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Brownian dynamics simulation results of the time-dependent survival probability (Sp(t)) of a
donor–acceptor pair embedded at the two ends of a Rouse chain are compared with two different
theories, one of which is the well-known Wilemski–Fixman~WF! theory. The reaction studied is
fluorescence energy transfer via the Fo¨rster mechanism, which has aR26 distance~R! dependence
of the reaction rate. It has been reported earlier@G. Srinivas, A. Yethiraj, and B. Bagchi, J. Chem.
Phys. 114, 9170 ~2001!# that while the WF theory is satisfactory for small reaction rates, the
agreement was found to become progressively poorer as the rate is increased. In this work, we have
generalized the WF theory. We suggest an approximate, reduced propagator technique for
three-dimensional treatment~instead of 3N dimensions, whereN is the number of monomers in the
polymer chain!. This equation is solved by combining a Green’s function solution with a discretized
sink method. The results obtained by this new scheme are in better agreement with the simulation
results.
ai
s
e

su

on

A
e
d

ap
an

n-
th

es
e

cule

tion
rs.
ce
ra-

gy
ue
rs
na-
e-

q.
f

I. INTRODUCTION

Reactions between any two sites of a polymer ch
have been a subject of great interest.1–8 Often these reaction
occur via the distance dependent rate, such as fluoresc
resonance energy transfer~FRET! by the long distance Fo¨r-
ster mechanism,1,9–14electron transfer reactions,15,16etc. The
mechanism of long distance FRET is Coulombic and is u
ally discussed in terms of Fo¨rster theory1,2 which gives the
following distance dependent rate of energy transfer,

kf~R!5kradS RF

R D 6

, ~1!

whereRF is the Förster radius, defined as the D-A separati
corresponding to 50% energy transfer.krad is the radiative
rate, which is typically of the order of 108 to 109 cm21 for
the commonly used chromophores in FRET experiments.
cording to the above equationkrad can be understood as th
rate of energy transfer when the separation between the
nor and the acceptor is equal to Fo¨rster radius~i.e., R/RF

51!. The Förster radius is usually obtained from the overl
of the donor fluorescence with the acceptor absorption
several other available parameters.9,10

The dynamics of Fo¨rster energy migration has been i
vestigated traditionally via time domain measurements of
decay of the fluorescence~due to excitation transfer! from
the donor.1,10As bothkrad andRF are determined by the D-A
pair, the rate of decay of the fluorescence intensity provid
direct probe of the conformational dynamics of the polym

a!Electronic mail: bbagchi@sscu.iisc.ernet.in
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Recently, this technique has been used in single mole
spectroscopy17 of biopolymers11–14and proteins,11 where the
distance dependence of FRET provides relevant informa
about the conformation and dynamics of single biopolyme
At any given time after the initial excitation, the fluorescen
intensity is a measure of the ‘‘unreacted’’ donor concent
tion, that is, of the survival probability,Sp(t).

The complexity of describing the dynamics of ener
transfer of polymers in solution arises from the fact that, d
to chain connectivity, the Brownian motion of the monome
on the polymer are strongly correlated. The many-body
ture of polymer dynamics can be described by a joint, tim
dependent probability distributionP(rN,t) whererN denotes
the position of all theN polymer beads, at timet. The time
dependence of the probability distributionP(rN,t) can be
described by the following reaction-diffusion equation,4,5

]

]t
P~rN,t !5LB~rN!P~rN,t !2k~R!P~rN,t !, ~2!

whereLB is the full 3N dimensional diffusion operator,

LB~rN!P~rN,t !5D(
j 51

N
]

]r j
Peq~rN!

]

]r j

1

Peq~rN!
P~rN,t !

~3!

the subscript ‘‘eq’’ denotes equilibrium,R is the scalar dis-
tance between the two ends of the polymer chain, andD is
the diffusion coefficient of a monomer The solution of E
~2!, with the sink term@last term on the right-hand side o
Eq. ~2!# given by the Fo¨rster expression1,2 for k(R) is highly
nontrivial.
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In two seminal papers, Wilemski and Fixman~WF!4,5

presented a nearly analytic solution of the problem for a
arbitrary sink. Pastor, Zwanzig, and Szabo3,18 tested the WF
theory only for the average rate, by computer simulatio
when the sink is a Heaviside function. They found that
WF theory is efficient for the sinks with smaller radii. I
spite of its importance, the WF theory has never been stu
for a distance dependence rate, such as Fo¨rster energy trans
fer. Such a study is clearly important because the end-to-
probability distribution in polymer, peaks at a distance wh
scales asN2n. n51/2 for the Rouse chain and 3/5 for th
self-avoiding walk~SAW!.19

Recently, we have carried out a Brownian dynam
simulation study of the dynamics of energy transfer in Ro
chain.8 The polymer molecule was modeled as an id
Gaussian chain withN monomer units with segment~or
Kuhn! lengthb. The donor and acceptor sites were assum
to be located at opposite ends of the polymer chain. T
resonance energy transfer rate,k(R) was assumed to b
given by,

k~R!5
krad

11~R/RF!6 . ~4!

