Local composition fluctuations in strongly nonideal binary mixtures
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We study the static and dynamical aspects of small length scale composition fluctuattos gy
nonidealbinary mixtures of two different type by isothermal—isobaftRT) ensemble molecular
dynamics simulations. Both the two models studied consider strong attractive interaction between
dissimilar species which discourage the phase seperation in the binary mixtures. We find that the
joint probability distribution of the composition fluctuations within molecular sized volumes is
nearly Gaussian. However, the distributions are rather broad in both the binary mixtures. This is to
be contrasted with the density fluctuation which is nearly negligible. Spontaneous fluctuation in one
component is found to be anticorrelated with the fluctuations in it's counterpart. The investigation
of the dynamical correlation functions of the fluctuations revemiexponential relaxatiowith a

slow long time tail. The cross-correlation function relaxes at a slower rate than the two pure
correlations.

I. INTRODUCTION tions in the local composition of the mixtufelhus, under-
standing oflocal composition fluctuations in a binary glass
Composition fluctuations are predominant in binary lig-forming system significantly augment our understanding of
uid mixtures and play an important role both in equilibrium the dynamics of the system close Tg. In particular, one
and dynamic behavior of such systems. The study of compowould like to understand the following question$) Is there
sition fluctuations, especially those at small length scalesany particular length scale where the fluctuations decay very
should provide useful information in understanding the ori-slowly? (2) Can we identify two different kinds of composi-
gin of such nonideal behavior as the nonmonotonic compotion fluctuations such that one is fast and the other is slow?
sition dependence of diffusion and viscosity observed irnThe answer to these questions can provide a better under-
many binary mixtures.However, despite the importance of standing of the origin of the dynamic heterogeneity observed
the composition fluctuations in the various anomalous behavin the deeply supercooled liquid.
ior of the binary liquid mixtures, we are not aware of any The local fluctuations which occur within a small region
explicit study on the statistical nature ffcal composition  of system’s total volume have drawn special attention in the
fluctuations and their intercorrelations in binary mixtures.past few years. Several interesting theorefi¢aland com-
The dynamical aspects of the composition fluctuations ar@uter simulation studi€$'** have been carried out for one
also ill-understood. component systems which show that the density fluctuations
In the recent past considerable amount of research hagithin molecular sized volumes are nearly Gaussian. In our
been devoted to the fascinating area of glass transition anearlier workK on single component supercooled liquids,
the dynamics of supercooled liquids. The dynamics of thevhich was based on classical density functional theory
system near the glass transition temperatlirg oOr rather in  (DFT), it was shown that the distribution of the local equi-
a deeply supercooled region is found to be very complex anélbrium density fluctuations is nearly Gaussian and these soft
the relaxation time of many fragile glass former show alocalized density fluctuation&ensity dropletscan lead to
strong non-Arrhenius temperature dependénRecent time  heterogeneity in highly supercooled liquids that has been ob-
domain experimentscarried out in various molecular glass served in experiments.In an important recent computer
formers have shown evidence of the spatially heterogeneousmulation study of liquid water aimed at providing a micro-
dynamics neaify and the length of the heterogeneous do-scopic basis of hydrophobicity, Hummet al have shown
mains has been estimated to be about a few nanometénat within molecular sized volumes, the distributions of den-
(~2-3 nm in size. However, one component Lennard-Jonesity fluctuations in liquid water are nearly Gaussian. The
(LJ) liquid easily crystallizes and does not form glass easilysubsequent analysis of Crooks and Chafidtarhard sphere
in contrast to the binary mixtures which are known to be
good glass formers. In fact, dynamical heterogeneities have
also recently been observed in computer simulation stfidieSABLE 1. Lennard-Jones parameters of the two different model systems
of a model binary Lennard-Jones mixtdrEurthermore, the ~considered in this study.
mobility of a particle in supercooled binary Lennard-Jones _ -~
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mixture was observed to be related to equilibrium fluctua ~ 28 e M 28 e
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FIG. 1. The normalized probability distribution of composition fluctuatidd&sN,) and P(SNg), within a sphere of radiuR=2.0 for equal size model
(model ) at T* =1.0 andP* =2.0.(a) The distribution for componem, P(5N,) and(b) the same for compones P(SNg). In both the figures, simulation
results are shown by histogram and the solid line represent the Gaussian fit with the same mean and variance as these distributions. For fistleahdetails
text.

