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Photoelasticity in polycrystalline aggregates
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Abstract. A theory for the photoelasticc behaviour of transparent polycrystalline
aggregates consisting of randomly oriented anisotropic crystallites has been developed.
Such an aggregate is isotropic but it becomes birefringent under the influence of a uni-
axial load. The photoelastic constants of the aggregate are given by the components
of the spatial average of the photoelastic tensor of the single crystal, and are worked
out by assuming either the strain to be continuous (Voigt approximation) or the stress
to be continuous (Reuss approximation). The components of the average photoelastic
tensor are very different for these two limits. The elastic and the photoelastic constants
of alkali halide aggregates have been evaluated for both the stress continuity and the
strain continuity conditions. The maximum variation of the elastic constants in going
from the Voigt to the Reuss condition is 50 per cent while the photoelastic birefringence
can vary by as much as 300 per cent in alkali halides. In the case of KI and rubidium
halides even the sign of the photoelastic birefringence is different for the two limits.

Keywords. Polycrystals; photoelasticity; elastic constants; alkali halides; photoelastic
birefringence.

1. Introduction

The elastic behaviour of polycrystalline metals and minerals is of some interest to the
materials scientist, and it would be very much dependent on the question of stress or
strain continuity across the grains. As early as 1889, Voigt calculated the elastic
constants of polycrystalline media assuming strain continuity with the stress disconti-
nuous. Reuss (1929) on the other hand computed the elastic constants of the aggre-
gate assuming stress to be continuous. In both these procedures crystallites are
assumed to be randomly oriented (i.e., with no preferred orientation) and data on single
crystals are used to compute those of the polycrystals (see also Bhagavantam 1951).

The most general theory of the mechanical behaviour of polycrystals is due to Bishop
and Hill (1951).

Experimentally one finds that
Ey > E >Eg ; Ky 2K >Kpand Gy > G > Ggr

where E, K and G are the Young’s, the bulk and the shear moduli. The subscripts
V and R refer to the Voigt and the Reuss conditions while the unsubscripted quan-
tities refer to the experimental values. Hill (1952) explained the above relationship
as due to the fact that in the Voigt model the forces between the grains would not be.
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in equilibrium, while in the Reuss model the distorted grains would not fit together.
He also suggested that the arithmetic mean between the Voigt and the Reuss values
would give a fairly reasonable approximation to the experimental value. Chung
(1967) has shown that a similar approach also gives a reasonable approximation to the
pressure derivatives of the elastic constants of the aggregate.

Many attempts have been made to improve the Voigt and the Reuss bounds to ob-
tain the elastic constants of the aggregate. Hashin and Shtrikman (1962) employed
the variational principle to narrow the bounds while Kroner (1967) used the concept
of elastic polarizability. Recently Hearman (1969) reviewed this subject with spe-
cial reference to attempts made to improve the Voigt and Reuss limits.

One finds that in metals the Voigt values do not differ very much from the Reuss
values (Hearman 1969) making it difficult to establish whether strain or stress is conti-
nuous in an aggregate that is mechanically deformed. Since the stress optical con-
stants of the aggregate can be measured when the crystallites are transparent it
appeared to us that this may be yet another approach to this problem. One has of course
to work out both the elastic and the photoclastic tensors under the Voigt and the Reuss
limits, One gets the interesting result that the photoelastic constants are very much
more sensitive to stress or strain continuity than the elastic constants are.

2. Optical transmission in a stressed aggregate

A polycrystalline aggregate consists of randomly oriented optically anisotropic crystal-
lites. Consider a plane wavefront of linearly polarized light of intensity I, falling
on such a medium. If the aggregate has a homogeneous packing of crystallites each
of the same average size 7, then light entering each of the crystallites would have on
the average the same intensity. In a unit area of the front face of the plate there
will be N2(N1=7) crystallites and light entering each has the same intensity /N2
One such ray has to travel through a stack of N crystallites before emerging from a
unit thickness of the medium.

When the incident light enters the first crystallite, it splits into two linear vibrations
which travel with different velocities, and the emergent light will be elliptic. The
ellipticity and the azimuth of the ellipse depend on the linear phase retardation in-
troduced by the crystallite and the azimuth of its principal planes of vibration. As
the light beam passes through the stack, the polarization state continuously changes.
The emergent light from the polycrystal, therefore, consists of N2 light beams polarized
in different states; they are also incoherent as they travel through optically uncorrelated
paths. Part of the incident intensity would be lost in intercrystalline boundary reflec-
tions.

