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Brownian dynamics simulation results of the time-dependent survival probab8jft)) of a
donor—acceptor pair embedded at the two ends of a Rouse chain are compared with two different
theories, one of which is the well-known Wilemski—Fixm@h'F) theory. The reaction studied is
fluorescence energy transfer via thaster mechanism, which hasRa  distance(R) dependence

of the reaction rate. It has been reported eafl&r Srinivas, A. Yethiraj, and B. Bagchi, J. Chem.
Phys. 114, 9170 (200))] that while the WF theory is satisfactory for small reaction rates, the
agreement was found to become progressively poorer as the rate is increased. In this work, we have
generalized the WF theory. We suggest an approximate, reduced propagator technique for
three-dimensional treatmeihstead of NN dimensions, wherdl is the number of monomers in the
polymer chain. This equation is solved by combining a Green’s function solution with a discretized
sink method. The results obtained by this new scheme are in better agreement with the simulation
results.

I. INTRODUCTION Recently, this technique has been used in single molecule
_ _ _spectroscopy of biopolymers~1*and proteing! where the
Reactions between any two sites of a polymer chairyisiance dependence of FRET provides relevant information
have been a subject of great intereStOften these reactions 4ot the conformation and dynamics of single biopolymers.
occur via the distance dependent rate, such as fluorescengey given time after the initial excitation, the fluorescence
resonanche e,”%%ylﬁrﬁnszED b¥ the long Ifé‘j‘gance_r'flo intensity is a measure of the “unreacted” donor concentra-
ster mechanisrir;~“electron transfer reactiont3; etc. The tion that is, of the survival probabilit(t).

mechanism of long distan(.:.e FRET is Cgulombic and is usu-  The complexity of describing the dynamics of energy
ally discussed in terms of fster theory® which gives the  yansfer of polymers in solution arises from the fact that, due
following distance dependent rate of energy transfer, to chain connectivity, the Brownian motion of the monomers
F\© on the polymer are strongly correlated. The many-body na-
kf(R):krad< E) : (1) ture of polymer dynamics can be described by a joint, time-
dependent probability distributioR(r™,t) whererN denotes
whereR¢ is the Faster radius, defined as the D-A separationthe position of all theN polymer beads, at time The time
corresponding to 50% energy transfky,q is the radiative  dependence of the probability distributid®(rN,t) can be
rate, which is typically of the order of #@o 1 cm™* for  described by the following reaction-diffusion equatfoh,
the commonly used chromophores in FRET experiments. Ac-
cording to the above equatidq,4 can be understood as the
rate of energy transfer when the separation between the do-
nor and the acceptor is equal torBr radius(i.e., R/Rg
=1). The Faoster radius is usually obtained from the overlap

%P(rN,t)=£B(rN)P(rN,t)—k(R)P(rN,t), )

where Lg is the full 3N dimensional diffusion operator,

of the donor fluorescence with the acceptor absorption and N
. J J 1
several other available parameter$. Lo(MP(ND=D S — P r™) — —P(rV 1)
The dynamics of Fster energy migration has been in- j=10r Irj Pedr™)
vestigated traditionally via time domain measurements of the ()

decay of t?oe fluorescendelue to excitation transfefrom 6 gybscript “eq” denotes equilibriunR is the scalar dis-
the donor:*?As bothksg andR are determined by the D-A 3¢ between the two ends of the polymer chain, Brid
pair, the rate of decay of the fluorescence intensity provides g, diffusion coefficient of a monomer The solution of Eq.
direct probe of the conformational dynamics of the polymer.(z), with the sink term[last term on the right-hand side of
Eq. (2)] given by the Fester expressiort for k(R) is highly
3Electronic mail: bbagchi@sscu.iisc.ernet.in nontrivial.




