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Abstract. We have considered chiral-achiral phase transitions that can occur
in some liquid

crystals. This study deals with such transformations induced by external electric and magnetic
fields. We discuss phase changes mediated by disclinations, single solitons, soliton lattices and

those occurring without any defect. Some unusual aspects ofthese transitions such as reentrance,

occurrence of tricritical points and Lifshitz points have been highlighted.

1. Introduction

Phase transitions induced in liquid crystals by external electric and magnetic fields iii is an im-

portant area of work since they have many unusual aspects associated with them. In this paper

we study field induced chiral-achiral phase transitions occurring in some liquid crystal systems.
Here the term chirality refers to a structural twist occurring on a macroscopic scale. This is a

manifestation of the intrinsic chirality of either the constituent molecules or the dopents. Struc-

tural transformations from a twisted configuration to an untwisted configuration or vice-versa

have been studied. They can occur with or without the mediation of topological defects. In

the defect mediated processes we have considered transitions triggered by disclinations, single
solitons and soliton lattices. We have paid attention to the cholesteric-nematic, ferrocholesteric

(FCh)-ferronematic (FN), and chiral-achiral transitions in ferrosmectics (FS) systems. We find

many interesting features in these phase transformations leading to rich phase diagrams with

tricritical points, Lifshitz points and the phenomena of reentrance.

2. Transitions with the Magnetic Field along the Axis of Symmetry

2.I. FERROCHOLESTERICS. A ferrocholesteric (FCh) is obtained from a usual choiesteric

by doping it with magnetic grains so that the local magnetization M is along the local director

n I-e-, M spirals uniformly about the twist axis with a pitch P. When unwound such a system
would become a ferronematic (FN). Such systems have been realized in the laboratory [2],
with a very good mechanical coupling between M and n. The transition of an FCh to an

FN in the presence of a magnetic field applied perpendicular to the twist axis is already well

investigated [3,4]. Here we consider the FCh-FN transition in a field applied parallel to the

twist axis of an FCh.
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2.I.1. Ferrocllolesteric to Fen.onematic Transition. The unperturbed state of the FCh is

described by n =
(cos lo, sin do, 0) with lo

"
2xz IF. The applied field is in the z direction.

It results in an out of plane distortion in the director
n

described by n~ =
sin 9 cos #, n~ =

sine sin # and nz =
cos9. The free energy density is given by

Here 9= = 39/3z and #~ = 3#/3z, ~a is the
diamagnetic anisotropy,

elastic
in he one

pproximation. of the otal energy

9z= =
sin

9 os9[(#~)~
- + ii

sin~
#zz =

-2
sin

- qo))
(3)

where f =
xaH~/K,

g = MH/K,
#~z =

<
"

<o
" qoz 14)

11IH
(5)~~~ ~

KQ( iaH~

It is clear from equations (4) and (5) that in the presence of the external magnetic field the

pitch of the structure is unaltered and that 9 is uniform throughout. When 0 < 9 < x/2 we

get a tilted FCh. Since 9
=

0 in an FN we find that the transition from
an FCh to an FN

occurs ~vhen MH
=

Kq( xaH~. The angle 9 continuously decreases from x/2
as H increases

from zero.

2.1.2. Ferronematic to Ferrocllolesteric Transition. In this section we study the transition

from an FN to an FCh. We consider an FN obtained from an FCh by the application of a

magnetic field along its twist axis. In the nematic state the director lies along the z direction.

