps to 2 ns. The pow

FIG. 2. Temperature dependent data sets displayed on a log plot. The
sets have been offset for clarity of presentation. Starting with the top m
curve, the temperatures for the data sets are 316.0, 317.0, 318.0, 3
321.5, 323.0, 325.1, 327.0, 329.0, 333.1, 337.0, 344.0, and 354.0 K.
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law exponent obtained from the fit and displayed in the p
is 0.73. Figure 5~a! displays the power law exponent as
function of temperature for the range of temperatures s
ied. Within experimental error, the power law is temperat
independent. The value of the exponent is 0.7560.03. In
previous studies of liquid crystals,12,13 the power law was
also found to be temperature independent, but only at t
peratures sufficiently close to the NI transition temperatu
In the current study, and in studies of other liquid cryst
that will be reported subsequently,26 the power law is found

FIG. 3. The long time scale exponential decay time as a function of t
perature. The temperature dependence of the decay time is predicted b
Landau–de Gennes theory. The solid curve through the data is the the
cally predicted LdG curve. The inset shows the long time portion of the
K data set on a semilog plot with a line through the data showing the de
is exponential.

TABLE I. Temperature dependent viscosity.

Temperature~K! Viscosity ~cP!

318.15 9.67
320.25 9.21
322.65 8.53
325.65 7.79
329.15 7.12
333.65 6.49
338.15 5.75
341.65 5.24
344.65 4.93
348.65 4.53
351.65 4.23
355.15 4.02
358.15 3.82
361.65 3.52
364.65 3.41
367.35 3.11
370.65 3.01
t

d-
e
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to be essentially temperature independent to temperat
further above the NI transition temperature. The previo
work did not account for the intermediate time portion of t
curve, which may have a weak temperature dependence.
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FIG. 4. The short time portion of the 317 K data with the exponen
contributions removed@see Eq.~1!# on a log plot. The dashed line throug
the data shows that the decay is a power law from 3 ps to 2 ns.

FIG. 5. ~a! The power law exponent,p, obtained from fits of the data to Eq
~1!, as a function of temperature. Within experimental error, the power
exponent is temperature independent,p50.7560.03. ~b! The intermediate
exponential decay constantg as a function of temperature. Within exper
mental error,g is either weakly temperature dependent or temperature in
pendent.
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decay constant,g, for the intermediate time scale exponent
is shown in Fig. 5~b!. While g is either temperature indepen
dent or very mildly temperature dependent,tLdG is highly
temperature dependent. For temperatures.325 K, the two
decay constants could no longer be distinguished bec
tLdG,g and a.b. In Eq. ~1!, multiplying through by the
outer exponential, exp(2t/t), gives three exponentials, tw
of which have a decay constant

K5
1

t
1

1

g
.

At the higher temperatures,K51/t.
One other study of 3-CHBT performed recently me

sured dielectric relaxation in the nematic and isotro
phases.28 Although the time resolution of these experimen
is limited, and the temperature range in the isotropic ph
extended to only 7 K above the nematic–isotropic pha
transition, nevertheless, the data appear consistent with
results found here. Two relaxation times were measured t
faster than the Landau–de Gennes decay time. These c
correspond to the intermediate and fast processes observ
the experiments presented here. Another study on a mix
of liquid crystals15 also displayed two decay processes
addition to the Landau–de Gennes decay.

The model function for the decay given in Eq.~1! de-
scribes the data well. This function is related to the tim
derivative of the polarizability–polarizability correlatio
function. By integrating Eq.~1! and normalizing the function
at t50, an empirical correlation function is obtained, that

C~ t !5
ate2t/t1~b/K !e2Kt1~1/td!2pKp21G~12p,Kt !

at1~b/K !1~1/td!2pKp21G~12p!
,

~3!

whereK is defined above, andG(x) is the gamma function
and G(x,y) is one of the definitions of the incomplet
gamma function29

G~x,y!5E
y

`

e2ssx21ds.

All of the parameters in the expression for the power law
obtained from the fits to the experimental data. While
correlation function given in Eq.~3! is empirical, a correla-
tion function derived theoretically from first principles wi
display the same time dependent behavior. Therefore, Eq~3!
is useful for comparison to theoretical calculations of the f
correlation function.

