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Abstract—A novel simulation-independent charge pumping
(CP) technique is employed to accurately determine the spatial
distributions of interface ( ) and oxide ( ) traps in hot-car-
rier stressed MOSFET’s. Direct separation of and is
achieved without using simulation, iteration, or neutralization.
Better immunity from measurement noise is achieved by avoiding
numerical differentiation of data. The technique is employed to
study the temporal buildup of damage profiles for a variety of
stress conditions. The nature of the generated damage and trends
in its position are qualitatively estimated from the internal electric
field distributions obtained from device simulations. The damage
distributions are related to the drain current degradation, and
well-defined trends are observed with the variations in stress
biases and stress time. Results are presented which provide fresh
insight into the hot-carrier degradation mechanisms.

Index Terms—Charge pumping, hot-carrier effect, MOSFET,
spatial damage profiles.

I. INTRODUCTION

H OT-CARRIER degradation is one of the key reliability
issues encountered in deep submicrometer MOSFET’s.

The degradation results from a localized and nonuniform
buildup of interface states ( ) and oxide charges ( ) near
the drain junction of the transistor. It manifests itself in the
form of threshold voltage shift, transconductance degradation,
drain current reduction, etc., and eventually leads to device
failure [1]–[3].

To understand and model the degradation, different charge
pumping (CP)-based methods have been employed to obtain the
spatial distribution of and/or created during hot-carrier
stressing [4]–[12]. The simulation based methods [4]–[8] em-
ploy a source/drain reverse bias [4]–[6] or a variable amplitude
gate pulse [7], [8] to vary the CP area and depend heavily on de-
vice simulations to determine damage position. These methods
are unsatisfactory due to the requirement of exact device struc-
ture and doping profiles. The direct methods [9]–[11] employ
variable amplitude gate pulse to vary the CP area and calcu-
late the position of the CP edge from prestress measurements
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on transistors having different gate lengths [12]. Correction to
the prestress CP edge for charges associated with the generated
defects and the separation of and distributions are per-
formed either by neutralization of by a brief carrier injec-
tion of the opposite type [9], [10], or by an iterative correction
scheme [11]. However it has recently been shown [13] that the
existing methods [9]–[12] do not take into account the increase
in CP current due to the increased energy zone of recombina-
tion (with increased gate pulse amplitude) and hence furnish in-
correct CP edges and damage profiles. Moreover, the interme-
diate carrier injection techniques [9], [10] need separate experi-
mental tools to monitor complete neutralization, and hence
in general are complex in nature. On the other hand, the iterative
scheme [11], being dependent on repetitive differentiation of ex-
perimental data, is highly susceptible to measurement noise and
may give rise to convergence problems.

We have recently proposed a new method [14] where the de-
pendence of the CP current on energy zone of recombination
is accounted for while calculating the prestress CP edge. By
employing both the varying pulse-top and varying pulse-base
CP schemes, is directly separated from and the pre-
stress CP edge is corrected for generated charges at the inter-
face without using simulation, neutralization, or iteration. A
closed-form model, having two independent parameters, is for-
mulated to predict the stress-induced incremental CP current.
The model is fitted with experimental data, and the optimized
parameter values are used to determine the damage profiles. The
method, being immune to measurement noise (since numerical
differentiation of the experimental data is avoided), provides ro-
bust, accurate distributions of both and created during
stress.

This paper describes the application of the new method to
determine the hot-carrier induced damage creation in n-channel
LDD MOSFET’s. We have obtained a unique comprehensive
set of data on the time evolution of the and spatial pro-
files along the channel for various stress biases. To validate the
experimental findings, device simulations using MINIMOS 6.0
were performed. We have found that the nature of the gener-
ated damage and trends in its position can be qualitatively esti-
mated from the internal electric field distributions. Finally, the
damage distribution is correlated to the device degradation ob-
tained from drain current measurements. The observed device
degradation correlates well with the damage profiles and has
been found to have well-defined trends with variations in stress
time and with gate and drain stress biases.
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Fig. 1. Charge pumping setup along with the schematic diagram of the
MOSFET used in the study showing drain junction (JN), gate-LDD overlap
and gate edge (GE).

In Section II of this paper, the new technique is briefly dis-
cussed. A fuller account is beyond the scope of the present paper
and is presented elsewhere [14], where the correctness, relia-
bility, and robustness of the technique are also demonstrated.
Results are presented and discussed in Section III, followed by
conclusions in Section IV.