As we lower the field 9 and # distortions set in described by n~ =
sin 9cos#, ny =

sin 9 sin #
and n= = cos 9. Below a particular value of H given by the solution of

x~H~ + MH I(q(
=

0 (6)

a tilt 9, in the director n, away from the field H develops. In view of the degeneracy in 9 with

respect to the field direction. we set up the equations of equilibrium in cylindrical polars jr,

a. z). This leads to

#
= qo z ~ ~To, ~T

=
integer (7)

and the 9 distortion obeys the differential equation

9rr + 9r
=

"° ~ ~" ~
+ if q() sin 9 cos 9 + g sin 9 (8)

r r

Equations (7) and (8) permit a non-singular topological defect in n. At the centre of this

defect 9 is zero and far away from it 9 is given by (5). This solution is very similar to the

N-flower solution considered in reference [5] for a ~a < 0 FN. In the present problem a similar

topological defect arises though M is parallel to H and xa > 0. Here the director at r =
~oc

is at a constant angle So with respect to the field and at the centre of the defect the director

is along the field direction. Through the formation of such topological defects
~&~e can enter

the tilted FCh state. Given enough time, the unlike defects will attract and annihilate one
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Fig. I. The transition from an FCh to an FN when xa > 0. Q
"

q( in units of10~~ cm~~.

qo =
2x/P with P as

the pitch of the FCh and H is the magnetic field. M
=

0.0001 Gauss and

xa "

10~~
cgs units.

another leading to an uniformly tilted FCh. Hence in this system one possible structural

transformation, which is permitted by the equations of equilibrium, is that the achiral to chiral

transition can be defect mediated while the chiral to achiral can take place without defects.

It must be pointed out that in the case of FN
-

FCh transition, we can also have uniform

9 solution without the formation of defects provided there is a predisposition of the director

to tilt in a particular direction due to sample boundaries.

2.1.3. Phase Diagrams. In FCh, for xa > 0, on a gradual increase of the magnetic field,
9 decreases monotonically and at a critical field H~, FCh goes over to the FN state. The

phase diagram for this transition is sho~&~n in Figure I. Here we have presented the phase
diagram in the H, Q(" Q() space since it is possible to have cholesteric systems where qo can

be varied continuously. This is possible both in compensated cholesterics [6] and in some pure

systems [7]. We find a totally different phase diagram when xa < 0. This is shown in Figure
2. We see that depending on the value of q( we get a reentrance of FCh on increase of the

external field. Foi~ q( above a critical value the transition from FCh to FN does not take place

at all. This phase diagram can be easily understood fi.om the fact that there are two opposing

torques on the director, one due to the xa term which tilts the director towards the cholesteric
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Fig. 2. The transition from
an

FCh to an FN when xa < 0. M
=

0.0001 Gauss and xa =

-10~~

cgs units.

planes and the other due to the M term which tilts it towards the twist axis. The net torque
decides the state of the systenl. In view of the discussions presented in Section 2.1.2 we expect

the FN to FCh transition to be nlediated by N-flower defects.

2.2. FERROSMECTICS. Ferrosnlectics (FS)
are snlectic systenls which have been doped with

nlagnetic grains. Such systems have already been made in lyotropic liquid crystals [8,9]. We

consider here an FS with the magnetic grains aligned such that the local nlagnetization M is

parallel to the local director
n. We further make the system chiral by doping it with chiral

molecules. It is possible for such a system to have a low tenlperature chiral snlectic C* like

phase (FSC* and a high tenlperature achiral phase of snlectic C (FSC) or smectic A (FSA)
type. In our analysis of this system we take the electric polarization in the chiral phase to be

negligible. We have considered the chiral-achiral transitions near the FSC(FSA)-FSC* Point.
Here the tilt 9 of n with respect to the layer normal can be assumed to be small.

2.2.I. Ferrosmectic C" to Ferrosmectic A Transition. We first discuss the transition from

FSC* to FSA The smectic layers of FSC* are in the z g plane with the director at an angle So

with the layer normal. In the absence of the field the director configuration is no * (So cos #o,

So sin #o, I) with #o
"

2xz IF, P being the pitch of the helical structure. In the presence of
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a magnetic field H along z we find nx re 9cos#, ny m 9 sin # and nz m I. The free energy

density is,

F
= )92 + (e4 +

( jjve)2 + e2(1] 2qoiz)j + jxaH~9~ ~
~ )~ (9)

The parameters a and fl are the Landau coefficients, x~ is the diamagnetic anisotropy which

is assunled to be positive, K is the elastic constant for # distortions in the one constant

approx1nlation and qo "
2x IF. We consider the positive or the negative sign according as H

is parallel or anti-parallel to Mz, the conlponent of M along to the twist axis.

