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ABSTRACT

We discuss some of the interesting aspects of the topological defects in biaxial

nematic liquid crystals.

INTRODUCTION

CLASSICAL. nematic liquid crystals are opti-
cally uniaxial and are cylindrically sym-
metric about the preferred direction of align-
ment given by a dimensionless unit vector n
referred to as the director. In recent years
nematic liquid crystals with optical biaxiality
have been discovered in lyotropic' and
thermotropic® systems. Theoretical studies on
the defects in biaxial systems have gained a lot
of relevance and significance in view of these
experimental findings. Some of the topological
aspects of defects in such phases have been
discussed earlier™®. We shall present, without
going into their energetics, the salient features
of the defects which have many curious and
interesting properties.

We shall confine our attention only to the
simplest of the biaxial nematic phases. This has
an orthorhombic symmetry and can be looked
upon as being made up of molecules which are
like rectangular boxes. There are three unique
directions a, b and ¢ which are mutually per-
pendicular and the structure has a two-fold
symmetry about each of them. In other words
we have a trihedron of nematic directors a, b
and c.

CLASSICAL DISCLINATIONS

We can create disclinations in any pair of
the orthogonal director fields through the
familiar Volterra process. In principle we can
create disclinations in a—b, b—c¢ and ¢c—a
fields. We show in figure 1a, s = + wedge dis-
clination ina — ¢ fields.

(i) Defect classification: Though these dis-
clinations are like uniaxial nematic discli-

nations there are some important differences.
For example, disclinations of strength |s| = §
in a—Db, b—c and ¢ — a fields cannot be trans-
formed into one another by any topological
process. Thus they belong to three distinctly
different classes®. However, disclinations of
strength |s| = 1 are mutually interconvertible
in the same three pairs of fields. For example,
by allowing the s = + 1 structure to escape in
the third dimension as in uniaxial nematics, we
can transform a s = + 1 defect in a—b to a
s = +1 defect in the b—c¢ or a—c fields
(figure 1b). We find the interesting result that
unlike in uniaxial nematics |s| = 1 defects are
singular and that disclinations a —b, b — ¢ and
c—a are topologically indistinguishable® i.e.
they all belong to one and the same class. But
this class is different from the three previous
classes. There are thus four distinct classes of
line singularities.

(ii) Coalescence between disclinations: A
direct coalescence between two wedge (or
twist) disclinations of the same class but of dif-
ferent strength s, and s, results in a wedge (or
twist) disclination of strength s, + s, as in uni-
axial nematics. This law of algebraic addi-
tion breaks down in the presence of a |s| = L
disclination of another class. If we take any one
of the partners of the pair once round the third
defect, belonging to a different class, it gets
converted into its antidefect i.e. s, (or
§3) — =8 (or —s5). Thus in the coalescence
of the pair the end result depends upon the
path chosen*.

(i1) Disclination decay: One important con-
sequence of the above result is that |s] = 1
defect or any integral defect for that matter,
decays into a uniform state™® in the presence
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Figure Ia,b. (a) s = +-i- wedge disclination in a—c fields; (b) s = + 1 wedge-disclination in a — ¢ fields
can be transformed into an s = + | wedge disclination in a — b fields by allowing the ¢ director to escape

in the third dimension.

of a half disclination line of any class. This can
be clearly seen by splitting |s| = 1 into two
identical half disclinations of a class different
from the class of the given half disclination. We
recombine them by taking one of the partners
once round the given half disclination. In this
process it gets converted into its antidefect
which, on recombination, completely annihi-
lates the other partner of the identical pair.

(iv) Disclination entanglement: A surprising
result was discovered in biaxial phases by
Toulouse’. This pertains to the crossing of one
disclination by another, which is topologically
equivalent to a single twist between them. Two
disclinations of the same class can cross one
another without any obstruction i.e. they can
pass, through one another merely by local
fluctuations. A disclination with |s| = 1 can
cross a half disclination of any class. But this is
not so, for two half disclinations of different
classes. There will be a topological obstruction
and one cannot pass through the other without
a connecting disclination line which will have a
strength of |s| = 1. Since the energy of this
connection increases with its length i.e. the
distance between the two half disclinations,
there will be a considerable physical barrier for
further separation. They act like rubber
strings. However, if the two disclinations were
to twist round each other an even number of
times then they can be disentangled though
they belong to different classes®. In the case of
odd number of twists they cannot be disentang-

led since the problem gets reduced to one of
single twist i.e. a crossing between the
partners®. It has been speculated that such a
biaxial phase, with many line defects that can
entangle, may behave like a polymer type
structure and one will observe topological
rigidity in elastic and flow properties.

(v) Non-singular disclinations: The A phase
of *He is again described by a local trihedron as
in biaxial nematics excepting for the fact that
one of the axes transforms as a pseudovector as
it represents the angular momentum. It was
established by Anderson and Toulouse® that in
this phase disclination lines of s = =2 are
non-singular. Exactly the same argument has
been put forward* for s = +2 lines in biaxial
nematics. We give in figure 2 the three-
dimensional distortion that eliminates the sing-
ularity. Here the c-director bends through
* 7 as r— 0 and the singularity at r = 0 is
removed.