fluid also shows that at moderate densities these distributiorthe probability distributions differ from the Gaussian, for
are very nearly Gaussian. For the Lennard-Jones fluid, recesmaller volumes they are still very close to the Gaussian. The
simulation studies of Huang and Chandleave shown that study of composition fluctuations in a localized region of a
although for large volumes and small occupation numberdinary mixture, however, has not yet been performed.
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FIG. 2. The normalized joint prob-
ability distribution function
P(6N,,6Ng), within a sphere of ra-
diusR=2.0 for the same model and at
the same thermodynamic state point as
is presented in Fig. 1. The open circles
are the simulated results and the solid
lines are the bivariate Gaussian distri-
bution fit to the simulation results.
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In this work, we present isothermal—isobaric ensembldively slower tail in the time correlation functions of
(NPT) molecular dynamics simulation study of composition fluctuation at intermediate to long time for smaller volumes.
fluctuations within microscopic sized spherical volumes inThis is not surprising because in the small wave-nuntkgr
two different types of model binary Lennard-Joried) mix- limit, the dynamical correlations decay via well-known hy-
tures. It is important to note that one should pay speciatirodynamic modes in normal dense liquid stdfedowever,
attention to the segregation of the similar components whildor small volumes(that is, largek) the decay is mainly by
working with the binary mixtures. This problem is more se- self-diffusion in an effective potentialthat is, de Gennes
rious when the interaction between the components of differnarrowing.* Consequently, the slow tail observed here may
ent kind dislike each other. Thus to avoid the possibility ofbe attributed to suppression of long wavelength fluctuations
the system to undergo any phase seperatioo, types of  due to the small size of the spherical volume.
model systems have been studied in this paper. Among the The organization of the rest of the paper is as follows. In
two models, model [referred to as equal size mogielon-  Sec. Il, we describe the details of the simulation and the two
sider the interaction strength between dissimilar specieg/pes of model system used in this study. We present the
much stronger than that between the similar species, whilsimulation results for probability distributions of composi-
the size and mass of both the species are same and the twon fluctuation in Sec. Il and their dynamic correlations in
species differ only in terms of the strength of the interparticleSec. IV. Finally some concluding remarks are presented in
interactions. The other oreeferred to as the Kob—Andersen Sec. VII.
mode) has been extensively studied as a model glass
former?=%12This model originally first put forward by We-
ber and Stillinge?® to describe amorphous ]P,, and in || SYSTEM AND SIMULATION DETAILS
case of Lennard-Jones potential the subsequent parametriza-
tion was done by Kob and Andersein this model, all the We performed a series of equilibrium isothermal—
interaction strength parameters and sizes are different keefgobaric ensembleNPT) molecular dynamics simulation of
ing the masses of both the species same. binary mixtures in three dimensions for a fixed value of the

We find that the composition fluctuation in individual mole fraction of one of the species. The binary system stud-
components and the joint distribution both are nearly Gausged here contains a total d=500 particles consisting of
ian. Although the fluctuations are found to be quite signifi-two species of particlesh and B with No=400 andNg
cant in the localized regions being considered, with decreasg 100 number ofA and B particles, respectively. Thus, the
in size of the spherical volume, the fluctuations become mor@nixture consists of 80% of molecules and 20% d& mol-
predominant in view of the small number of moleculesecules. The interaction between any two particles is modeled
present in the smaller regions. The time autocorrelations anély means of Lennard-Jones pair potential,
cross-correlation of the composition fluctuations have also o\ 12 [\ 6
been calculated. What we observe is the relaxation is nonex-  uj’=4e; (r—”) - (r—”)

ij ij
pears to be mucklower Interestingly, we find a compara- wherei andj denote two different particle@ andB). In the