In the FSC* phase a is negative equal to -ao. As in the case of ferrocholesterics here also

in the chiral phase a unifornl twist with a constant tilt are pernlitted solutions given by

#
=

lo
= Qoz (10)

9
=

~°° ~ ~Q() (xaH2 ~ MH)

fl

(11)

Transition from FSC* to FSA occurs when

(ao + Kq() (x~H~ ~ MH)
=

0 (12)

This transition occurs by a continuous change in 9. In principle the critical fields for the

transition are different for H parallel to Mz and anti-parallel to Mz cases. However with H

anti-parallel to Mz and for x~ < 0 we do not get a transition to the FSA state.

2.2.2. Ferrosmectic A to Ferrosmectic C* Transition. Consider an FSA in a magnetic field

parallel to the layer normal. In the absence of the field we have no "
lo, 0, 1). In this

geometry if the magnetization M is anti-parallel to H, we expect a tilt 9 in the director n with

a # degeneracy in the plane of the smectic layers. The director components are n =
(9 cos #,

9 sin #, I). Since the phase is assunled to lack a mirror symnletry due to the presence of chiral

nlolecules, this tilted director n also precesses about the layer nornlal. In other words a tilt 9

results in an az1nluth # which is a function of z, y and z. The free energy density for a Xa > o