It must be remarked that one can even get
rid of the singularity through a twist instead of
bend. We also notice that this distortion is very
different from director escape in s =2 of
uniaxial nematics. In uniaxial nematics the
director rotates through + /2 as r —s ().

HYBRID DISCLINATIONS

The symmetry of the biaxial phase permits
us to construct again through a Volterra
process, another type of defect” which can be

“aw



Current Science, January 5, 1988, Vol. 57, No. 1

3

_’.__.
-+~ t
+ ++ o + X
e \45°
—= r q‘ ~t=———b y
AN ) ﬂ_',."'
T

(9]

X3y

Figure 2. 5 = + 2 disclination in a — b fields. Inside
the region indicated by the circle the ¢ director es-
capes through 7 as shown in the meridional section.

termed an hybrid disclination for reasons that
will be clear soon. The Volterra process for
creating one such defect (figure 3a) is given
below:

(1) Let the plane of cut b — ¢ be limited by a
line L perpendicular to ¢ and a i.e. parallel to
b, (2) the two faces of the cut are rotated by a
relative angle = 27s, about the ¢ director
i.e. the two faces of cut will now have b or a
director field. (3) These faces are further
rotated through a relative angle + 2ms, about
the line L. The empty space is filled up with
material or overlapping regions are removed
and the system is allowed to relax. Steps (2)
and (3) can be interchanged. The object so
created is a hybrid of two types of disclinations:
a twist disclination of strengths *s,, and a
wedge disclination of strength =+ s,. This may
be called a wedge-twist hybrid. In figure 3(b)
we show two such hybrids. Another type of
hybrid disclination can be created if instead of
step (3) we turn the cut surfaces through a
relative angle £ 2775, about an axis perpendicu-
lar to ¢ and L. This gives a twist-twist hybrid.

When biaxiality disappears the above hybrid

disclinations go respectively over to the classic-
al wedge and twist disclinations of uniaxial
nematics.

(i) Interaction between hybrids: A wedge-
twist hybrid disclination can be looked upon as
a combination of a twist disclination of one
class with a wedge disclination of another class.
In a simple theory we can employ this model to
predict possible interactions between the hyb-
rids. For instance, consider two parallel hyb-
rids whose wedge components are of the same
sign and class, and whose twist components are
of opposite signs but of same class. Then the
wedge components will repel and twist compo-

(a)

(b)
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Figure 3a,b. (a) Volterra process for creating a
hybrid disclination; (b) Two hybrids with s; =5, =1
and s; = %, 5, = 1. Only the vectors in the plane of

the figure have been shown.
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nents will attract and depending upon their
strengths the hybrids may either repel one
another or end up in a bound state.

In the same way we can argue that interac-
tion between two such hybrids will be different
from what the above process predicts in the
presence of a half defect which may or may not
belong to any of the two component classes of
the hybrid. If it belongs to one of the compo-
nent classes then the other component of the
hybrid will change sign when it loops once
around this half defect. If it does not belong to
either class then both the components will
change sign. Thus interaction will be path-
dependent. Very similar arguments hold for
twist-twist hybrids.

(ii) Non-singular  hybrids: Consider a
wedge-twist hybrid with s; = 5, = 1 and allow
the nematic-like planar director field of the
wedge component to escape through + #/2 in
the third dimension (through a bend for all
radial or a twist for all circular configuration)
so that at r = 0 it is vertical. That is it escapes

Figure 4. Removal of singularity in a hybrid with
§; = 53 = 1 by an escape in the ¢ director through
/2.

as in uniaxial nematics. This is depicted in
figure 4. In this process the twist component
also loses its singularity at » = 0. Thus we find
a singularity-free configuration of a-—b
orientation at » = (. Therefore such hybrids
are truly non-singular. It must be remarked
that exactly the same process was suggested
many years ago by Mermin and Ho'" for *He in
the A phase in an experimental geometry that
simulates the all radial wedge-twist hybrid
structure with s; = 5, = 1. However, the sing-
ularity will not disappear if the twist compo-
nent is half integral. In fact in such hybrids we
have at r = 0 a pure wedge disclination of
strength |s| = 4. Thus such a hybrid with one
integral component and another of strength
|| =4 is topologically equivalent to one of
the three half disclinations. Only when both
components of the hybrid are integral we find
it to be non-singular.

POINCARE CONFIGURATIONS

In classical nematics we can have half integ-
ral point defects'' which are not isolated
defects but the end points of disclinations of
strength = 1. These can be obtained by a
technique employed iong ago by Poincaré and
for this reason we call them Poincaré defects.
For example, one of the simple ones has a +—é—
wedge structure in the meridional plane. And
in every case the director turns through + 7/2
when we go round the defect from the —z
direction to the + z direction in any meridional
plane, and +z direction is singularity-free.
Along — z direction, we have a disclination of
strength * 1.