IV. PRELIMINARY THEORY OF SHORT TIME „™tLdG…

DECAY

Previous theoretical examination of the short time b
havior treated the problem calculating a single particle c
relation function.16,17 These calculations did yield powe
laws. However, the correlation functions were compared
rectly to the data; the required derivative was not tak
Once the derivative is taken, the calculated decays are m
steeper than the data, that is, the power law exponent in
derivative function is too large. More important, the sing
particle correlation function should only apply at extreme
l
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short time. The time scales observed in the experiments
flect the collective dynamics of the local nematically order
structures. Here we present a preliminary theory of the c
lective correlation function at short times, the derivative
which decays approximately as a power law on the fast t
scale.

As the function measured in optical Kerr experiments
the time derivative of the total polarizability–polarizabilit
time correlation function, the response is determined prim
rily by the time correlation function of the second ran
spherical harmonics,Y2m(V i(t)), whereV i(t) is the orien-
tation of ith nematogen at timet.30 Therefore, we define a
collective function by31,32

Y2m~k,t !5( eikr i ~ t !Y2m~V i~ t !!, ~4!

where the sum is over all molecules in the system. We
ther define the orientational time correlation functio
C2m(k,t) by the following relation:31,32

C2m~k,t !5^Y2m~2k,0!Y2m~k,t !&, ~5!

where the angular brackets denote an ensemble averag
Kerr experiments, we measure the collective, that is, thk
50 limit of C2m(k,t). In the present work, we shall conside
only the C20(k,t) correlation function. It is convenient to
work in the Laplace frequency plane whereC20(k,z) is de-
fined by

C20~k,z!5E
0

`

dte2ztC20~k,t !. ~6!

One can derive the following expression forC20(k,z) from a
general molecular hydrodynamic approach:32–34

C20~k,z!5
C20~k!

z1(20~k,z!
, ~7!

where the generalized diffusion coefficient,(20(k,z), is
given by34

(
20

~k,z!5
6kBT f220~k!

@z1GR~k,z!#I
1

kBTk2f 220~k!

@z1GT~k,z!#m
, ~8!

wherekBT is Boltzmann constant times temperature,I is the
moment of inertia, andm is the mass.GR(k,z) andGT(k,z)
are the wave vector and frequency dependent rotational
translational memory kernels, respectively.f 220(k) is the di-
mensionless orientational caging parameter defined by

f 220~k!512~r/4t!c220~k![1/S220~k!, ~9!

where c220(k) is the ~220! component of wave vector an
orientational dependent direct correlation function andr is
the number density of nematogens. Note that as
isotropic–nematic phase transition is approached from
isotropic side, f 220(k) undergoes a pronounced softenin
The divergence ofS220(k50) is preceded by the weakly firs
order isotropic to nematic phase transition.35–38However the
growth of S220(k50) as the NI transition is approache
~from the isotropic side! leads to the softening off 220(k
50). This softening is the primary reason for the stretch
of the relaxation in the LdG theory, which is recovered fro
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the present theory at long time when(20(k,z) is replaced by
(20(k50,z50), andGR by its single particle limit, that is
rotational friction,jR . Under the above limiting conditions
the orientational correlation function decays as a single
ponential with a rate equal to 6DR /S220(k50).

The situation is different at times short compared
tLdG, where (20(k,z) undergoes sharp variation with th
Laplace frequencyz, in particular near the NI transition whe
it is approached from the isotropic phase. This behavior
(20(k,z) can be captured by mode coupling theory39 because
this variation in(20(k,z) is due to the coupling of the rota
tional velocity field ~vortices! to the orientational density
fluctuation. To this end, we split the rotational frictionGR

into a short time part,G0 , and a singular part,Gsing

GR5G01Gsing, ~10!

whereG0 is determined by local, short-range interactions40

Gsing is the part which is coupled to show collective orien
tional fluctuations, that is, to the fluctuations of the ord
parameter. Gsing can be calculated using Kirkwood’
formula,32,33

Gsing5
1

2IkBT
E

0

`

dt
1

4pVE drdV^N~r ,V,0!N~r ,V,t !&.