Note that the above-mentioned form is different from t
commonly used form of the Fo¨rster rate,kf(R) given by Eq.
~1!. The (RF /R)6 distance dependence is not appropri
here, since it diverges atR→0, which is allowed in Rouse
chain,20,21 but not in a real polymer, where the end-to-e
distance~R! never approaches zero, due to the excluded v
ume forces. Thus, the modified form@Eq. ~4!# used is rea-
sonable. The reason that we use Rouse chain is that this
can be treated easily in theory. For example, the theory
Wilemski and Fixman4,5,22 can be readily applied to th
Rouse chain, because the necessary Green’s function is a
able in analytic form.

It was reported in Ref. 8 that the Wilemski–Fixma
theory, unfortunately, does not provide a satisfactory desc
tion for the following situations:~a! When the ratekrad is
much larger than the rate of monomer diffusion, given
b2/D; ~b! whenRF is close to the separation where the pro
ability of finding the chain ends is maximum. The abo
limitations of the WF theory were somewhat surprising a
motivated the present work.

The main objectives of this paper are the following:~1!
to present further Brownian dynamics~BD! simulations of
Eq. ~2!, with k(R) given by the Fo¨rster rate@Eq. ~4!#; ~2! to
present an alternative theoretical approach to treat the
namics of FRET in polymers.

The new theoretical approach employs a reduced, th
dimensional equation-of-motion. The solution of the thre
dimensional equation-of-motion employs a novel reduct
of the equation-of-motion to one-dimension and sub
quently uses a discretized sink model to obtain the surv
probability. Henceforth, this method will be referred to as t
three-dimensional reduced Green’s function method~RGF!.

It is found that the agreement of the results obtain
from the new scheme with the simulations is superior to t
of Wilemski–Fixman. However, the agreement is still n
y
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perfect in several limiting cases. The reason for this has b
discussed.

Simulation details and the description of the Wilemsk
Fixman theory remain same as that in our previous stu8

The organization of the rest of the paper is as follows. In
next section, we introduce the RGF method. The implem
tation of this method through the discretized sink method
also presented in the same section. In Sec. III, the sim
tions results are compared with the theoretical predictio
Conclusions are presented in Sec. IV.

II. THEORY

A. An approximate equation for the reduced
Green’s function

The formal solution of Eq.~2! is

P~rN,t !5E dr0
NG~rN,tur0

N,0!P~r0
N,0!. ~5!

P(r0
N,0) denotes the initial distribution and G(rN,tur0

N,0) is
the Green’s function for the problem. This is exact, but n
very usable as it involves all therN. One would like to have
an equation involving only the relevant coordinate,R. We
derive such an equation in the following. The derivation
volves two steps. First, we derive an approximate equa
involving only the end-to-end vectorR. Then, using the fact
that the sink function depends only on the magnitude ofR,
this is reduced exactly to a one-dimensional diffusion pro
lem.

As we are interested only in the dynamics ofR, we refer
to the remaining coordinates of the chain as the irrelev
coordinates and denote them byS. Instead of using the vari-
ablesrN, one can use~R, S!. We now writeG(rN,tur0

N,0), in
terms of ~R, S!, as G(R,S,tuR0 ,S0,0). The differential Eq.
~2!, is equivalent to the exact integral equation:

G~R,S,tuR0 ,S0!

5G0~R,S,tuR0 ,S0,0!2E
0

t

dt1E dR1E dS1

3G0~R,S,tuR1 ,S1 ,t1!k~R1!G~R1 ,S1 ,t1uR0 ,S0,0!.

~6!

G0(R,S,tuR0 ,S0,0) would be the Green’s function if the
sink is not present. We now introduce the conditional pro
ability distribution Peq(SuR)5Peq(R,S)/Peq(R), where we
define the reduced equilibrium probability distribution f
R by Peq(R)5*dSPeq(R,S). Multiplying Eq. ~6! by
Peq(S0uR0)dS0dS, and integrating over all initial and fina
positions of the irrelevant coordinatesS0 andS, we get

G~R,tuR0,0!