material is given by

F
=

~9~
+

~9~
+

~
((179)~ + 9~(#( 2qo4z + II( + #())] + xaH~9~

~~~
(13)

In the present case o > 0, as we are in the FSA phase. Minimization of total energy leads to

the following coupled equations.

i7~9
=

9[a + (#z)~ 2qo4z + (#( + #() + f g] + b9~ (14)

9~i7~#
=

-29[i7H (Vi qoi)] (15)

where a =
o/K, b

=
fl/K and I is a unit vector along

z.
Equations (14) and (15) permit the

following solutions in cylindrical polars:

#
= qoz ~ No, N

=
integer
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And 9 is assumed to be a function of
r only. It obeys the differential equation

err + 9r
=

911a +
)

)~ + f) lq( + g)1 + b9~ l16)

The solution in # describes a disclination of strength N with its associated # pattern rotating

as we go along the
z axis. Equation (16) is the familiar Ginsburg-Piteamskii equation. The

tilt angle 9 goes from zero at the centre of the disclination to a constant value So at a large
distance front the centre [10]. Such field induced disclinations start interacting soon after

creation. Given enough t1nle unlike disclinations will annihilate one another resulting finally
in an unifornlly twisted FSC* phase with a tilt angle So This So is given by

It is lear 17),
that only

for certain values of H we get a to the SC* Ii-e-,

So i6 0) . It is to be oted hat, in the
case

of Xa > 0, for H parallel

to
the

FSC*
takes

place.
And

for xa < 0, both with H
parallel

and
anti-parallel

to Mz

that a transition
to FSC* is possible

at a critical field H~. the critical
two cases are

ifferent.
Thus we

see
that the above analysis permits a isclination

transition from FSA to and a defect free ransition from FSC* to FSA.

2.2.3. henomenon
of entrance. - In

the presence of the field,
both

in FSA and FSC*, we

get the henomena of reentrance. Figures
3 and 4 depict this. It should be noted that in

the cases the transition
from

the chiral to the achiral phase is

transition from the to the chiral phase is lways
through disclinations.

2.2.4.
ricritical Point. - By higher order terms in

the
magnetic field ontribu-

tion to the free energy, we can that at a certain field the coefficient

change sign. Beyond
this

field, the FSA - FSC* phase boundary becomes
first order.

herefore

we can expect a tricritical
oint

on this
phase

undary. Hence this phase change at igh fields

can become first bove a certain value of H hile at low fields it is

2.2.5.
Grain Migration. - It is well known [3,4] that in a agnetic field acting

perpendicular

to the twist axis of an FCh the agnetic grains igrate out of ighly
distorted regions

regions of low
distortion.

The
same phenomenon

can be
expected in

SC*
also in the

same

geometry.
We ave seen hat in both FCh and FSC* in a

nlagnetic field
parallel

to the
twist

axis the # and 9
istortions

are uniform all over. Hence in this
geometry

we find FCh

or FSC" to FSA
ransition

to take place without grain
migration. Even when we go from

to FCh or FSA to FSC" hough on-uniform
distortions result due to the creation of

these get
ironed out quickly due to the ttraction between unlike efects. Therefore even here,

2.3. CHOLESTERIC-NEMATIC TRANSITION. In this section we discuss the cholesteric (Ch)-
nematic (N) transition. This transition, in a magnetic field perpendicular to the twist axis,

takes place through the creation of a x soliton lattice [11,12]. The soliton lattice goes over to

a nematic state at a critical field H~
=

(x~ IF) fi. Here we consider Ch-N transformation

in a magnetic field applied parallel to the twist axis. In this configuration the phase change

can be effected through the creation of a single soliton. We consider only the case of ya

positive materials since for a ~a negative cholesteric. in this geometry, the field stabilizes the

undistorted structure.
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Ferrosmectic C*
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Fig. 3. The phase diagram for the achiral FSA phase. Here
a =

I, fl
=

0.I, xa "
0.I x

10~~ and

Mz and H
are

anti-parallel to one
another. M is in units of 10~ Gauss.

2.3.1. Declliralising Soliton in a Cllolesteric. The undistorted structure in the absence of the

field is given by no =
(cos #o, sin #o, 0) with #o

"
2xz IF. In a field parallel to the twist axis

the director
n

will develop an out of plane distortion given by n~ =
sin 9 cos #, ny =

sin 9 sin #
and nz = cos 9. The free energy density for this deformation in the one constant approximation

is given by

~ ~~~~~~ ~ ~~~~ ~~~ ~~~ ~~°~~ ~ ~~~ ~~~~

This leads to the following equations of equilibrium

v29
=

sin 9 CDs
9jjiz)2 2qo#z + fl l19)

(sin 9)~i7~#
=

-2 sine cos 9[179 (#z qo
)I] (20)

These two coupled equations permit the following solutions in # and 9

#
" qoc (21)
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Fig. 4. The phase diagram for the chiral FSC* phase. Here no "
0.02, xa =

-0.I x
10~~, ~

=
0.I

and Me and H parallel to one another. M is in units of 10~ Gauss.

where ila =
I /(q( f). Equation (22) describes a planar soliton of width 2il~ with 9(-oc)

=

x/2 and 9(+oc)
=

3~r/2. Within this width the director goes out of the cholesteric plane and

at the centre of the soliton the director is along the twist axis. The structure of this soliton is

depicted in Figure 5. We call this a'Pinch Soliton' since the cholesteric lattice is pinched so to

say in a narro~&> region of space. The width 2il~ of the pinch soliton, grows as the field increases

and it diverges at a critical field given by H~
=

(2x/P)fi. Hence we find a transition

from the cholesteric state to the nematic state with the director n everywhere along the twist

axis of the parent cholesteric. It is important to mention here that the energy required to

create such a pinch soliton gradually decreases and goes to zero as H increases to H~. Unlike

the case of soliton lattice mediated transition [11,12], the pitch in the present geometry does

not change. We have a single soliton which grows in size and irons out the entire lattice at the

critical field H~. Interestingly this critical field is nearly 2/3 of that obtained in soliton lattice

mediated transition.

It is important to note that in this pinch soliton shown in Figure 5, # and 9 variations are

in the same direction namely the twist axis. Hence we call this a longitudinal pinch. Equation