The problem of light transmission through a polycrystalline aggregate has been con-
sidered by Raman and Viswanathan (1955) and more recently by us (Ranganath and
Ramaseshan 1972) and the following arc some of the results. When completely
polarized light enters a randomly oriented polycrystal, the emergent light is par-
tially polarized. The completely polarized part of thec emergent light is in the same
state of polarization as the incident light and has an intensity less than that of the
incident light. The attenuation coefficient is directly proportional to the crystallite
size and the mean square birefringence of the crystallite and is inversely proportional
to the square of the wavelength. If the particles of the medium are, however, em-
bedded in a matrix of different refractive index, then part of the incident light would
be scattered away from the direct central beam in the form of diffracted light.
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If a polycrystal consists of randomly oriented optically isotropic particles, it would
be optically isotropic. When this aggregate is stressed by a uniaxial load each of the
constituent crystallites becomes optically anisotropic. As the stress induced bire-
fringence is small (An=0-001 to 0-0001), we can justifiably neglect intensity loss due
to intercrystalline reflections. If the particles are made from an isotropic amorphous
material like glass, then each of the stressed particle will become optically uniaxial
with the axis of symmetry coinciding with the stress direction. Therefore the poly-
crystal as a whole will behave as an optically uniaxial crystal with the axis of symmetry
along the stress direction. The photoelastic birefringence (phase retardation for
unit thickness per unit stress or strain) introduced in the medium would be exactly
same as that found in a single particle. It is important to point out that in an ag-
gregate consisting of such optically as well as elastically isotropic particles the Voigt
and the Reuss modulii coincide.

On the other hand, one finds an entirely different behaviour when particles are
produced from a cubic crystal. Such particles though optically isotropic, are elasti-
cally anisotropic. A crystal belonging to the cubic symmetry becomes optically
uniaxial with the optic axis coinciding with the stress direction only when the uniaxial
stress or strain acts along the cube diagonal (111). In the case of crystals belonging
to the O, Oy and T, classes the same behaviour is also found when the uniaxial stress
acts along the cube edge (100). In the case of crystals belonging to T and T, classes
however for a uniaxial stress along the cube edge, the crystal becomes optically biaxial
with one of the principal axes coinciding with the stress direction (Bhagavantam 1966).
However, when the stress acts along a general direction, we find the principal axes of
the index ellipsoid tilted with respect to stress axis.

From these considerations we find that for a general direction of stress or strain,
none of the principal axes coincide with the stress direction (Bhagavantam 1966).
As the crystallites are randomly oriented in the polycrystal, we find the principal
axes of the various crystallites to be symmetrically oriented with respect to the stress
direction. Therefore, for a light beam travelling through the medium, normal to the
stress direction, the principal vibration planes in the different crystallites would be
symmetrically situated with respect to the stress direction. In fact they will be in a
range of angles between 6, and — 8, where 6, is the maximum photoelastic elastic
tilt with the stress direction.

In the case of crystals of lower symmetry, although the problem is more compli-
cated, the principal axes of the different crystallites would be symmetrically oriented
with respect to the stress direction.

The problem of light transmission in a stressed aggregate can be solved by the Poin-
caré sphere method or the Mueller matrix method (details are given by Rama-
chandran and Ramaseshan 1961). We present here the solution that makes use of the
latter approach.

A light beam of intensity I, ellipticity wg (=tan™ ! b/a) and azimuth A, is analytically
represented by the four component Stokes vector

I
IY; My=1I, cos 2wy cos 27,4
GO = C 0 CO =Io COS 20)0 sin 2A0
So So =1 sin 2w,
0

where I; is the intensity of the completely polarized part. Also I ,>/(m2+C’+Sa)a
depending upon whether the light beam is partially polarized (inequali(w)ty siogn) Oor
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completely polarized (equality sign). When the light beam passes through an optical
system O changes to 0’, the two being related by the equation

¢’ = [m] o, (1)
where [m] is the 4 x4 Mueller matrix. For an optically anisotropic crystal having a
phase retardation 8 with one of its principal planes at an azimuth 6, one has

[Mm]=SMS™? (2)
where S i1s the inverse of S and '
1 0 0 0 1 0 0 0
S — 0 cos 20 —sin 260 0 and M — 0 1 0 0
0 sin 268 cos 260 0 N 0 cos & —sin &
0 0 0 1 0 0 sin & cos &