; (€Y

ponential where the decay of cross-correlation function ap-
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FIG. 3. Similar plot as Fig. 1 but in a smaller localized volume viRth 1.5. (a) The fluctuation in compone® and(b) the fluctuation in componerg. The
histograms represent the results obtained from the simulation and the solid lines are the Gaussian distribution fit with the same mean and vesince as t
distributions. For details, see the text.

equal size modelmodel |), both types of particleA andB)  Thus we chooseas=1.0, egg=0.5, whereag,g=2.0. It is
have the same sizeohpa=o0gg=0ag=0) and mass i,  shown elsewhetghat this simplest model is good enough to
=mg=m). The values of the Lennard-Jones interaction en-capture the nonideality in the composition dependence of the
ergy parameters;; are chosen to prevent demixing and shear viscosity. The potential parameters of the Kob-—
thereby to mimic the properties of the mixtures of interest Andersen(KA) modeP are as followsieap=1.0, opp=1.0,
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FIG. 4. The normalized probability distribution of composition fluctuations within a spherical region of raei@s0, for the Kob—Andersen model at
T*=1.0 andP* =2.0. (a) The distribution for the compone#t (b) Same for the componeBt The simulation results are represented by the histograms and
the solid lines are the Gaussian distribution fit with the same mean and variance as these distributions.

egg=0.5,055=0.88,e45=1.5, ando,5g=0.8. The mass of been truncated with a cutoff radius o&3, for both type of
the two species are again samm,E mg=m). Note that in  model simulations. The usual tail corrections to the potential
both the two models being studied ti#eB interaction is and the impulsive corrections of the internal presSunave
much stronger than both th&A and BB interactions. In  been employed at each time step. All the quantities in this
order to lower the computational burden the potential hastudy are given in reduced units, that is, length in units of
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FIG. 5. The normalized joint distribu-
tion function within a spherical local-
ized region of radiusR=2.0 for the
Kob—Andersen model &* =1.0 and
P*=2.0. The open circles show the
simulation results while the solid lines
represents the bivariate Gaussian dis-
tribution fit to the simulation results.

PN, 6Ny)

oap, temperaturd in units of exn/ kg, pressure? in units  thermostats, each of length 5. The extended system equations
of ean/ 05 and the unit of time is= /M2 A/ ean. of motion are integrated using the reversible integrator
All simulations in the NPT ensemble were performed method® with a time step of 0.002. The higher order mul-
using the Nose—Hoover—Andersen metfidahere the ex- tiple time step methdd has been employed in the NHC
ternal reduced temperature is held fixedr&t=1.0. The ex- evolution operator which lead to stable energy conservation
ternal reduced pressure has been kept fixed at two differefier non-Hamiltonian dynamical systerfi§The extended sys-
valuesP* =2.0 andP* =4.0. Throughout the course of the tem time scale parameter used in the calculations was taken
simulations, the barostat and system'’s degrees of freedom ate be 0.9274 for both the barostat and thermostats.
coupled to an independent Nose—Hoover cHaiNHC) of At each pressure, the system were equilibrated for

FIG. 6. The normalized time autocor-
relation and cross-correlation func-
tions of the composition fluctuations
calculated within a spherical region of
radiusR= 2.0 for the equal size model
at T*=1.0 and P*=2.0. The solid
line represent theA—A correlation,
dotted line theB—B correlation, and
the A—B correlation shown by the
dashed line. This figure shows that the
relaxation of theA—B correlation is
the slowest one. For detailed discus-
sion, see the text.

<3N (0) 8N (t)>




1 T T T TABLE Il. The time constant and the exponent obtained from the stretched
exponential fit to the different correlations f&=2.0, in the equal size

model.