(19) also permits a soliton solution with 9 varying in a direction perpendicular to the twist

axis. Here # continues to vary along
z.

This transverse pinch soliton is shown in Figure 6. As
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Fig. 5. Structure of
a

longitudinal Pinch soliton. It has a variation along the twist axis.
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Fig. 6. Structure of
a transverse Pinch soliton with its 6 variation perpendicular to the twist axis.

T and S represent twist and splay-rich solitons respectively.

can be seen from the figure it is an alternate stack of twist and splay-rich solitons. The Ch-N

change can be brought about through the creation of either a longitudinal or a transverse pinch
soliton. In this simple model we cannot assert as to which mode of transformation the system

will adopt. However it is not difficult to see that in the presence of elastic anisotropy one of

the pinch solitons will be of higher energy compared to the other. Therefore in a real system
there will be no ambiguity.

2.3.2. Clliralising Sofiton in a Nematic. We now consider the phase change that can be

effected from the nematic side. From the discussion of the previous section we conclude that

in fields parallel to the twist axis at H > H~ a cholesteric becomes a uniform nematic with

the director everywhere along the twist axis of the parent cholesteric I-e-, no "
(0, 0, 1). We

can create a soliton in this nematic state also. With n =
(sin 9cos#, sin 9 sin #, cos9) the

free energy density is again given by (18) but with H > H~ I.e., f > q(. The equations of

equilibrium then permit the following solutions

#
= qoz 123)
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Fig. 7. Structure of
a

longitudinal Packet soliton in a nematic.
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Fig. 8. Structure of
a transverse Packet Soliton in a nematic. T and B represent twist and bend-rich

solitons respectively.

9
=

2tan~~(exp[ ~
]) (24)

0b

~vhere qb =
Ill f q(). Equation (24) describes a soliton which has a chirality as given by

(23) with 9(-oc)
=

0 and 9(+oc)
= x.

Its structure is schematically shown in Figure 7. Over

a length of 2qb the uniform state can be distorted to form a cholesteric like section. We call

this a 'Packet Soliton' since a lattice is packed inside this soliton. This lattice has a pitch of

2x/qo. On decreasing the field this region of width 2ilb grows and at the critical field given
by H~

=
(2x IF) fi$ the entire structure transforms into a cholesteric. In this case also,

structural change is through a single soliton and the energy of its creation continuously goes

to zero as H decreases to H~.
As in the case of a pinch soliton, a packet soliton with 9 variations in a direction perpendicular

to the twist axis is also possible. This is schematically shown in Figure 8. This can be considered

as an alternative stack of twist and bend-rich solitons. In the one constant approximation the

widths and energies of both the transverse and longitudinal packet solitons are the same. Here
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also elastic anisotropy will decide as to which packet soliton triggers chirality in the nematic

phase.

2.3.3. Ferrocllolesteric to Ferronematic transition. In the case of the FCh-FN transition

also we can construct a similar single soliton. The field free structure is described by no =

(cos#o, sin #o, 0) with #o
"

2xz IF. When the field is along z, a distortion described by
n =

(sin 9 cos #, sin 9 sin #, cos 9) sets in. Here we get

#z
= qo (25)

@2

j =

-(q( f) sine cos 9 + g sin 9 (26)
0z

Clearly 9 obeys a double sine-Gordon equation whose solutions are well known [4,13]. For

f < q( we get a soliton solution which is a combination of two solitons of winding numbers

290 and 2x 290 respectively with 90
"

cos~l[g/(q( f). They are called respectively the

N and W solitons [4,13]. At f
=

q( these two solitons combine to give a 2x soliton and on

further increase of the field this soliton will Split at if q()
= g into two x

Solitons. But this

cannot be ironed out by a continuous deformation at any higher finite field. Further at any
field there will also be magnetic grain migration associated with the soliton structure. So a

single soliton mediated FCh-FN transition is not a feasible alternative to the solution discussed

in Section 2.1.

2.4. REMARKS. It may be mentioned that all the structural transitions discussed in this

section are permitted solutions to the equations of equilibrium. The solutions are such that a

uniform twist exists in the medium even in the presence of an external field. However, there

could be other solutions with a non-uniform twist and a different 9 variation. These may even

have lower energies. Hence the structural transition suggested by us, in any particular case

should be looked upon as one of the possible modes of transition from a twisted configuration
of the director field to the untwisted one and vice-versa-

3. Transitions in Crossed Electric and Magnetic Fields

So far we considered transformations in a magnetic field acting along the symmetry axis.

The process of chiral-achiral transition will be very different in a magnetic field perpendicular

to the symmetry axis. This has already been discussed in literature for cholesterics [11,12],
ferrocholesterics [3, 4] and for Sc* [15-17]. In the case of Sc*, the transitions have been

considered in the neighbourhood of SA Sc* Point. These transitions are mediated by the

creation of soliton lattices which at a critical field go over to the achiral SA or Sc Phase. Here

we consider the same phase transitions but in crossed electric (E) and magnetic (H) fields.

3.I. E AND H PERPENDICULAR To THE TWIST AxIs. We consider transitions in Ch

and FCh systems in crossed electric and magnetic fields both in a plane perpendicular to the

symmetry axis ~iz., the twist axis.

3.I.1. Cllolesterics. Consider a cholesteric with a magnetic field H along the
z axis and an

electric field E perpendicular to it along the y axis. The director configuration is described by

n =
IS cos #, 9 sin #, I). The free energy density is given by

F
=

j Iii] 24zqo)1 (~ H~ COS~ 4 jE~ sin~ 4 127)



650 JOURNAL DE PHYSIQUE II N°5

I(
~~~,,."'