5G0~R,tuR0,0!2E dSE
0

t

dt1E dR1E dS1

3G0~R,S,tuR1 ,S1 ,t1!k~R1!E dS0

3G~R1 ,S1 ,t1uR0 ,S0,0!Peq~S0uR0!. ~7!
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In the Eq.~7!, we have defined the reduced Green’s funct
for the R coordinate by

G~R,tuR0,0!5E dSE dS0G~R,S,tuR0 ,S0,0!

3Peq~S0uR0!,

with a similar definition for G0(R,tuR0,0). Equation~7! can-
not be solved. So we introduce the approximation

E dS0G~R1 ,S1 ,t1uR0 ,S0,0!Peq~S0uR0!

.Peq~S1uR1!E dS18E dS0G~R1 ,S18 ,t1uR0 ,S0,0!

3Peq~S0uR0!. ~8!

With this, Eq.~7! becomes

G~R,tuR0,0!5G0~R,tuR0,0!2E
0

t

dt1E dR1

3G0~R,tuR1 ,t1!k~R1!G~R1 ,t1uR0,0!. ~9!

The approximation of Eq.~8! has the property that it is
exact in the limitst1→0 or `. The physical meaning of the
approximation is that if, from the equilibrium ensemble, o
selects only those that have an end-to-end vector equal tR0

and evolves them in time in presence of the sink, then
resultant probability for finding the system atR1 , S1 may be
approximated by the product of two terms. They are~i! the
exact probability that the end to vector has a new valueR1 ,
and ~ii ! the conditional probability for finding the irrelevan
coordinates atS1 given that the end-to-end vector has t
value R1 , calculated at equilibrium. This approximatio
would follow if one assumed that the irrelevant variab
adjust to the instantaneous value ofR. One expects that ap
proximation is reasonable for longer times, but would sh
deviations for shorter.

B. Reduction to a one-dimensional equation

The main idea used in the subsequent steps is tha
Förster reaction rate depends only on the distanceR between
the donor and the acceptor. Thus, the above th
dimensional Eq.~9! can be reduced to a one-dimension
equation. This further reduction, however, requires some
gebraic manipulations described below.

In Laplace frequency plane Eq.~9! takes the form,

G~R,zuR0!5G0~R,zuR0!2E dR8G0~R,zuR8!

3k~R8!G~R8,zuR0!. ~10!

By multiplying the above equation bydVR and integrating
over all the orientations ofR we get,

G~R,zuR0!5G1 ,~R,zuR0!2E
0

`

~R8!2dR8G~R,zuR8!

3k~R8!G~R8,zuR0!, ~11!

where we have defined two auxiliary functions:
n
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G0~R,zuR0!5E dVRG0~R,zuR0! ~12!

and

G~R,zuR0!5E dVRG~R,zuR0!. ~13!

Our interest is in the survival probability,

Sp~ t !5E dRE dR0G~R,tuR0!Peq~R0!, ~14!

using the fact thatPeq(R0) depends only onR0 , we can
write this as,

Sp~ t !54pE
0

`

R2dRE
0

`

R0
2dR0G~R,tuR0!Peq~R0!. ~15!

Now it is convenient to define,

P̂~R,z!5E
0

`

R0
2dR0G~R,zuR0!Peq~R0!. ~16!

Then,P̂(R,z) obeys the equation

P̂~R,z!5
1

z
Peq~R!2E

0

`

~R8!2dR8G~R,zuR8!

3k~R8!P̂~R8,z!. ~17!

Equation~17! is now solved by employing a discretized sin
method, developed earlier.23–26

C. Discretized sink method

In this method, the continuous sink curve is discretiz
into M number of intervals. Thus, in discretized sink notati
the sink function@defined by Eq.~4!# can be written as

k~R!5krad(
s

d~R2Rs!S RF
6

Rs
61RF

6D . ~18!

Note that the summation is over all the sink points (s),
where the populations are given byP(Rs ,z). Equation~17!
can be discretized as

P̂~R,z!5
1

z
Peq~R,z!2(

s
Rs

2G0~R,zuRs!

3k~Rs!P̂~Rs ,z!. ~19!

By finding P(Rs ,z) using this, a set of linear equation
are generated. These can be written in matrix form as,

B•P5P0, ~20!

where the elements of matricesB, P, andP0 are given by,

Bmn5dmn1knRn
2G0~Rm ,zuRn!, ~21!

Pm5P~Rm ,z!, ~22!

and

P0m5P0~Rm ,z!, ~23!

andkn5k(Rn).
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Now note that G(R,tuR0), after averaging over the
angles and using the Green’s function definition~given in
Appendix A!, can be written in the following form

G0~R,tuR0!5
1

LRR0r~ t !
A 6

p~12r~ t !2!

