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Flow of cholesteric liquid crystals—I: Flow along the helical axis
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Abstract, Tt is shown that the essential features of Helfrich’s permeation model for
flow along the helical axis of a cholesteric liquid crystal can be derived approximately
on the basis of the Ericksen-Leslie theory.
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1. Imtroduction

Cholesteric liquid crystals are known to exhibit a remarkable non-Newtonian
behaviour, the apparent viscosity inCreasing by nearly a million times as the shear
rate drops from a high to a very low value (Porter etal 1966, 1969). Helfrich
(1969) has accounted for the very high apparent viscosity at low shear rates on
the basis of a ‘ permeation model’ which assumes that flow takes place along the
helical axis without the helical structure itself moving because of anchoring effects
at the walls, and that the velocity profile is flat rather than parabolic. He has
shown that under these circumstances the apparent viscosity should be directly
proportional to the square of the radius of the tube, inversely proportional to the
square of the cholesteric pitch and independent of the shear rate. In the present
paper we examine this problem from the point of view of the continuum theory
and show that the main features of the permeation model do in fact follow as a
natural consequence of the Ericksen-Leslie equations without having to make any
special assumptions regarding the anchoring of the director at the boundaries.

2. Theory

Leslie (1968 a, 1969) has developed a continuum theory of the cholesteric state
by extending the Ericksen-Leslie (Ericksen 1960, Leslic 1968 b) formulation for
nematic liquid crystals. The equations of motion for an incompressible cholesteric
liquid crystal, in the absence of temperature gradients, are

dv,

T pFy 4 ty, 4 (1)
d:n
Py 72‘1 =81 Ty, (2)

Here v, is the velocity at a point where the director orientation is n,, F; is the external
“body force per unit mass, g, the director body force per unit volume, #;;is the stress -
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tensor per unit volume and =, the director stress tensor per unit volume. p j.
the density of the fluid and p; a material constant having the dimensions of moment
of inertia. By using the entropy production inequality Leslie (1968 a) finds

W

= —pdy— e nx, 1 + alup (p7), x + ;;u (3y
W
mi== B+ s I ol (41
bnj' j
and
W ~
g1 ———m-—@;m),:—gfg—aenmk,:—l— i (54

Here p and y are arbitrary scalars and B; an arbitrary vector arising out of the
constraints of incompressibility and of constant director magnitude and a is &
material constant. # is the elastic free energy per unit volume given by

2W = 2K, [n -V X n]l+ Ky [V - n]?
+ Ko [n - (V X m)]2 + K33 [(2 - V) n]? (61

Here K,, K1, Ky, and K3 are the Frank elastic constants. The quantities f;, ané
2 are the hydrodynamic contributions to the stress tensor and the director bod:
force respectively. They are given by

{ii = piMchpligiy + potty Ny -+ pgtilNy 4+ padys + psninde + petiedyy (7

éi = AN+ Anyd;, (8
where

dy = dy=% (v, 5+ v5,9)

Wy = —Wwu=13% (0, ;— vy,1)

Ny = 1 — wyn;

AL = — Mg

Ay = ps;— g (9

and p, to pg are the viscosity coefficients. In nematics, A; <<0; we shall assumc
this to be the case in the present discussion. We have now to solve eqs (1) anid
(2) to get the velocity and director profiles.

2.1, Flow between parallel plates

We shall consider the flow of the liquid crystal between two parallel plates, caustsd
by a pressure gradient. We choose a right-handed cartesian system such that the
plates occupy the planes x = -+ #/2. We seek solutions of the form

n, = cos (qz -+ ¢) cos 6 v,= 0
n, = sin (gz -+ ¢) cos 3 v, =0
M, = sin 6 vV, = v (10

with  0=0(x,2), . ¢=¢(x2), v=2().
This gives a cholesteric of pitch P = 2u/q with the helical axis along z for 0 == é

a9 —
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We consider very low pressure gradients and retain only first powers in v, 6 and
¢. Then

ny=C— ¢S
ng =120

where C = cos gz, S=singz. Equation (2) reduces to (neglecting director inertia
and products like #0; U,z 8,;; 6,,,0; U, By, etc.)

eazw (Kll - K2282) - 96,2:: (KIIS + K33SC2) - (ﬁ,zz (1(225:l
— 0,0 [(Kgs + 3K ) qSC] — by (2K509C) — A gS + v (C — S¢) =0

(11)
By50 (K22SC) + 20 (K 35C®) + e (Ko2C) + 0, (K33gC? + K (C* — 252) ¢]
— 10 (2K5295) + XvgC + y(S+ C¢) =0 (12)
0 00 (K325 + K53C?) ~+ &, [(Kaz — K11) S] + 0320 (K10
Ay — Ay

— b [(Kiu + K33) gC1 — 0 (Kgeg®) + =5— 2, C+70=0 (13
In the above equatidns
6,5 = 00/0x,
8,,, = 3%0/d0xdz, etc.