'~

Ch( II
j~,,~'

,,," Ch~L)

,,~' N~

H

Fig. 9. The schematic phase diagram for
a

cholesteric in crossed fields. Nj and Ni denote nematics

which are aligned parallel and perpendicular to the H field respectively. Ch([[) denotes a cholesteric

soliton lattice with nematic regions aligned parallel to the field and Ch(I) denotes that which has the

nematic regions aligned perpendicular to the field.

where £a
=

ea/(4x) with ea as the dielectric anisotropy. Minimization of the total energy gives

4zz
=

~~~~
~

~~~
sin 4 CDs 4 128)

This is similar to the equation found in the usual de Gennes-Meyer transition in cholesterics.

Hence the transition is driven by the formation of a x
soliton lattice which on increase of either

electric or magnetic field goes over to a nematic state aligned along the magnetic field (Njj or

to a nematic state aligned perpendicular to the magnetic field (Ni) depending upon whether

x~H~ is more or less than (E~. The phase diagram is schematically shown in Figure 9. Here

Ch((() represents a soliton lattice where the nematic regions are parallel to the magnetic field

and Ch(I) represents the one where the nematic regions are perpendicular to the magnetic
field. As can be seen from Figure 9, change of the nematic phase from the Njj to the Ni state

or vice-versa is possible. The cholesteric-nematic phase boundaries are given by

~ (xaH~ faE~)
= ~~~~ (29)

3.1.2. Ferrocllolesterics. We consider a
ferrocholesterics (FCh) in the same geometry of

crossed fields. Here we have to solve numerically two coupled differential equations one for #
distortions and another for grain migration. A very similar problem has already been considered

[4]. We summarize here its implications since its generalization to the present problem is trivial.

We find that FCh to FN transition takes place as shown schematically in Figure 10 for

x~ > 0 and ea > 0. The FCh goes to the FN state either through the sequence of a 2x lattice

followed by a split 2~r I-e-, ~r ~r
lattice and ultimately to a Njj ferronematic or through the

sequence of a 2x lattice followed by an N W lattice and finally to a Ni ferronematic state.

The transformation of the 2x lattice to either
~r x lattice or N W lattice takes place along

the phase boundaries

MH
=

~(x~H~ [E~) (30)
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~~
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n-n attice
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Fig. 10. Schematic phase diagram for
an

FCh in crossed fields. Here
a

denotes the phase boundary
MH

=

xaH~ eaE~ and b denotes MH
=

eaE~~XaH~.