~11!

When the torque,N, is obtained from density functiona
theory,32,34 we get the following expression forGsing:

Gsing5
3kBTr

8p3I
E

0

`

dk k2c220
2 ~k!C20~k,t !. ~12!

This is a typical MCT expression.40 Note thatC20(k,t)
in turn depends onGsing. Thus, a self-consistent iterative ca
culation is called for. Note also thatGsing derives contribu-
tions from all length scales. Near the NI transition, howev
Gsing is expected to be dominated by the long wavelen
~i.e., smallk value! modes. We next approximateC20(k,t) by

C20~k,t !5S220~k!exp~26DRt/S220~k!!, ~13!

whereDR is the rotational diffusion coefficient of the nem
atogens.

Near the NI transition

c220~k50!'~4p/r!2, ~14!

andS220(k) grows at smallk as36–38

S220~k→0!'1/B2k2, ~15!

whereB is related to the second derivative of the direct c
relation functionc220(k) at k50, that is

B25
r

4p S d2c220

dk2 D
k50

.

The mode coupling contribution can now be obtained
performing thek-integration, which gives the following ex
pression:

Gsing~ t !'
A0

At
, ~16!
x-

f

-
r

r,
h

-

y

with

A05
3kBT

pIrB3
~p/6DR!1/2. ~17!

Laplace transformation ofGsing(t) can be easily performed to
obtain

Gsing~z!5
A

Az
, ~18!

whereA5A0p1/2. At small z, Gsing dominates, and we hav

(
20

~k50,z!'
kBT f220~k50!

IA
z1/2. ~19!

The above expression for(20 leads to the following expres
sion for C20(z) at smallz

C20~z!5
1

z1az1/2
, ~20!

where

a5kBT f220~k50!/IA. ~21a!

Substituting the definition ofA gives

a5rB3~6DR!1/2f 220~k50!/3. ~21b!

The above expression forC20(z) can be easily Laplace in
verted to obtain

C20~ t !5exp~a2t !erfc~at1/2!, ~22!

where erfc is complementary error function.29 Equation~22!
for C20(t) is the main result of the theoretical analysis. It
expected to be valid in a time window that is short compa
to tLdG but long compared to the ultrashort time scale
collisional dynamics. Equation~22! shows that at relatively
short times, the polarizability–polarizability time correlatio
function will have a weak time dependence~see below!.

The present analysis suggests that the weak time de
dence on time scales short compared totLdG is a direct con-
sequence of pseudo-nematic time domain formation as
NI transition is approached from the isotropic phase. T
pseudo-nematic domains give rise to slow, local orientatio
density fluctuations, which in turn affect the orientation
friction because the torque–torque correlation function
coupled to these fluctuations. The influence of the doma
on the local orientational density fluctuations is reflected i
strong frequency dependence of the rotational friction in
low-frequency range. The strong frequency dependence
friction acts in the opposite manner to the usual decay fr
the short-range interactions—nearly canceling it. At lo
times, (t>tLdG) this frequency dependence dies down, a
the LdG theory should be recovered. One, therefore, exp
a nonexponential crossover region where mild decay at s
times will go over to the long time scale exponential dec
This crossover region is akin to the von Schweid
region41,42 of the dynamics observed in supercool
liquids.25,43It arises from essentially the same reason, tha
the stretching of relaxation at intermediate times.
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The correlation function given in Eq.~22! has a very
different form from the experimentally derived empiric
correlation function given in Eq.~3!. The function given in
Eq. ~3! spans the full time range from ps tot.tLdG. Its
derivative, Eq.~1!, describes the data well~see Fig. 1!. Fig-
ure 6 shows the derivative of the theoretical correlation fu
tion @Eq. ~22!# with a53. The experimental data begins wi
a power law with exponent of;20.73~see Fig. 4!. Figure 6
also displays a power lawt20.73. The derivative of the cor-
relation function is almost a power law at short time, from
to ;30 ps. After that, it begins to tail off. The value of th
parameter,a, was selected to produce a curve which is sim
lar to the power law portion of the data at short time. Figu
6 is not intended to be a fit to the data. It is only used
demonstrate that the correlation function given in Eq.~22!
can have the appropriate short time behavior.