We can construct similar objects even in
biaxial nematics. We saw earlier that in a
hybrid with s; = s, = 1 the wedge component
is exactly like that in uniaxial nematics. If this
is folded up smoothly and continuously (i.e. a
rotation through =+ 7/2) so that it goes from the
xy plane to the + z axis, then not only does the
wedge singularity in this director but also the
singularity in-the other director disappears
along + z. Thus s; = s, = 1 hybrid can termin-
ate in a Poincaré half-defect point. However, if
we impose the Poincaré configuration on a
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|s| = 1 wedge disclination in one pair of fields,
it gets transformed into a |s| =1 wedge
disclination in another pair of ficlds.

MONOPOLES AND BOOJA

One can have isolated point defects in
uniaxial nematics. For instance, inside a spher-
ical nematic drop with the director being
normal at the surface, we get a hedgehog
configuration. In every meridional plane it has
the s = I all radial structure. However point
defects are not possible in biaxial nematics™*.
If we attempt to construct an hedgehog then
we have to replace each radiating line of
cylindrical symmetry by a rectangular strip.
One of the three vectors, say the ¢ director,
will be radiating out, while the other two, viz.
a—b will be always locally normal to the ra-
diating Iines (figure 5a). Thus at all values of r
the directors a and b always get mapped on to
a sphere of radius r surrounding the central
part. In any such mapping we always get
wedge singularities (figure 5b). In principle
the total strength of the wedge singularity is
+ 2. We can have the singularity at a single
point with strength +2 or two diametrically
placed points with defect strength + 1 each or
even four symmetrically placed points cach of
strength ++. Therefore we end up with a
hedgehog point defect in the ¢ vector asso-
ciated with (a) a wedge line of strength + 2 in
a— b running from the centre to the surface,
(b) two wedge lines of strength +1 each

(a)

(figure 5¢) or (¢) four wedge lines of strength
+ L each. Thus it is very similar to the Dirac
m(;nopole defect structure of smectic C: a
point defect in the layer normal n associated
with strings (i.e. disclinations) or filaments in
the projection vector t.

In the case of (a) if we shift the central point
defect to the point singularity on the surface
where the string or the +2 wedge line starts,
then we get a Boojum. This exactly is like the
Boojum suggested by Mermin'? for *He-A
drops. But this calls for a bend in the ¢-vector
while the Dirac monopole structure has only
splay.

SOLITONS

So far we have considered only singular-
distortions i.e. ones that have singularitics in
the director fields. The singularities in these
distortions cannot be removed by local fluctua-
tions which will bring the distortion to a
uniform state. However, there are also non-
singular distortions® which again will not relax
to the uniform ground state due to the con-
straining boundary conditions. They have been
termed as solitons.

(1) Planar solitons or domain walls: The
twist or bend or splay walls of a uniaxial
nematic in a magnetic field are good examples
of planar solitons®. Far away from a given
plane the director is uniform. Most of the
distortion, which is non-singular, is confined to

a field-dependent  characteristic  thickness.
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Figure 5a-c. (a) c director radiating out from () with a being normal to it everywhere; (b) Mapping of
a—b fields on a sphere resulting in s = | defect at A and its antipode A'; (¢) A meridional section with
point defect in ¢ and string in a—b denoted by the dotted line.
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Very similar structures can be constructed and
hopefully stabilized by the same process in a
biaxial nematic as well. For example, the
c-director can be along the z-axis far from the
wall. Inside the wall it can have a bend in the
zx plane or a twist distortion about x axis
through an angle * o (of course, this will re-
quire a or b director to have a splay or twist
inside the wall). One axis of the trihedron will
remain distortion-free in the configuration
(figure 6). Such walls, as in uniaxial nematics,
can end in half wedge or twist disclinations.

The symmetry of the biaxial phase also per-
mits us to think of walls wherein a — b director
rotates locally about ¢ (which itself is bent or
twisted inside the wall) through = o so that
we again have a uniform state far from the
wall. We can call them hybrid walls. They can
end in hybrid disclinations of half strength.

(i1) Linear solitons or cylindrical domains:
Here we demand that the phase be in a
uniform state far from a given line with
non-singular distortions being confined mostly
to a cylinder around the line. In uniaxial
nematics® we get it by radially buckling or
twisting the director which is parallel to the

-t -‘-
T T z

b
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Figure 6a,b. (a) Soliton in a — ¢ fields. ¢ director
bends through 7r; (b) Hybrid soliton having bend in

¢ and twist about. c.

given line, through * 7 as » — 0. Of course, at
half the radius of the cylinder, we get s = +1
director configuration which is perpendicular
to the uniform state. By analogy we can get a
linear soliton in biaxial nematics by allowing
one of the directors, say ¢, of the uniform state
to radially bend or twist through =27 as
r— 0. At half the radius we get a s = +2
director configuration in the a—c¢ or b—c¢
fields. Outside the cylinder the trihedron is in
a uniform state with ¢ parallel to the cylinder
axis and at r = 0 there is no singularity. This
configuration can probably be stabilized again
with a magnetic field.
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