In two seminal papers, Wilemski and Fixm&wF)*°  perfect in several limiting cases. The reason for this has been

presented a nearly analytic solution of the problem for anydiscussed.
arbitrary sink. Pastor, Zwanzig, and Szabbtested the WF Simulation details and the description of the Wilemski—
theory only for the average rate, by computer simulationsFixman theory remain same as that in our previous study.
when the sink is a Heaviside function. They found that theThe organization of the rest of the paper is as follows. In the
WEF theory is efficient for the sinks with smaller radii. In next section, we introduce the RGF method. The implemen-
spite of its importance, the WF theory has never been studiethition of this method through the discretized sink method is
for a distance dependence rate, such astEpbenergy trans- also presented in the same section. In Sec. Ill, the simula-
fer. Such a study is clearly important because the end-to-entibns results are compared with the theoretical predictions.
probability distribution in polymer, peaks at a distance whichConclusions are presented in Sec. IV.
scales afN?”. »=1/2 for the Rouse chain and 3/5 for the
self-avoiding walk(SAW).°
Recently, we have carried out a Brownian dynamics| THEORY
simulation study of the dynamics of energy transfer in Rouse ) ,
chain® The polymer molecule was modeled as an ideaf™ AN @pproximate equation for the reduced
Gaussian chain wittN monomer units with segmer(or Green's function
Kuhn) lengthb. The donor and acceptor sites were assumed The formal solution of Eq(2) is
to be located at opposite ends of the polymer chain. The
resonance energy transfer ratgR) was assumed to be P(r’\‘,t):f erG(rN,t|r(’§,0)P(r'3,0). (5)
given by,
P(ry.,0) denotes the initial distribution and €{t|r},0) is
rad the Green'’s function for the problem. This is exact, but not
k(R)= 1+ (RIR)® (4 very usable as it involves all thd'. One would like to have

an equation involving only the relevant coordinake, We
derive such an equation in the following. The derivation in-

Note that the above-mentioned form is different from the ’ . . .
commonly used form of the Fster ratek(R) given by Eq. volves two steps. First, we derive an approximate equation
involving only the end-to-end vectd®. Then, using the fact

(1). The Re/R)® distance dependence is not appropriate X ; )
here, since it diverges &— 0, which is allowed in Rouse that the sink function depends only on the magnitud&pf

chain®2 but not in a real polymer, where the end-to-endth's is reduced exactly to a one-dimensional diffusion prob-

distance(R) never approaches zero, due to the excluded vollem' ) _ _
ume forces. Thus, the modified forfiq. (4)] used is rea- As we are interested only in the dynamicsRyfwe refer

sonable. The reason that we use Rouse chain is that this caSeth€ remaining coordinates of the chain as the irrelevant
can be treated easily in theory. For example, the theory O<Foordlﬂates and denote them ByInstead of u'?mgNthe vart-
Wilemski and Fixmah®?2 can be readily applied to the aPIEST™, one can useR, S). We now writeG(r t[rg,0), in

Rouse chain, because the necessary Green's function is avaf™s of (R, S), as G(R,S,t|Ro,%,0). The differential Eq.
able in analytic form. (2), is equivalent to the exact integral equation:

It was reported in Ref. 8 that the Wilemski—Fixman G(R,S,t|Ry,S,)
theory, unfortunately, does not provide a satisfactory descrip-
tion for the following situationsia) When fthe _ratd(ra_d is —Gy(R.St|Ry.Sy.0)— ftdtlf def os,
much larger than the rate of monomer diffusion, given by 0
b2/D; (b) whenRg is close to the separation where the prob- G(R SR K(RIG(R R 0
ability of finding the chain ends is maximum. The above X Go(RStRy, Sy, t1)k(R)G(Ry, Sy, t1|Ro,S0,0).
limitations of the WF theory were somewhat surprising and (6)

motivated the present work. - _ Go(R,S/t|Ry,S,0) would be the Green's function if the
The main objectives of this paper are the followiti@ll = gjny js not present. We now introduce the conditional prob-
to presen.t further Brownlan dypamuﬁD) simulations of ability distribution Peq(s| R)=PcfR,S)/PcfR), where we
Eq. (2), with k(R) given by the 'F(ster rateEq. (4)]; (2) to define the reduced equilibrium probability distribution for
present an alternative theoretical approach to treat the d¥? by PeqR)=/[dSP.{R,S). Multiplying Eq. (6) by
e e ] . .

namics of FRET in polymers. Peg(SolRo)dS,dS, and integrating over all initial and final
The new theoretical approach employs a reduced, thre%-

_ _ . ) ) ositions of the irrelevant coordinat&s andS, we get
dimensional equation-of-motion. The solution of the three-
dimensional equation-of-motion employs a novel reductionG(R,t|R,0)
of the equation-of-motion to one-dimension and subse- .
quently uses a discretized sink model to obtain the survival =G0(R.I|Ro-0)—f dsf dtlf def ds,
probability. Henceforth, this method will be referred to as the 0
three-dimensional reduced Green’s function mettRGF).