Therefore, the light beam emerging from the ijth row of crystallites is described by the

Stokes vector
N
Th= H1 [m;j;]o (3)

where 0=0,/N? and [m;j] is the Mueller matrix of the #jkth crystallite which has the
same form as (2). As the AN? emergent beams are incoherent, light emerging from

the polycrystal is given by the vector sum of the ¢;’s (Ramachandran and Rama-
seshan 1961)

N L X N
T =2 i i’szl I [yl 0 = [m)o, (4)
N
1 N
[m] = > 0 (o] (5)

is the Mueller matrix for the polycrystal. This relationship is exact; however, in the
case of weakly birefringent crystallites it can be further simplified. If the phase re-
tardation Szjk of the ¢jkth crystallite is very small, then

[my] ~ E + (Qi)

N

l.e., Z [Q jix]

[m] = E + 22— (6)
where E is the 4 X4 unit matrix, and

0 0 0 0 B
0 —%S;k sin? 20, —%8;-,: sin 260,51 cos 20,5 8;jk sin 205z
Qe =19 $8; sin 20,7 cos 205 — 38, cos® 20 — 85z cos 20,
0 —Ojjf, sin 205 Sijk cos 28z — %8:-’%

As the second term in (6) is the spatial average of [Q;;;] between angles 8, and —46,
we find to a first order in 8;

1

[m] =~

) O = O

0 0
0 0
1 —N§ 7

o o

-
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where 8 is the spatial average 8. Therefore the polycrystal is linearly birefringent
with a phase retardation ¢ given by

— 2w - 2 _
p =N = N*X (Anijp) ik = 5 (Angp) as N7 = 1.
In other words the photoelastic birefringence of the medium is the average of the stress
induced birefringences of the various crystallites. If we take higher order terms in §,
we still get the same result, but the light will be slightly depolarized.

To know the magnitude of photoelastic birefringence, we must know the orientation
of the crystal with respect to the direction of stress or strain and the direction of light
propagation. In the present problem the crystallites are randomly oriented with
respect to the external stress or strain. Therefore we transform in each crystal, the
photoelastic tensor (which refers to the crystallographic axes) to the external coordi-
nate system, namely, that of stress or strain, and then work out the birefringence
induced. This procedure is applied to each one of the crystallites and then the bire-
fringence is averaged. It is clear that this is equivalent to averaging the photoelastic
tensor itself.

3. The average photoelastic tensor

The elastic and the photoelastic properties of a single crystal are described by the

following set of equations.
G = Chkl 31:1} Elastic behaviour Aay = pijk ekl} Photoelastic behaviour
€ij = Sijkl Okl Aaj; = ik oy
Here (o) and (¢) are the stress and strain tensors; (s) and (¢) are the elastic tensors,
and (p) and (g) the photoelastic tensors. (Aa) is the change in the index tensor (a)
(Bhagavantam 1966).

For the Voigt condition ¢ is assumed to be same for all crystallites and one has to
average c;;, to get the average stress. (pijk1) gives the average birefringence in this
case. On the other hand for the Reuss condition oy, is assumed to be the same for all
crystallites so that the average strain and birefringence are obtained from the averages
of (sijxr) and (gyjrs)-

In the present work we are justified in assuming that the rotational effects on photo-
elasticity considered by Nelson and Lax (1970) do not arise.

Let the external coordinate system (i.e., of stress or strain) be Ox’y’'z’. Let the
local coordinate system of the crystallite with respect to which we know the tensors
(¢ijra)> (Szjk!): (bijkr) and (g;;2)) be Oxyz. We transform the tensor from the local co-
ordinate system (which varies from crystallite to crystallite) to the outside coordinate
system and then find the average. If (Az'j/c) be the tensor, then its average is given by

_ (s + (Aijkl)z + .o+ (A;jkz)N
k= N

1
I R N 2 2 2 9 N N NN
N [(aipajqakrals) + (aipajqakrals) +. e (Cl,zpajgakra[:)] qurs

where N=number of crystallites.
Hence 4y = @0 Op A p Apgrs
where we have used the transformation law for the tensor 4