Similarly under the same approximation eq. (1) reduces to
+
Do = — [(F%—@) + F‘z] qSCU,.

P =[O =5 +5C - 5 |, (14)

D= 0, (K — K:_zz) gS1 — P05 [(K11S? + K55C?) q]
— &0 (Kooq) — 6, (K + Ka3) ¢*C]

Lo, [#4 + (#52— ) Cz] (15)

From eqs (11) and (12) we get
0,#0: [(K],l - K22) S] - (ﬁ,m.ﬁ (KII,S2 + K33C2)

— Ggy, (Kp2) — 0., [(Kaz -+ K33) gC] — Avg =0 (16)
From eqs (15) and (16) we find
o, [Pt C 4w g) — pa=0 | a7

We make 2 © coarse-grained > approximation and replace ¥[(ks + (15— pe) C?
by an average value %, and rewrite (17) as
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,00 + VAG2 —Ppe=0 (18)

A solution of eq. (18) with the boundary conditions v (4 #/2) =0 is

_ Py [ coshkx ]
°) =32 L1 T Cosh iz 19}

where
k= (Z——q’\lgz)}.'
7
The velocity is symmetric about x = 0. The amount of liquid flowing per second
in the z direction is given by

hi2 hi2

0= fox)dx=2 g v(x) dx
~hi2
_ Dyl [1 __tanh kh/?.]
We khf2

Hence the apparent viscosity for this geometry is given by

- p’zha _ — Alqz h?

g T [1 _tanh kh/Z] (20)

kh/2

when 2 =100 ¢ and P = 1p, the velocity attains 099 of the maximum value
within a thickness of about 05 of the boundary. Thus in all practical situations,
the velocity profile is flat over most of the region between the plates* and

= MgPhE | 1)

which is the analogue of Helfrich’s equation. The apparent viscosity is extremely
large.

2.2, Poiseuille flow

In cylindrical polar coordinates we seek solutions of the form
ne=:0c08(qz —y 4+ ¢)cos 8
ny =sin(qz — ¢ + ¢) cos 8
n, = sin 6

where 6 and ¢ are function of r, ¢ and z. Considering very small pressure gradients
we obtain to a first order in 8 and ¢

* We observe from eq. (14) that Py =D,=0 when v,, =0. This implies that secondary
flow is absent over most of the region between the plates. Of course, the choice of the velocity
field (10) and (23) is a physical assumption that is not strictly consistent with the basic equations
but justified a posteriori by the smallness of the error terms. Evidently the analysis fails very close
to the boundaries but as in Helfrich’s model we neglect this boundary layer. We are indebted

to a referee for emphasizing this point,
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nr=c‘—(}5S
ng= S+ ¢C
Hy=0 (22)

where
C =cos(gz —3) and S = sin(gz — ¢).
For the velocity field we assume

V=0,
’D,ﬁ =0
v = v (r) (23)

From eqs* (1) and (2) we obtain for the velocity

D= %—" [g + (45 — po) C2] + ;7" [y + (5 —ps) 2]+ Nvg?

As before, replacing the coefficients of v, and v, by the average value 7 we
obtain

2
U,,,-f—'—,]i- v,+ ———— =0 24)

A well-behaved solution of eq. (24) is
NGE Y

— E;_;z + Alo (kr)

where A4 is a constant, /, is the modified Bessel function of the first kind and zero
order and

Using the boundary condition v(R) =0, we find

Pz
Hl o (/CR)

A=—

and

Iy (kr)
v(r) = ﬁgz [1 ~ Io(kR).]

where R is the radius of the tube.
The amount of liquid crystal flowing out per second

R
Q= [ 2mro(r)dr
0

27D s [1_2_2 __ RI, (kR) ]
~ A2 L2 kI.(kR)

where I, is the modified first order Bessel function of the first kind.
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The apparent viscosity
— @p  R*
TNapp — ‘TJéPQ
L — Alq2.R2
~ [1 2L, (kR
(kR) I,(kR)

Again in practical situations, the velocity profile is almost flat except very neat
the boundaries and

- A ZRZ
MNapp & Ig

which is Helfrich’s equation.
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