It is found that the agreement of the results obtained XGO(R,S,t|R1,Sl,t1)k(R1)j sy

from the new scheme with the simulations is superior to that
of Wilemski—Fixman. However, the agreement is still not ><G(Rl,S_L,t1|R0,SO,O)Peq(SO|RO). (7)



In the Eq.(7), we have defined the reduced Green’s function
for the R coordinate by Go(R,Z| Ro)ZJ dQrGo(R,z|Ro) (12)
G(R,t|R0,0):f dsf dS4G(R, S t|Ry,S,0) and
X Ped SolRo). G(R,2|Ro)= f d0RG(R,ZRy). (13)

with a similar definition for G(R,t|R,,0). Equation(7) can-  Qur interest is in the survival probability,
not be solved. So we introduce the approximation

Sp(t):f de dRoG(R,t|Rp)Pef Ro), (14
| dsi6(R, 51 IR0 S0P SIR0)

using the fact thaP.(R,) depends only orR,, we can
write this as,

ZPeq(S_LlRl)deiJ dSG(R;, S 11| R0, S,0) ) 3
Sp(t)=477f0 deRL R2ARyG(R,t|Rg)Ped Ro).  (15)

X Pe( SolRo)- 8
With this, Eq.(7) becomes Now it is convenient to define,
t oo
G(R,tlRo,0)=Go(R,t|Ro,0)—fodtlf dR, fD(R,z)zf R3dRoG(R,z|Rg) Peq Ro)- (16)
0

XGo(R,t|R1,t1)k(R1)G(Ry1,t1|R0,0). (9 Then,P(R,z) obeys the equation

The approximation of Eq(8) has the property that it is R 1 i
exact in the limitst;—0 or «. The physical meaning of the P(R,z)= EPeq(R)—f (R"H2dR'G(R,z|R")
approximation is that if, from the equilibrium ensemble, one 0
selects only those that_havg an end-to-end vect(_)r eqiRy to xk(R)P(R',z). (17)
and evolves them in time in presence of the sink, then the . . _ . _ _
resultant probability for finding the systemR{, S; may be ~ Equation(17) is now solved ztéy employing a discretized sink
approximated by the product of two terms. They @jethe ~ Method, developed earli&t
exact probability that the end to vector has a new vétye
and (ii) the conditional probability for finding the irrelevant
coordinates at; given that the_ gnd—to-epd vector .has_thecl Discretized sink method
value Ry, calculated at equilibrium. This approximation ) . ) o )
would follow if one assumed that the irrelevant variables !N this method, the continuous sink curve is discretized
adjust to the instantaneous valueRfOne expects that ap- N0 M number of intervals. Thus, in discretized sink notation
proximation is reasonable for longer times, but would showthe sink function/defined by Eq(4)] can be written as
deviations for shorter. 6

K(R)=Kraa>, 8(R—Rg) : (18)

__F

RS+ RS

B. Reduction to a one-dimensional equation Note that the summation is over all the sink point, (
The main idea used in the subsequent steps is that thhere the populations are given B(R,z). Equation(17)

Forster reaction rate depends only on the distéRtetween —can be discretized as

the donor and the acceptor. Thus, the above three- 1

dimensional Eq.(9) can be reduced to a one-dimensional P(R,z)=; eq(R,z)—E Rggo(R,z| R)

equation. This further reduction, however, requires some al- S

gebraic manipulations described below. X k( Rs)f’(Rs,Z)- (19)

In Laplace frequency plane E) takes the form,
By finding P(Rs,2) using this, a set of linear equations

G(R,z|Ry)=Gy(R,Z| RO)_I dR’'Gy(R,Z|R") are generated. These can be written in matrix form as,
B-P=P,, (20)
Xk(R")G(R’,z|Ry). (10 . :
where the elements of matric8s P, andP, are given by,
By multiplying the above equation bg€2z and integrating 5
over all the orientations dR we get, Bmn= dmn+ KnRiGo(Rm 2| Ry), (21
P ) Pn=P(Rn,2), (22
G(R,Z|Rp)=G1,(R,ZIRy)— | (R)*dR'G(R,z|R")
0 and
Xk(R"G(R',z|Ry), (11 Pom=Po(Rm,2), (23

where we have defined two auxiliary functions: andk,=k(Ry).
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FIG. 1. The time-dependent diffusion of end-to-end separation obtained b 0.4 \\
using thep(t) from Brownian dynamics simulationglashed lingand the \
theory (full line; obtained by using the analyticalt)) is plotted as a func- | N
tion of reduced time foN=50. *\
\
\\
0.2