Constants T B
A-A 0.56 0.38
B-B 5.04 0.68
A-B 6.34 0.87

<8N, (0)3N, (1)>

average number oA and B particles within the specified
volumev, (N,) and(Ng), respectively, are calculated. Al-
though one could consider in general, volumes of arbitrary
shape and size, for simplicity we have limited our consider-
ations to molecular sized spherical volumes. We have con-
sidered spherical volumes of two different size with radius
R=2.0 andR=1.5.

lll. SIMULATION RESULTS: EQUILIBRIUM ASPECTS

A. Probability distributions of composition
fluctuation

<8N, (0) SN, (1) >

As mentioned earlier, both the two models studied here
avoid the difficulties which can arise in studying the binary
mixture due to phase seperation or crystallization. In fact, we

0.2 5 5 10 5 20 >5  found that indeed none of them does show any tendency of
(b) t phase seperation or crystallization. Here we will present the
results obtained from the simulation for the probability dis-

tributions of composition fluctuations for both the two types
08 | of model mentioned in the preceding section. The corre-
sponding Lennard-Jones potential parameters are presented
A 06 - | in Table I. For equal size modé&hodel ), all simulations are
;: performed atP*=2.0 and at two different pressurds*
© 04+ « - =2.0 andP* =4.0 in case of Kob—AndersegitiKkA) model.
o Y
Z 02} 1
03 s B. Equal size model (model 1)
or ] Figure 1 shows the normalized probability distributions
of the composition fluctuation for both the components in the
02 5 0 . 2 spherical volume of radiuR=2.0. For the thermodynamic
) t state poin{P* =2.0 andT* = 1.0), the reduced average den-

sity p* of the system is 0.894. Figurgd shows the com-
FI_G. 7. T_he normalized time correlgtion fupctions as plotted in Fig._6 alongposition fluctuation of componew, while that ofB is shown
with the fit to astretche_d exponential functiga) For theA—A correlation, in Fig. 1(b). In both the figures simulation results are shown
(b) for the B—B correlation, andc) for the A—B correlation. In each case, . C
the solid line represent the simulation results and the dashed line thpy the histograms. For reference, the solid lines represent the
stretched exponential fit. The fitting parameters are given in Table II. pure Gaussians with the same mean and variance as these

distributions. As can be seen from these figures, the probabil-

ity distributions for the composition fluctuation are nearly
4x10° time steps. Simulations carried out for another 4Gaussian, centered around the average value of the respec-
X 10P production steps following equilibration, during which tive components in both the cases. In Fig. 1, the average
the quantities of interest are calculated. We have also calcurumber of componenta andB are (N,)=24.06 and(Ng)
lated the partial radial distribution functions in each case to=5.91, respectively. The spread of the distribution becomes
make sure that the clustering or phase separdtepecially  broader on going from the minority speci@ to the major-
among the similar specigs avoided. ity speciegA) [as can be seen from the Figgajiland 1b)].

The calculation of composition fluctuations has been in-The respective standard deviations foandB are 2.05 and
corporated into the simulation in the following manner. At 1.45. Figure 1 clearly demonstrate that the local number den-
each time step during the production stage we have consity fluctuations of both the species are rather large. This
puted the number of centers of each compori@&nand B) could be the reason for the nonideality in the composition
reside in a volume . After the execution of simulation, the dependence of viscosity in binary mixtures.
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FIG. 8. Similar plot as Fig. 6 but the
correlation functions are calculated
within a spherical region of radiuR
=1.5. The decay ofA—A correlation
is shown by the solid lineB—B corre-
lation by the dotted line and that of
A-B correlation by the dashed line.

TABLE IIl. The time constant and the exponent obtained from the stretched

exponential fit to the different correlations f&=1.5, in the equal size
model.

Constants T B

In order to study the effects of fluctuation in one com-
ponent on the distribution of the othéhat is, their intercor-
relations, we have plotted, the normalized joint probability
distribution functionP (SN, , 8Ng) in Fig. 2. The circles rep-
resent the data obtained from the simulation. The bivariate

A-A
B-B
A-B

0.42
3.68
5.5

0.35
0.67
0.81

Gaussian distribution fit is also plotted which is represented
by the solid lines. It clearly shows that the joint distribution

is alsonearly GaussianThe fluctuations in the two compo-
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FIG. 9. The normalized time autocor-
g relation and cross-correlation func-
tions of the composition fluctuations
calculated within a spherical region of
radius R=2.0 for the Kob—Andersen
model atT*=1.0 andP*=2.0. The
A-A, B-B, and A-B correlation
functions are represented, respectively,
- by the solid, dotted, and dashed lines.
Note that the decay of th&—A corre-
lation is very fast compared to the
other two correlations. For further de-
tailed discussion, see the text.
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TABLE IV. The time constant and the exponent obtained from the stretched’ABLE V. The time constant and the exponent obtained from the stretched
exponential fit to the different correlations f&=2.0 atP*=2.0, in the exponential fit to the different correlations f&=2.0 at P* =4.0, in the

Kob—Andersen model. Kob—Andersen model.