A

l:]'kl’ i.C.,

I

_.nmn.n_n_n
5kl = Lip %Ok %5 Apgrs

Vo
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where (ag-) are the components of the matrix that transforms the Oxyz coordinate
system to Ox'y’2’ in the nth crystallite. ,
We can use a single index ‘2’ in place of two indices “ pg°, (Nye 1955) and abbreviate
Apyrs by 4. The forms of ¢5==,, were first obtained by Voigt (1889).
613 = 3(34+2B+4C); 6y = F(A+4B—2C); ¢4y = 5(611—C10) (8)
the last equation shows that the aggregate is elastically isotropic. In the above
equations

4= 3(511'1' Cort6a3) s B = g(crateagtem); €= Fleqq+0ss+ceo)
The forms of s S = M’S were obtained by Reuss (1929). They are given by

Su= 334128 +C); spp= HA'+4B'—3C"); Sgy== 20 —5p5)  (9)
Here

A" = F(sp1+5a9t533)5 B' = F(s12F5+5m)5 G = (a0 55566)
Equations (8) and (9) hold for any crystal symmetry. In a single crystal we know

that

cjj= (s;)7t
However, for a polycrystal we find that

(¢55) # (s35)7"
Hence the elastic constants as obtained from Voigt and Reuss models are different.
If (Ez-j)‘l_ ij? then ¢ i and Ez:j correspond elastic constants of the aggregate for strain
and stress continuity in the polycrystal.

Though, the tensor transformation laws are the same for elasticity and photoelasti-
city there are two important differences.

(1) The elastic tensors are symmetric, i.e., ¢;;=¢j; and s;;=s;; while the photoelastic
tensors are not symmetric, i.e., py;é pj, and qijséqji. However, crystal symmetry
may result in p;==p; and ¢;=g;;.

(2) The transformations from the two index symbol to the one index symbol are

different for the elastic and the photoelastic tensors (Nye 1955).
In elasticity ¢, =¢;; for ?.11 ¢ and j
Spars = Sij for ¢, j:=1, 20r3
2pgrs = Sij for‘ ?=1,20r3
4qu,s = s;; fori, j=4, 5 or 6.
and in photoelasticity
bpgrs =pj; for all ¢t and j
_ p 1=1,2,3,4,50r6
Bgs =% 0 1j=1,20r3
o 1=1,2,3,4,50r6
v Jj=4, 5 or 6.
'}I‘Iherefore we find that (ﬁy) and (E,j) have the same form, excepting that p; # py.
ence

Q.bpqrs =q

1 =3 (BRH28+4T); pyy = 1 (R+48—2T); pgg = % (p11—p12) (10)
Here R =} (p1y+beatpus)

S =g (praFhar+Dos+Paat+bs+b13)

T =% (pratDss+Des)-
On the other hand (g;;) are different from those of (5j).
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In this case we get

én =% (3RI+QS'+2T')5 4?12 = % (R’+4S'——T'); Q34 = (?11“‘312 (11)
Here

R" = % (q11+q22+ds33)

8" = § (g12+ 921+ 723132+ 951+ 13)

T’ = g (gaa+ 55+ e6) ‘
In equations (10) and (11) the last relation shows that the medium is photoelasti-

cally isotropic. These equations hold for a crystal belonging to any symmetry class.
For a single crystal we have

(£3) = (@im) (65yj) 20d (g3) = (Pim) (Smy)-
For a polycrystal, however, we have

(l‘:’zj) 7 (éim) (6m)

(95) # (Dim) Cmj)
We know that (g;) and (&)[=(5;;)™"] correspond to stress continuity in the medium
while (#if) and (5]) [=(¢;)™"] correspond to strain continuity in the medium. _’Her}‘c’e
Jim ©mj = Bij are the strain optical constants for stress continuity and piy Smj=gij
are the stress optical constants for strain continuity.