Now note thatG(R,t|R,), after averaging over the \\\
angles and using the Green’s function definiti@given in 1 "~
Appendix A), can be written in the following form S

1 6 0.0 T I I I T I
R,t|Ry) =
Go(RtIR0)= 1 rp ) N o (1= o (07 0 150 300 450 600
o] 3RRp(D) Uz
sin |_2(]__ p(t)z) FIG. 2. Results o5,(t) are plotted against the reduced time Ry=1 and

kiag=1 for N=50. The results obtained by simulation are shown with sym-
bol, while the theoretical predictions are shown by line. The reduced
Green’s function methodRGF) (full line) results are in better agreement
with simulation result over the prediction of the WF thed¢dashed ling

x @~ 3(R*+Re%p()2)/2L2(1=p(H)?) (24)

By taking the Laplace transform &f,(R,t|R;y) and substi-
tuting in Eq.(19), we obtainP(R,z). The resultingP(R,z)

can be used in the following equation to obtain the SurVivaIAlthough D(t) has not been directly used in the present
probability in z-plane. study, it provides a useful measure of the end-to-end diffu-
sion. In Fig. 1, we show the time dependence of the end-to-
end diffusion as a function of reduced time fi=50. It
decays monotonically with time from its initial value. The
Finally, the time-dependent survival probability can be ob-full line corresponds to the theoretical res[itbtained by
tained through the Laplace inversion, using analyticalp(t); see Appendix B The dashed line is

S.(0)=£"Y%S,(2)) obtained by using simulateg(t). As shown in the figure, the

P PA= initial value, which correspond to the sum of the bare diffu-

sion of the two ends (R,), decreases with time and satu-
lil. NUMERICAL RESULTS rates to a finite nonzero value in the long time linsee

. . 1 h

The discretized sink method can be conveniently used thPPendix B. Asymptotically, DS"(t) and DT™t) ap-
solve Eq.(2) for a wide range ok, and R values. The proach somewhat o_llf_ferer_n values in theso limit. This
method is fairly simple to implement and is not numerically My be due to the finite size effects.
intensive. In this section we present the results obtained by ~Figures 2 and 3 show the comparison between the sur-
using RGF and compare with WF theory prediction, as wellVival probability obtained from the Brownian dynami@D)
as with the BD simulation results. simulations and the theoretical predictigq. (25)], for

In the reduced three-dimensional description the mutuarad=1- In both the figures, BD simulation results are shown

diffusion becomes time-dependent. This can be expressed By symbol, while the theoretical results are shown by line.
terms of the end-to-end vector correlations function as fol-The RGF and WF theory predictions are shown by full and
lows, dashed line, respectively. In Fig. 2 the survival probability

1 A
Si(2)=5|1- 2 k(RYREP(R,2)|. (29

(26)

L2 d
D(t)=—?(a|np(t)).

(27)

for Re=1 is plotted against the reduced time. The represen-
tation of Fig. 3 is the same as that of Fig. 2, except that this
figure is plotted for darger R value, namelyR.=5.
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FIG. 3. Similar to Fig. 2 but foRz=5. Though the agreement becomes
poorer asRg is increased, RGF resultéull line) are in better agreement
with the simulation resul{symbol$ compared to WF theory prediction
(dashed ling

FIG. 4. Comparison o5y(t) at a largerk,,q value namelyk =10 atRg
=1 for N=50. Symbols represent the simulation result while the full and
dashed lines correspond to the prediction of RGF and WF methods, respec
tively.
Note that similar to the WF theory, the RGF results agree
well with that of the simulation at smalldg values. How-

ever, the agreement with WF becomes progressively poor

erfmains in few cases, the results obtained from the new
o . cheme are in better agreement with that of the simulations
yv|th increasingRg. On the other han_d, the_RGF results are, hen compared to WF theory results. Note that the dis-
in better agreement with that of the simulations, even at larg

R values(shown in Fig. 3, where WF theory completely

breaks down in the long times.