II. THEORY

In charge pumping, the gate of the MOSFET is pulsed from
accumulation to inversion using a trapezoidal waveform. The
substrate is shorted to ground. The dc current arising out of
electron-hole recombination at the interface states is measured
at the source and drain, as shown in Fig. 1. The CP measure-
ments are performed both before and after stress in two ways.
In the first case, the pulse top level ( ) is fixed in inver-
sion ( ) and the pulse base level ( ) is
varied. The pulse scans the local flatband voltage distribution.
In the second case, the pulse base level is fixed in accumulation
( ) and the pulse top level is varied. This pulse
scans the local threshold voltage distribution [5].

Assuming a symmetric transistor in prestress and noting the
fact that negligible damage takes place in the source half of the
channel, the incremental post-stress CP currents as functions of
base level and top level of the gate pulse are given by [14]

(1)

and

(2)

where
chosen at the center of the channel;
stress-induced incremental CP current;

, measured currents, respectively, in the virgin and
stressed conditions;
electronic charge;
frequency of the gate pulse;
width of the transistor;
generated interface-state density at.

The edge ( ) of the CP zone in the post-stress case
is defined for the varying base-level measurements as

, and for the varying top-level mea-
surements as , where and
are, respectively, the local flatband and threshold voltage
distributions in the post-stress case. The maximum CP edge
( ) in post-stress corresponding to is defined by

. Note that (1) and (2) satisfy the
relation

(3)

so that for a given value of and hence in post-stress,
the corresponding value can be obtained from (3). We will
discuss this later in the section.

For MOSFET’s with thin gate oxides, the generated inter-
face-state density profile can be modeled by an analytically in-
tegrable function close to a Gaussian in shape as [14]

(4)

where
peak value of damage;
position of the peak along the channel;
parameter whose reciprocal is a measure of the spa-
tial spread of the damage.

Using (4) in (1) and by assuming that the contribution to the
total incremental CP current by the interface-states generated in
the source half of the channel is negligible, one obtains

(5a)

and for the maximum incremental CP current

(5b)

where is defined by the relation

(5c)

Using (5a) and (5b), one obtains, after some simple manipula-
tions,

(6)

where is given by .
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Now, note that in the post-stress case, and
. Therefore the post-stress local and

values at any point in the channel are related to the
prestress ones by [14]

(7)

where and are the prestress local threshold and flat-
band voltage distributions (as obtained later), is the oxide
capacitance per unit area. Note that by using (7), the term
is automatically removed. Putting (6) in (4) and putting all to-
gether in (7), one obtains

(8)

where is a polynomial function fitted through the pre-
stress versus data and is given by (6).

For all and hence value in post-stress, the corre-
sponding is obtained from (3). Equation (8) is fitted with
the experimental versus data and
the two unknown parameters, namelyand are obtained.
The parameter is obtained from (5b), while is ob-
tained from (5c). Once the parametersand are obtained, for
each of the (and hence ) values in post-stress, the CP
edge is obtained from (6). Since at

is known. Again, from the prestress re-
lation, for is also known. Therefore can be
obtained from

(9)

since the values are already obtained using (4). Note that
the data fitting and the subsequent analysis to obtain theand

distributions has to be performed separately for each stress
conditions having different gate and drain bias and stress time.

Now, to obtain the relation in prestress, the CP cur-
rent can be rewritten as [13]

(10)

where
zone excluded from CP and is related to the
CP edge ( ) by the relation

;

edge of the CP zone in prestress and is given
by ;

spatial average of up to ;

drawn gate length.

While is dependent on the drawn gate length,
is not. Therefore, (measured

on transistors of different but identical otherwise) is plotted
as a function of . The data points are fitted with a straight
line. The intercept of the fitted straight line gives and
hence [13]. This process is repeated for all values
to obtain as a function of , which is essentially the
prestress relation. In a similar manner, the prestress

data is plotted versus
. The intercepts of the fitted straight lines through the data

points drawn for all values furnishes the relation
[14].

Finally,wediscuss thedeterminationof themaximumCPedge
( ) in the post-stress case. As discussed before, (corre-
sponding to ) is defined by .
A similar relation in prestress relating and is

where and are the
local flatband voltage distribution and the maximum value of
the CP edge, respectively, in the prestress case. Since
depends only on device doping, for a given value,

is constant (w.r.t channel-LDD junction) for devices having
different drawn gate lengths but identical otherwise. On the other
hand, is different from due to charges associated
with the generated defects, and therefore is dependent on
stress conditions. However, it is assumed that for deep
inside the junction (for large value), the and
generated at are small to make any appreciable change in
the local flatband voltage distribution. Therefore, the condition

is satisfied, which
implies and hence can be determined from
prestress relation as obtained above.