Constants T B Constants T B
A-A 0.19 0.47 A-A 0.20 0.42
B-B 4.3 0.48 B-B 8.07 0.58
A-B 3.0 0.41 A-B 6.5 0.60

nents areegativelycorrelated and this is clearly reflected in tions are Gaussian even when the number of particles in-
the value of the off-diagonal elements of the correlation mavolved is so small. The standard deviations are 1.497 and
trix which is —0.426. As can be seen from Fig. 2, the nega-1.023, respectively, for th& and B distribution. These re-
tive or positive fluctuation of a given species prefers thesults also show that the composition fluctuation is significant
counter fluctuation in the other. This shows that in the binaryin smaller volume even in such a simple model binary mix-
mixture the total number density fluctuation is very smallture. It is found that the joint probability distribution
compared to the fluctuation in composition. Such a largeP(sN,,Ng) again show the same characteristic feature as

fluctuation in composition is obviously expected to modify was shown in Fig. 2 for larger size spherical volume.
the properties that are strongly dependent on the composi-

tion. Although recently a microscopic explanation for the
nonideality ?n the con¥position depgnden(F:)e of binary mix-C' Kob—Andersen  (KA) model
tures was presentéda more detailed theoretical treatment We have mentioned earlier that this model system has
along these directions may prove useful in better understanddeen extensively used as a model glass former. In the follow-
ing the strong nonideal behavior of binary mixtures. ing we present the simulation results obtained for this model
To study the length dependence of composition fluctuasystem.
tion, we have studied fluctuations in a smaller localized vol-  In Fig. 4 we show the normalized probability distribu-
ume, of radiusR=1.5. Figure 3 displays the normalized tions of the composition fluctuations in both the two compo-
probability distributions in both the two components. It is nents for the spherical volume of radil®=2.0 at P*
evident from this figure that irrespective of the size of the=2.0. Here the average reduced densityis=1.018. The
spherical volume the distributions are nearly Gaussian. Theimulation results here again are represented by histograms
width of the individual distributions are again being deter-and the solid lines are pure Gaussians with the same mean
mined by the composition of the mixture. The average numand variance. These distributions, as is clearly evident from
ber of component#\ and B obtained arg N,)=10.08 and Fig. 4, are very close to Gaussian. The average number of
(Ng)=2.56, respectively. It is really surprising that fluctua- particles are found to beN,)=27.3 and(Ng)=6.74. Al-
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though both distributions are nearly Gaussian, it is found thafo stretched exponential functioA,exp(—t/7)?. We find that

in contrast to the equal size modehodel ) the standard the fitting to the stretched exponential gives more accurate
deviations for both the distributions are same which is 1.995description_ In Fig. 7, we plot these correlation functions
This anomalous behavior can be better explained in terms aflong with the stretched exponential fit. The values of the
the joint probability distribution functionP(6NA,6Ng).  time constant§7) and the corresponding exponeiif® are
This distribution is plotted in Fig. 5. The circles again repre-given in Table 1. These values clearly indicate that the decay
sent the simulation results and the solid lines are the bivariof the cross-correlation function is slower than that of the
ate Gaussian distribution fit. One can clearly see from thigorresponding autocorrelation functions and is less nonexpo-
figure that the joint distribution is nearly Gaussian. The apmnential. As the number d8 molecules present is much less,
proximate value of the off-diagonal elements of the correlaalmost all of them are caged Bymolecules. However, there
tion matrix is —0.203, which is less than that found for the gre always some excessmolecules near the surface of the
equal size model. Thus, although the fluctuations in the twaocalized region which are relatively free. Exchange of these
components are anticorrelated, the total density fluctuations molecules with availabl® molecules is energetically fa-

in the system becomes significant in comparison to the equaforable. This could be attributed to the relatively faster decay
size model. of A—A correlations.