Gretized sink method gives the same results as that of WF
In Fig. 4 the survival probability for a larger radiative

theory in the case of a delta function sink.
The techniques employed in this work could be em-

. ployed in other related fields. The distance dependent rate
rate (k“?‘d: 10) is plgttgd aRe=1. The RGF .resultsés_hown. appears in several other chemical processes, where the rate
by full line) are again in better agreement with the simulation
results (shown by symbolsthan the WF theory(dashed
line). However, the agreement with the present RGF metho

is not perfect.

of transfer is known to show an exponential distance depen-
élse

nce. One such example is the electron-transfer reactions. It
at present. However, it is important to note that the reduce

of interest to use the method employed here to that prob-
The precise reason for the failure of our RGF is not clear, hould be analyzed by using the variational theory of Port-
three-dimensional equation used in this study is an approxi-

lem as well. Finally, the simulations results obtained here
mation. This is probably the main source of error in our
treatment.

an and Wolyne& Work in these directions is under
progress.
IV. CONCLUSIONS
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APPENDIX A: THE REDUCED GREEN’S FUNCTION
Go(R, t]Ry,0) I(RRy)=]] (1/277)2J duaf dv,exdiu,R,
In the Rouse model, one has the modss,, (p
=1,2,... anda=x,y,z) which are the normal modes of the +ivaR0a]].—.[[; J dxpaJ dxgaGO(xpa,qxpa,
chain. We do not includ@ =0, which is the center-of-mass
motion of the chain. These modes have the propadat X Go(Xpa 0,00 eXH iU Xpa+iv, XO -

Doi and Edwards, Eqg4.18 to (4.22]
On performing the integration oveX,, and Xpa, and

27kgT then overu, andv,, we get

—-1/2
Go(xpa,t|xpa, ={ (1—exp(—2t>\p))}

p e—(R2+R§—2R.Rop(t))/4k(1—p(t)2)

Ko(Xpa— Xp, €XP(—thp))? I(R,Ry)= —
Xexr{_ 2kgT(1—exp(—2t\p)) (47ky1=p(1)%)

(A2)

where
[see EQ.(3.90 of Doi and Edwards(We deviate slightly

from their notation)]. K=8ke TS 1k Nb2I6=L%/6
p +Kp '

3m2kgT |2
Np=— 77 p?=3D| —| p?

{N°b Nb > p EXp(—A t)/k E Y
o PO= =S = e XA/

672k T Now the equilibrium distributiorP.{R,) may be obtained

p:i‘_szpZ_ from the above-mentioned, by integrating owrThus,
. RG)/4k

The full propagator is a product over all thanodes. NowR R _J dRI(R,R,) = A3
may be expressed in terms of the vect¥tsas Ped Ro) (RRo)= (2 \/ﬁ)?" (A3)

Using Eqgs.(A2) and (A3) in Eq. (Al) gives
3 3/2
2wL2<1—p(t>2>)

R=—4>,X,.

The prime inE,’J indicates that we need to sum over only the
odd values of p. We now evaluate the function
o 3(R—Rop(1))?
Go(R,t|Rp,0). By definition, X exXp— Ad
P 2l(1-p?) (A9

which is the expression used in the paper.

_ APPENDIX B: LIMITS FOR THE TIME DEPENDENT
f dsf dSeGo(R.StIR0,50,0)Ped Sol Ro) DIFFUSION, D(t)

By substitutingp(t) in Eq. (27) we get,

GO(R1t| R01O) =

GO(R1t|R010)

_ f ds j dS0Go(R,S.|Ro,S0,0) Ped Ro.So)/Peg Ro).-
4D
(A1) D(t 02,1 exp(— M\ t). (B1)

Now consider the numerator of the above equation. Itis: From the above-mentioned expression we can obtain both
short-time and long-time limits foD(t) as follows. Att

|=f de dSyG0(R,S,t|Rg,S,0)Ped Ro, o) =0, since the summation in the previous equation can be
replaced byN/2, we get

This may be written in terms of the normal modes as

D(t=0)=2D,. (B2)
_ / / On the other hand, it— limit, since only the first term in
|(RRo)=11a pr dxp‘“&( Rat42p Xp") the summation survives, we can write,
X | dX° 8| Ry, +4>,0 XO , -L?
pa Oa P pa lim D(t)= T(—)\lt) (B3)
t—o
0
X Go(Xpa ’t|xpa‘0)Peq(XP“) by substituting\ ; value, we get,
It is easy to evaluate using the integral representation of 2p
the Dirac delta function and th8(X,, ,t|Xpa,O) given pre- lim D(t)= 70 (B4)

viously. Then, one gets toros 2N
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