These lattices on further increase of the field go over to Njj or N
i

ferronematics. This phase
boundary can only be numerically evaluated. It may be mentioned that for x~ < 0 and e~ < 0

ferrocholesterics, the regions of
x x

lattice and N W lattice get interchanged in the phase
diagram. Also the grain profiles for

x x
and N W soliton lattices are entirely different [4].

Even here change of the nematic state from Njj to Ni and vice-versa is possible. In a similar

way we can also discuss the case of x~ and ea being of opposite signs.

3.2. H ALONG AND E PERPENDICULAR To THE SYMMETRY AxIs. We now consider

chiral-achiral transformations in FSC* with H along and E perpendicular to the symmetry
axis I-e-, H

=
(0, 0, H), E

=
(E, 0, 0) and n =

(9cos#, 9 sin #, I). Here again we assume 9 to

be small. The free energy density without grain migration is

F
= )9~ + (fl9~ + ~j l19z)~ + 9~l14z)~ 2qo#z)1

+ xaH~ 9~ eaE~ 9~ (cos #)~ ~
~~

9~ (31)

Phase transition due to a similar free energy density has been worked out by Michelson [14] and

Yamashita [15-17]. We can easily extend their results to the present problem. We find that

this system has phase diagrams which are interesting variations of those obtained by Michelson

[14] and Yamashita [15-17]. Two of the very interesting possible phase diagrams are shown

schematically in Figures 11 and 12. These are respectively for ea > 0 and ea < 0 materials.

We find that this system can exhibit the features of reentrance together with tricritical and

Lifshitz points. The essential features of this phase diagram can be easily understood. At

ice + XaH~ + MH) « 0 we can expect what Yamashita and Michelson predict in the low

temperature region of Sc* I-e-, a second order FSC* to FSC transition. In the neighbourhood
of ice + xaH~ + MH)

=
0, this transition becomes first order resulting in a tricritical point C

on the FSC* FSC Phase boundary. At (a + xaH~ + MH) » 0 this phase boundary meets

the FSC FSA Phase line tangentially at the Lifshitz point L. These arguments hold good for

both ea > 0 and ea < 0 case as well.
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FS~ FS~* FS ~ ~

J J

jai (hi

Fig. ii. A possible schematic phase diagram of a ea > 0 ferrosmectic in crossed fields. For (a)

a > 0, Xa > 0 and M-H < 0. (b) a < 0, xa < 0 and M-H > 0. The full line represents second order

phase transition and the dashed line the first order transition. Points C and L represent tricritical and

Lifshitz points. Here f
=

(xaH~ +MH).

FS Fs

~
FS~

~

FS~* FS

(a)
~

L FS~

FS~ c FS

FS
*

~

(b)

Fig. 12. A possible schematic phase diagram for ea < 0 ferrosmectic in crossed field. The notations

are
the same as

those of Figure II. For (a) M-H > 0, a < 0, xa < 0 and for 16) M-H < o, o > 0 and

~~ > 0. Here f
=

(x~H~ +MH).

3.3. REMARKS. ~Ve have intentionally not considered the following geometries in our study-.

I) FSC« and FCh with E along the twist axis and H perpendicular to it.

it) FSC* with E and H perpendicular to the twist axis.

iii) Cholesterics with E (or H) parallel to the twist axis and H (or E) perpendicular to the

t~N.ist axis.
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We make the following comments regarding these geometries. In geometry ii) due to the M H

term in the free energy density the FSA Phase will not exist. Also if xa =
0, we can expect a

phase diagram similar to that obtained by Yamashita [16] for a ferroelectric Sc* with ea =
0 and

in an electric field parallel to the smectic planes. There will be no FSA Phase and the FSC* to

FSC Phase boundary will have two tricritical points. However when xa # 0 we can extrapolate
the results of magnetic field effects on an FCh and electric field effects on a ferroelectric Sc*

It has been shown that in the case of FCh, in a magnetic field perpendicular to the twist axis,

to start with we get a 27r soliton lattice which transforms to either a 7r 7r soliton lattice