III. RESULTS AND DISCUSSION

Charge pumping measurements using the method discussed
above were carried out on submicrometer LDD MOSFET’s
as shown in Fig. 1. The gate of the MOSFET is pulsed using a
trapezoidal waveform obtained from an HP33120A function
generator. The CP current is measured at the source and drain
using a Keithley 617 electrometer, preceeded by an LC low-pass
filter. The substrate is shorted to ground. Measurements were
performed using gate pulses having a frequency of 1 MHz with
rise and fall time of 250 ns. For the varying base-level measure-
ments, the pulse top level was fixed at V. For the
varying top-level measurements, the pulse base level was fixed
at V. Experiments were performed using iso-
lated LDD n-channel MOSFET’s having 0.8–0.25µm effective
channel lengths ( ), oxide thickness ( ) of 11 nm, and gate
width of 10µm. The stress induced damage distributions and the
resulting drain current degradation are shown for the transistor
having µm. The devices have a gate-LDD overlap of
100 nm, as shown in Fig. 1. Note that for a given gate and drain
bias, the stress measurements for different times are performed
on the same transistor. However, the stressing at different gate
and drain voltages are performed on different transistors located
on different (but adjacent) dies in the wafer.

InFig. 2, theprestress and distributionsareplotted
along the channel (leftaxis) for a device having µm.
These results are obtained from the prestress and

measurements performed on transistors having
different drawn gate lengths as described in the previous section.
Note that corresponding to V, the maximum
CP edge in prestress is nm (w.r.t the channel LDD
junction) and is situated in the gate-LDD overlap region. Also
shown (right axis) is the prestress value along
the channel for the same transistor. The versus
data is fitted with a polynomial (solid line) and is used in
(8), which is finally used for fitting the experimental data. The
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Fig. 2. PrestressV ; V (left y axis) andV �V (right y axis)
distribution along the channel. (Inset) Calculated (solid line) and experimental
(symbols)V �V versus�I =�I plot. The stressings were done
atV = 1:2, 2.5, and 4.25 V,V = 5 V for t = 100 s.

Fig. 3. Interface-state density (�N ) and oxide trapped charge density
(�N ) profiles along the channel as a function of stress time. Stressing was
done atV = 1:2 V, V = 5 V. The origin is chosen at the drain junction
(JN), and the gate edge is at 0.1µm. The quantitiesy andy are defined
in the text of Fig. 6.

Fig. 4. Interface-state density (�N ) and oxide trapped charge density
(�N ) profiles along the channel as a function of stress time. Stressing was
done atV = 2:5 V, V = 5 V. The origin is chosen at the drain junction
(JN), and the gate edge is at 0.1µm. The quantitiesy andy are defined
in the text of Fig. 6.

Fig. 5. Interface-state density (�N ) and oxide trapped charge density
(�N ) profiles along the channel as a function of stress time. Stressing was
done atV = 4:25 V, V = 5 V. The origin is chosen at the drain junction
(JN), and the gate edge is at 0.1µm. The quantitiesy andy are defined
in the text of Fig. 6.

inset shows post-stress versus
data as obtained from (3). Stressing was performed at V.
The gate voltages were 1.2, 2.5, and 4.25 V and the stress time
was 100 s. The symbols are experimental data points, and the
solid lines are the model fit, performed separately for each stress
case using (8). As can be seen the model fits the experimental
data extremely well. The model parametersand are extracted
from such fits, for each stress bias and time.

In Figs. 3–5, the stress induced and profiles are
plotted along the channel. The origin ( ) of these figures
are chosen at the channel-LDD junction. The stressing was done
at V for 10, 100, and 1000 s. The gate voltages were
1.2 V (Fig. 3), 2.5 V (Fig. 4), and 4.25 V (Fig. 5). It can be
seen that with increase in stressing time, the and
distributions increase both in magnitude and in spread. For all
the different stress conditions, the peak position of and

distribution correlates well, lying within a distance of 15
nm of each other. For stressing at low, the damage peaks are
slightly away from the junction. However, for stressing at high

, the damage is observed mostly inside the gate-LDD overlap
region. is generated at all values, the maximum being
at V, which is also the condition for maximum sub-
strate current measured during stressing. Hole trapping is ob-
served for stressing at V, while electron trapping is
observed for the other two stress conditions (plotted on a nega-
tive scale), the maximum being at V. For our devices,
we observe more hole trapping (which saturates at longer times)
than electron trapping. Similar dependence of the damage
distributions are observed on other devices having different gate
lengths and oxide thicknesses.