3sinhS 3RR0r~ t !

L2~12r~ t !2! D
3e23~R21R0

2r~ t !2!/2L2~12r~ t !2!. ~24!

By taking the Laplace transform ofG0(R,tuR0) and substi-
tuting in Eq.~19!, we obtainP̂(R,z). The resultingP̂(R,z)
can be used in the following equation to obtain the survi
probability in z-plane.

Sp~z!5
1

z F12(
s

k~Rs!Rs
2P̂~Rs ,z!G . ~25!

Finally, the time-dependent survival probability can be o
tained through the Laplace inversion,

Sp~ t !5L21~Sp~z!!. ~26!

III. NUMERICAL RESULTS

The discretized sink method can be conveniently use
solve Eq.~2! for a wide range ofkrad and RF values. The
method is fairly simple to implement and is not numerica
intensive. In this section we present the results obtained
using RGF and compare with WF theory prediction, as w
as with the BD simulation results.

In the reduced three-dimensional description the mu
diffusion becomes time-dependent. This can be expresse
terms of the end-to-end vector correlations function as
lows,

D~ t !52
L2

3 S ]

]t
ln r~ t ! D . ~27!

FIG. 1. The time-dependent diffusion of end-to-end separation obtaine
using ther(t) from Brownian dynamics simulations~dashed line! and the
theory~full line; obtained by using the analyticalr(t)! is plotted as a func-
tion of reduced time forN550.
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Although D(t) has not been directly used in the prese
study, it provides a useful measure of the end-to-end di
sion. In Fig. 1, we show the time dependence of the end
end diffusion as a function of reduced time forN550. It
decays monotonically with time from its initial value. Th
full line corresponds to the theoretical result@obtained by
using analyticalr(t); see Appendix B#. The dashed line is
obtained by using simulatedr(t). As shown in the figure, the
initial value, which correspond to the sum of the bare diff
sion of the two ends (2D0), decreases with time and satu
rates to a finite nonzero value in the long time limit~see
Appendix B!. Asymptotically, Dsim(t) and D theory(t) ap-
proach somewhat different values in thet→` limit. This
may be due to the finite size effects.

Figures 2 and 3 show the comparison between the
vival probability obtained from the Brownian dynamics~BD!
simulations and the theoretical prediction@Eq. ~25!#, for
krad51. In both the figures, BD simulation results are sho
by symbol, while the theoretical results are shown by lin
The RGF and WF theory predictions are shown by full a
dashed line, respectively. In Fig. 2 the survival probabil
for RF51 is plotted against the reduced time. The repres
tation of Fig. 3 is the same as that of Fig. 2, except that t
figure is plotted for alarger RF value, namelyRF55.

by

FIG. 2. Results ofSp(t) are plotted against the reduced time forRF51 and
krad51 for N550. The results obtained by simulation are shown with sy
bol, while the theoretical predictions are shown by line. The redu
Green’s function method~RGF! ~full line! results are in better agreemen
with simulation result over the prediction of the WF theory~dashed line!.
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Note that similar to the WF theory, the RGF results agre
well with that of the simulation at smallerRF values. How-
ever, the agreement with WF becomes progressively poor
with increasingRF . On the other hand, the RGF results are
in better agreement with that of the simulations, even at larg
RF values~shown in Fig. 3!, where WF theory completely
breaks down in the long times.

In Fig. 4 the survival probability for a larger radiative
rate (krad510) is plotted atRF51. The RGF results~shown
by full line! are again in better agreement with the simulation
results ~shown by symbols! than the WF theory~dashed
line!. However, the agreement with the present RGF metho
is not perfect.

The precise reason for the failure of our RGF is not clea
at present. However, it is important to note that the reduce
three-dimensional equation used in this study is an approx
mation. This is probably the main source of error in our
treatment.

IV. CONCLUSIONS

In view of the limitation of WF theory at large rates8 we
have generalized the WF theory by reducing the 3N dimen-
sional problem to three-dimensions. The resulting reduce
Green’s function equation is solved by using the discretize
sink method to obtain theSp(t). Although the deficiency still

FIG. 3. Similar to Fig. 2 but forRF55. Though the agreement becomes
poorer asRF is increased, RGF results~full line! are in better agreement
with the simulation result~symbols! compared to WF theory prediction
~dashed line!.
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remains in few cases, the results obtained from the ne
scheme are in better agreement with that of the simulatio
when compared to WF theory results. Note that the dis
cretized sink method gives the same results as that of W
theory in the case of a delta function sink.