4. Results

We shall apply the results of the previous sections to calculate the elastic and photo-
elastic constant of randomly oriented polycrystalline aggregate of alkali halides from
-the experimental values for single crystals. As these are cubic crystals, the equations
get further simplified, since

bij = Piis =455 ci=¢s  Si=i
Daa = Pss = Pes> Gaa = G55 = Jess Caa = C55 = Cg6
P11 = Pog = P335 q11 == q23 = 9335 C11 = C23 = C33
and  $y4 = S5 = Sgg5 S11 = Sp2 = a3
Anderson (1965) has worked out the mean of the Voigt and Reuss elastic constants

[i.e., cﬁ__{;c_‘l and 3.-U_—{2___f_‘~_’] for different substances including alkali halide aggre-
2

gates. However, he has not given the explicit values. Using the elastic constants of
alkali halide crystals reported recently (1969) these have been calculated. We require
explicit values of ¢;; (or si5) and ¢’y; (or s';j) to work out the photoelastic constants of
the aggregate for Voigt and Reuss conditions. The values of 2‘,3-, Egj, Eij and }ij are
given in table 1 along with the single crystal values. It is seen that

1
— >..L; = 1_, > 1__ a.nd—_;—>}—
S, Su S 1t 2538 s11+H2s5, Sag Saa
or Ey > Egr; Ky > Kr and Gy > Gp (12)

Lithium halide aggregates seem to behave very differently from those of other alkali
halides, as is seen in table 2.

In table 3 values of g, [J;., g;; and E; are given along with the single crystal value.
We find

.511 = 5'112§ 1‘712 < .;5'1 and 1544 > 1544 (13)
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Table 2. Comparison of single crystal elastic constants with those of polycrystals

Lithium halides
Other alkali halides

S < Sp

S > S

S > Sio

T < i

o -~ -t
54 = %05y + 5i5)

g < Su

Saa > Sy

Table 3. Photoelastic constants

bij» g;j — Single crystal values; p;; in units of 10-2; ¢;; in units of 10723 cm? dyne—?
;ﬁ, ;:J — Polycrystal values for strain continuity
}«;j’ ;:J — Polycrystal values for stress continuity
Crystal bn 20 bu G11 T2 Qas
fu b1 Pas (;11 ‘l-m qM
’, _’ - - - q'
11 12 f 44 1 70 4
LiF 4-514 17-008 —5-387 —0-400 1-120 —0-830
5-202 16-664 —5-731 —0-077 0-958 —1-035
5-073 16-729 —5-328 —0:124  0-982 —1-106
NaF 7-138 19-036 —2-464 0-050 1-440 —0-850
9-926 17-642 —3-858 0-231 1-349 —~1-118
10-339 17-435 —3-548 0-266 1-332 —1-066
NaCl 13-076 19-115 —1-118 1270  2-580 —0-840
14.597 18-:354 —1-879 1415  2-507 —1-092
14-906 18-119 —1-647 1458  2-486 —1-028
XCi 22-464 16-147 —2-700 4750  2-870 —4-320
17-777 18-490 —0-357 3-270 3-610 —0:341
16:205 19-276 —1-536 2270  4-110 —1-840
KBr 22-570 16-461 —2-049 4620 2-930 —3-940
18-487 18-502 —0-007 3489  3-496 —0-007
16-861 19-316 —1.228 2:368  4-056 —1-688
KI 22-864 17-524 —0-979 6:180  4-490 —2-660
19-945 18-983 0-481 5429  4-865 —0-564
18-652 19-629 —0-488 4-440  5-360 —0-920
Rb(Cl 34132 19-357 —3-875 7-040  2-990 —7-860
25-122 23-862 0-630 4750  4-135 0-614
21-408 25-719 —2-155 2:276  5-372 —3-096
RbBr 31-430 16:519 -3.509 7400  3-000 —8-580
22-658 20-905 0-877 5-100  4-150 0-950
18-837 22-815 —1-989 2208  5-596 —3-388
RbI 33221 21:137 —2:313 9230  4-990 —7-920
26-537 24-479 1-029 7324  5-943 1-381
23-420 26-037 —1-309 4-366 7-422 —3-056
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This result does not follow from equation (12) which has been theoretically established
by Hill (1952). It would therefore be interesting to find a theoretical basis for this

relation.

Experimentally, the quantity (p;;—p1a) or (¢33~ q19) [1-€.; Paa/2 OF §y4 as the medium
is isotropic] can be easily obtained rather than the individual components. To de-
termine the sensitivity of the elastic and the photoelastic constants to stress or straix
continuity, we define a parameter f given by

o

f=2lAy=A) (A4 4)] (14)
where 4;; and 4;; are the fjth components of elastic or photoelastic matrix for strain
and stress continuity. For the elastic constant [¢,,] the maximum value of fis 0°5.
However for the photoelastic constant [$,,] the highest value of fis 3:0. Therefore
we conclude that the photoelastic birefringence is very much more sensitive to stress or
strain continuity than the elastic constants are.
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