The simulations, as mentioned earlier, are also carried In order to see how the dynamical correlations get ef-
out at relatively high pressure & =4.0. The average re- fected for smaller volumes, we have plotted in Fig. 8 all the
duced density at this pressurep$=1.091. The results ob- three time correlation functions calculated for the spherical
tained forR=2.0 show that the individual and joint distribu- yolume of radiusR=1.5. Table IlI provide the values of the
tions are again be well described by the Gaussianime constants and the exponents obtained from the stretched
distribution. The average number of particles present in thigxponential fit. It is clearly seen from Fig. 8 that although the
region are(N,)=29.2 and(Ng)=7.45. Again it is found initial decay of these correlations are faster compared to
that the composition fluctuations are quite large and the ﬂUCl-arger volumes, a slower tail appears in the longer time. The
tuations in two different species are negatively correlated irsuppression of long wave length fluctuations due to insuffi-
which the value of the off-diagonal elements of the correlacient size of the spherical volume could be the microscopic
tion matrix is —0.245. In the small localized region of radius origin of this very slow decay.

R=1.5, the average number of particles are found to be

(Np)=12.32 andNg)=3.12. The distributions are again be

fit well by the Gaussian distribution, where the spread of the

A and B distributions are significantly large, 2.08 and 1.77,B. Kob—Andersen (KA) model

respectively. Almost the same value of the correlation is ob-
tained between the fluctuations nandB, as given for the
larger volume.

For this model system the decay profiles of the time
correlation functions are displayed in Fig. 9 for the spherical
volume of radiusR=2.0 atP* =2.0. Most interestingly, it is
clearly evident while the decay &—A correlation is fastas
IV. SIMULATION RESULTS: DYNAMICAL in model l), the B—B correlation decays more or less in a
CORRELATIONS IN COMPOSITION FLUCTUATION similar fashion as that oA—B correlation. This behavior is

The results presented above dealt only the static naturalso reflected in the values of their time constants and the
of the composition fluctuations and their intercorrelations. Inrespective exponents which are obtained from the stretched
this section we present the results for the dynamical correlaexponential fit. The fitting parameters are presented in Table
tions in composition fluctuation for both the two types of IV. One should remember at this point that in this model the
model studied. The pressure dependence of these dynamicizes ofA andB are different(see Table)L The size of theA
response functions, which has been carried out in the Kobmolecules is bigger than that 8 molecules which is larger
Andersen(KA) model, is also presented. than the mutual size ok andB molecules. This model also
considers théA—B interaction being the strongesee Table
). As the fraction oB present is 0.2 and th&—B interaction

In Fig. 6, we show the decay profiles of the time auto-is very strong, most of thB molecules are surrounded by the
correlation and cross-correlation functions of the composicage of A molecules. However, there could be significant
tion fluctuation in a spherical volume of radil®&=2.0. It  number of A molecules specifically near the surface of the
clearly shows that the decay of cross-correlation function ispherical volume which are free of any cage formed by the
slower than both the autocorrelation functions. As the interopposite species. In addition to the strokgB interaction,
action strength between the unlike components is the strorthe movement of these relatively fréemolecules out of the
gest(see Table), A andB molecules are preferred to remain spherical volume is driven by the smaller size of Benol-
surrounded by the opposite species. Due to this strong cagiregules and also by the small mutual size of the molecules.
effect, the decay of SNA(0)SNg(t)) becomes slow. The re- Figure 10 present how the decay of these correlations in
laxation of these dynamical correlations are significantlya region of radiusR=2.0, get modified at high pressure
nonexponential and a slow tail appears in the long timeP* =4.0. As expected the correlation functions show a
which can be seen clearly in the Fig. 6. To get an estimate alower decay pattern and are again non-exponential. The dif-
the degree of nonexponentiality, we have fitted these funcferent time constants and the exponents again obtained from
tions both to multiexponential functiofof order 3 and also  the stretched exponential fit are given in Table V.

A. Equal size model (model I)
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