The techniques employed in this work could be em
ployed in other related fields. The distance dependent ra
appears in several other chemical processes, where the r
of transfer is known to show an exponential distance depe
dence. One such example is the electron-transfer reactions
is of interest to use the method employed here to that pro
lem as well. Finally, the simulations results obtained her
should be analyzed by using the variational theory of Por
man and Wolynes.22 Work in these directions is under
progress.
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FIG. 4. Comparison ofSp(t) at a largerkrad value namelykrad510 at RF

51 for N550. Symbols represent the simulation result while the full and
dashed lines correspond to the prediction of RGF and WF methods, resp
tively.
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APPENDIX A: THE REDUCED GREEN’S FUNCTION
G0„R,t zR0,0…

In the Rouse model, one has the modesXpa , ~p
51,2,... anda5x,y,z! which are the normal modes of th
chain. We do not includep50, which is the center-of-mas
motion of the chain. These modes have the propagator@see
Doi and Edwards, Eqs.~4.18! to ~4.22!#

G0~Xpa ,tuXpa
0 ,0!5F2pkBT

kp
~12exp~22tlp!!G21/2

3expF2
kp~Xpa2Xpa

0 exp~2tlp!!2

2kBT~12exp~22tlp!!
G

@see Eq.~3.90! of Doi and Edwards~We deviate slightly
from their notation.!#.

lp5
3p2kBT

zN2b2 p253DS p

NbD 2

p2,

and

kp5
6p2kBT

Nb2 p2.

The full propagator is a product over all thep modes. NowR
may be expressed in terms of the vectorsXp as

R524( 8p Xp .

The prime in(p8 indicates that we need to sum over only t
odd values of p. We now evaluate the function
G0(R,tuR0,0). By definition,

G0~R,tuR0,0!

5E dSE dS0G0~R,S,tuR0 ,S0,0!Peq~S0uR0!

5E dSE dS0G0~R,S,tuR0,S0,0!Peq~R0 ,S0!/Peq~R0!.

~A1!

Now consider the numerator of the above equation. It is:

I 5E dSE dS0G0~R,S,tuR0 ,S0,0!Peq~R0 ,S0!.

This may be written in terms of the normal modes as

I ~R,R0!5)a ) 8pE dXpadS Ra14( 8p XpaD
3E dXpa

0 dS R0a14( 8p Xpa
0 D

3G0~Xpa ,tuXpa
0 ,0!Peq~Xpa

0 !.

It is easy to evaluate using the integral representation
the Dirac delta function and theG0(Xpa ,tuXpa

0 ,0) given pre-
viously. Then, one gets
of

I ~R,R0!5)
a

~1/2p!2E duaE dva exp@ iuaRa

1 ivaR0a#) 8p E dXpaE dXpa
0 G0~Xpa ,tuXpa

0 ,0!

3G0~Xpa ,`u0,0!exp@ iuaXpa1 ivaXpa
0 #.

On performing the integration overXpa and Xpa
0 , and

then overua andva , we get

I ~R,R0!5
e2~R21R0

2
22R•R0r~ t !!/4k~12r~ t !2!

~4pkA12r~ t !2!3
, ~A2!

where

k58kBT( 8p 1/kp5Nb2/65L2/6,

r~ t !5
(p8 exp~2lpt !/kp

(p81/kp
5

8

p2 ( 8p exp~2lpt !/p2.

Now the equilibrium distributionPeq(R0) may be obtained
from the above-mentioned, by integrating overR. Thus,

Peq~R0!5E dRI ~R,R0!5
e2~R0

2
!/4k

~2Apk!3
. ~A3!

Using Eqs.~A2! and ~A3! in Eq. ~A1! gives

G0~R,tuR0,0!5S 3

2pL2~12r~ t !2! D
3/2

3exp2
3~R2R0r~ t !!2

2L2~12r~ t !2!
, ~A4!

which is the expression used in the paper.

APPENDIX B: LIMITS FOR THE TIME DEPENDENT
DIFFUSION, D„t …

By substitutingr(t) in Eq. ~27! we get,

D~ t !5
4D0

N (
l ;odd

exp~2l l t !. ~B1!

From the above-mentioned expression we can obtain b
short-time and long-time limits forD(t) as follows. At t
50, since the summation in the previous equation can
replaced byN/2, we get

D~ t50!52D0 . ~B2!

On the other hand, int→` limit, since only the first term in
the summation survives, we can write,

lim
t→`

D~ t !5
2L2

3
~2l1t ! ~B3!

by substitutingl1 value, we get,

lim
t→`

D~ t !5
p2D0

2N
. ~B4!
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