V. CONCLUDING REMARKS

In this paper, we have presented experiments and th
that investigate the orientational dynamics of liquid cryst
in the isotropic phase near the nematic–isotropic phase t
sition temperature. The liquid crystal 3-CHBT was studi
using optical heterodyne detected optical Kerr effect exp
ments, which provided very high quality data over a ve
broad range of times, that is, from 1 ps to 200 ns. The
periment measures the time dependence of the derivativ
the polarizability–polarizability ~orientational! correlation
function. At short times, the data decay as a power law,t2p,
with a temperature independent exponent ofp50.7560.03.
At long time, the data decay exponentially as described
Landau–de Gennes theory. The short time scale dynam
reflect the collective orientational relaxation of the nema
gens in an environment that is locally nematic. The long ti
dynamics reflect the randomization of the pseudo-nem
domains. While the long time dynamics are highly tempe
ture dependent, with the decay time growing rapidly as
temperature is lowered and the isotropic–nematic phase
sition is approached from the isotropic side, the power law
temperature independent within experimental error. The l

FIG. 6. The time derivative of the theoretical correlation function,C20(t)
@Eq. ~22!#. Also shown is at20.73 power law. At short time, the derivative o
the correlation function decays essentially as a power law. By the pr
choice of the parameter,a, the decay can be made to match the short ti
portion of the experimental data.
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of temperature dependence suggests that the local pse
nematic structure is virtually temperature independent. T
size of the domains grow as the temperature is decrea
toward the phase transition, reflected by an increasing co
lation length, but the data demonstrates that the dynamic
relatively short time are temperature independent or at m
very weakly temperature dependent.

The data were fit to a model fitting function that wa
able to reproduce the data extremely well~see Fig. 1! over
the full range of times and temperatures. Integration of
fitting function yields an empirical function for the
polarizability–polarizability correlation function. A true firs
principles theoretical correlation function will have the sam
shape as the empirical correlation function. A prelimina
first principles theory of the correlation function was pr
sented. This theory describes the collective orientational
namics of the nematogens on a relatively short time sc
only ~i.e., t,tLdG). Previous theoretical treatments examin
the single particle correlation function, which may only b
appropriate on extremely short time scales. The collec
correlation function@Eq. ~22!# has a very weak time depen
dence at short times. The derivation of the correlation fu
tion decays essentially as a power law at short time~Fig. 6!,
and by the proper choice of the parametera @Eq. ~21!#, it can
be brought into accord with the short time portion of t
data. Further detailed theoretical studies will more fully i
vestigate the correlation function on all time scales and
temperature dependence. Additional experiments will be p
sented that show that the dynamical behavior observed
3-CHBT is very similar to that of other liquid crystals.26

ACKNOWLEDGMENTS

One of the authors~B.B.! would like to thank the Theo-
retical Chemistry Institute of the University of Texas at Au
tin for support of his stay in the United States, which co
tributed to this work. This research was supported by
National Science Foundation~DMR-0088942!.

1G. K. L. Wong and Y. R. Shen, Phys. Rev. Lett.30, 895 ~1973!.
2E. G. Hanson, Y. R. Shen, and G. K. L. Wong, Phys. Rev. A14, 1281
~1976!.

3T. D. Gierke and W. H. Flygare, J. Chem. Phys.61, 22331~1974!.
4T. W. Stinson III and J. D. Litster, Phys. Rev. Lett.25, 503 ~1970!.
5J. D. Litster and T. W. Stinson III, J. Appl. Phys.41, 996 ~1970!.
6J. C. Fillippini and Y. Poggi, Phys. Lett. A65, 30 ~1978!.
7W. H. de Jeu, inSolid State Physics, edited by L. Liebert~Academic, New
York, 1978!, p. 109.

8H. Kresse, inAdvances in Liquid Crystals, edited by G. H. Brown~Aca-
demic, New York, 1983!, Vol. 6, p. 109.