(xa > 0) or a N W soliton lattice (xa < 0) at a certain field H. A very similar result can be

expected in the case of FSC* also. This phase transition is second order. Therefore we expect

a new phase boundary in the FSC* region before it goes over to FSC. At low electric fields

(acting along the twist axis)
we can expect this transition to be still second order. However

at high electric fields it will be different in view of the fact that the soliton structure is quite
different in this region. Here even a single 27r soliton has ripples in its b profile. Extending

the arguments of Yamashita [17], we speculate that this leads to an attraction between like 27r

solitons resulting in a first order transition from the 27r soliton lattice to a 7r 7r or N W

soliton lattice. Therefore we expect on this new phase boundary a tricritical point as well.

The way this new phase boundary meets the FSC*-FSC boundary is not easy to speculate

upon. All these features are plausible even in the case of an FCh in a similar geometry. In

geometry iii) the phase transition is qualitatively similar to an FCh in the same geometry. We

conjecture that in geometry (iii),
we can expect a phase diagram similar to that obtained by

Yamashita [15] for ferroelectric Sc* in a magnetic field along the layers. Here we will be having

a phase transition from Ch to Njj and Ch to Ni states in the place of FSC and FSA states.

It should be emphasized that phase diagrams in all these cases can be constructed only by
undertaking detailed and elaborate calculations pertaining to the structure and energetics of

the soliton lattices. In this paper we have not addressed ourselves to this exercise.

4. Effect of Boundaries

It has been implicitly assumed in the case of FCh-FN and Ch-N transitions, that a global
reorientation of the helical axis perpendicular to the field is prevented by sample boundaries.

In the case of FS with M anti-parallel to H, a global flip of the sample to the configuration of

M parallel to H is again assumed to be prevented by the sample boundaries. In this context

a few remarks on the boundary effects are in order (~).
In Ch and FCh systems we can easily realise in the laboratory two boundary conditions viz.,

the twist axis is either parallel or perpendicular to the bounding surface. In FS systems likewise,

we have two boundary conditions viz., smectic layers are either parallel or perpendicular to

the bounding surface. In such situations our values of b and # should be matched smoothly
with the values of b and # existing at the boundaries of the sample. This takes place over a

coherence length in the neighbourhood of the sample boundaries. The value of the coherence

length depends upon the field and elastic constants. Though this can be explicitly included

in each problem we may still expect many of our solutions to be reasonably valid in large
enough samples under appropriate boundary conditions. In particular, we make the following

observations:

ii In the case of FS we can easily orient the layers but cannot anchor b or # at the boundaries.

Hence for both the boundary conditions solutions discussed under Section 2.2 will be

valid.

(~) We are thankful to the referees for comments
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(2) The longit~ldinal pinch soliton solution suggested in the case of Ch to N transition dealt

with in Section 2.3.1, is a natural solution that is compatible with the boundaries at

which the twist axis is normal to the walls. Similarly the transverse pinch soliton can

be expected as a natural solution in the case of samples where the boundaries orient the

twist axis parallel to the walls.

(3) In all the situations in Section 3, where the field induces a soliton lattice the appropriate
boundary condition to be chosen is that where the twist axis is perpendicular to the wall

or where the smectic layers are parallel to the walls. Then all the solutions discussed

under this section are valid.

(4) In all the other cases, the solutions obtained can be matched with either of the boundary
conditions viz., the twist axis is parallel or perpendicular to the walls. This matching

can be effected over a coherence length near the bounding surfaces. Further, for FN to

FCh transition treated in Section 2.1.2, for both boundary conditions, the director is

already predisposed to tilt in a particular direction. Hence this transition will not be

defect mediated.

5. Conclusion

We have studied field induced chiral-achiral phase transitions in some liquid crystals. In the

defect mediated transitions we have considered transformations triggered by disclinations, sin-

gle solitons and soliton lattices. We have also discussed transitions not involving defects. Many
interesting results have been obtained with the phenomenon of reentrance, tricritical points
and Lifshitz points accompanying these transitions.
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