9P. G. de Gennes, Phys. Lett. A30, 454 ~1969!.
10P. G. de Gennes,The Physics of Liquid Crystals~Clarendon, Oxford,

1974!.
11J. J. Stankus, R. Torre, C. D. Marshall, S. R. Greenfield, A. Sengupta

Tokmakoff, and M. D. Fayer, Chem. Phys. Lett.194, 213 ~1992!.
12J. J. Stankus, R. Torre, and M. D. Fayer, J. Phys. Chem.97, 9478~1993!.
13F. W. Deeg, S. R. Greenfield, J. J. Stankus, V. J. Newell, and M. D. Fa

J. Chem. Phys.93, 3503~1990!.
14R. Torre and S. Californo, J. Chim. Phys.93, 1843~1996!.
15R. Torre, F. Tempestini, P. Bartolini, and R. Righini, Philos. Mag. B77~2!,

645 ~1998!.
16A. Sengupta and M. D. Fayer, J. Chem. Phys.102, 4193~1995!.
17S. Ravichandran, A. Perera, M. Moreau, and B. Bagchi, J. Chem. P

109~17!, 7349~1998!.

er



nt

an

ye

.

G ys.

367
18D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, IEEE J. Qua
Elec.24~2!, 443 ~1988!.

19Y. X. Yan, L. G. Cheng, and K. A. Nelson, Adv. Infrared and Ram
Spectrosc.16, 299 ~1987!.

20Y. X. Yan and K. A. Nelson, J. Chem. Phys.87, 6240~1987!.
21Y. X. Yan and K. A. Nelson, J. Chem. Phys.87, 6257~1987!.
22F. W. Deeg, J. J. Stankus, S. R. Greenfield, V. J. Newell, and M. D. Fa

J. Chem. Phys.90, 6893~1989!.
23D. McMorrow and W. T. Lotshaw, J. Phys. Chem.95, 10395~1991!.
24Y. Kai, S. Kinoshita, M. Yamaguchi, and T. Yagi, J. Mol. Liq.65-6, 413

~1995!.
25S. D. Gottke, D. D. Brace, G. Hinze, and M. D. Fayer, J. Phys. Chem

105, 238 ~2001!.
26S. D. Fottke, H. Cang, B. Bagchi, and M. D. Fayer, J. Chem. Phys.~in

preparation!.
27G. R. Alms, T. D. Gierke, and W. H. Flygare, J. Chem. Phys.61, 4083

~1974!.
28J. Jadzyn, L. Hellemans, M. Stockhausen, C. Legrand, and

Czechowski, Z. Naturforsch., A: Phys. Sci.49, 1077~1994!.
.

r,

B

.

29M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions
~Dover, New York, 1970!.

30G. R. Fleming,Chemical Applications of Ultrafast Spectroscopy~Oxford,
New York, 1986!.

31B. J. Berne, J. Chem. Phys.62, 1154~1975!.
32B. Bagchi and A. Chandra, Adv. Chem. Phys.80, 1 ~1991!.
33P. Boon and S. Yip,Molecular Hydrodynamics~McGraw-Hill, New York,

1980!.
34B. Bagchi and R. Biswas, Adv. Chem. Phys.109, 207 ~1999!.
35R. Zwanzig, J. Chem. Phys.39, 1714~1963!.
36A. Perera, P. G. Kusalik, and G. N. Patey, J. Chem. Phys.87, 1295~1987!.
37A. Perera, P. G. Kusalik, and G. N. Patey, Mol. Phys.60, 77 ~1987!.
38A. Perera, G. Patey, and J. J. Weis, J. Chem. Phys.89, 6941~1988!.
39U. Baluchani and M. Zoppi,Dynamics of the Liquid State~Clarendon,

Oxford, 1994!.
40B. Bagchi and S. Bhattacharyya, Adv. Chem. Phys.116, 67 ~2001!.
41W. Götze and L. Sjo¨gren, Rep. Prog. Phys.55, 241 ~1992!.
42W. Götze, J. Phys.: Condens. Matter11~10a!, A1 ~1999!.
43G. Hinze, D. D. Brace, S. D. Gottke, and M. D. Fayer, J. Chem. Ph

113~9!, 3723~2000!.