The qualitativenature of the generated damage and its position
asa functionofgatebiasduringstressingarecomparedwithelec-
tric field profiles obtained from MINIMOS 6.0 simulations. The
device dopings are obtained from SUPREM 4 simulations. The
simulated lateral ( ) and the transverse ( ) electric field
profiles along the channel are shown in Fig. 6 for V and

and 4.25 V. As can be seen, for V, the po-
sition ( ) of the peak is situated in the gate-LDD overlap
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region at 35 nm from the drain junction, and is found to be almost
independent of . On the other hand the position where

changes sign is a strong function of . For V,
is situated to the left of , at−15 nm from the junction.

The negative between and assists in large hole
injection, resulting in dominant hole trapping near the junction
(see Fig. 3). For V, is situated at the right of

at55nmfromthe junction.Thepositive between
and assists in large electron injection, resulting in dominant
electron trapping in the gate-LDD overlap region (see Fig. 5). As
can be seen from Fig. 6, the portion of the channel where
is positive for V (and conducive for electron injection)
and negative for V (and conducive for hole injection)
are faraway from .Therefore for suchcases either fewer elec-
trons or holes are injected into the oxide and hence the generated
interface states are less, which conforms to the trapped-hole re-
combinationmodel [15].Thepeakof thegeneratedinterfacetraps
is near the drain junction for V and in the gate-LDD
overlap region for V, consistent with position of
with respect to for such stress conditions. Finally for

V, is at 20 nm from the junction and is situated close
to . Therefore, both holes and electrons are injected in large
quantities, resulting in large interface trap generation and no sig-
nificant charge trapping (see Fig. 4). Note that and the po-
sition of the interface-state density peak for V are sit-
uated midway between that at V and at V.
Also note that due to the larger capture cross-section of the hole
trapsand lowholemobility in theoxide, theexistinghole trapsare
rapidly filled during the initial period of stressing and thus acts as
a limiting factor for further hole trapping. On the contrary, elec-
tron trapping is a less rapid process due to the higher electron mo-
bilityand lowercapturecross-sectionofelectron traps.Alsoelec-
tron trapping is observed at high values where is also
higher, which results in field assisted detrapping of trapped elec-
trons. Therefore, trapped electrons are lower in magnitude than
trapped holes and does not show saturation.

In Fig. 7, the interface-state density peak ( ), spread
( ), the differential peak transconductance ( ) (left

axis) and the measured substrate current () during stress
(right axis) are plotted as a function of stress. The stressing
was performed at V for 500 s. The transconductance is
calculated from the characteristics measured at

V both before and after stress. is defined as the length
of the channel where the condition is satisfied,
where is a chosen cut-off value. Mathematically, is
given by . We have chosen
the cut-off value as cm . Note that this
choice of is somewhat arbitrary and a different value of

would result in a different value of . However, we have
found that the trends in as functions of gate and drain bias
and stress time is independent of the choice of . Therefore,
once a value of is chosen, it can be used to have a com-
parative estimate of the damage spread for various stress biases
and times, and all our arguments which is based entirely on the
damage trends remains unaffected by the choice of .

It can be seen from Fig. 7 that is maximum in the
region where . shows a local maximum at
values slightly less than the condition. Note that

Fig. 6. Simulated lateral and transverse electric field profiles along the channel
for a transistor havingL = 0:3 µm andT = 11 nm, forV = 5 V and
V = 1:2, 2.5, and 4.25 V.

Fig. 7. Interface-state density peak magnitude (�N ), spread (��),
normalized peak transconductance degradation (�g =g ) (left y axis) and
substrate current (I ) measured during stress (righty axis) as a function of
stress gate voltage. Stressing was done atV = 5 V for 500 s.

Fig. 8. Interface-state density peak magnitude (�N ), spread (��),
normalized peak transconductance degradation (�g =g ) (left y axis) and
incremental CP current (�I =qfW ) (right y axis) as a function of stress
drain voltage. Stressing was done atV = V =2 for 100 s.

contrary to the relation, the overall trend
does not quite follow the trend. The re-
lation follows the pattern for low values, and
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Fig. 9. Buildup of interface-state density peak (�N ), (left y axis) and
spread (��), (right y axis) versus time for different gate voltage during stress.
Also shown the normalized peak transconductance (�g =g ) for stressing
atV = 1:2 V (left y axis). The stressV was 5 V.

is maximum near . However for ,
decreases slightly and follows the trend. Note that for
stressing at low ’s, the interface-trap peak is situated near the
channel-LDD junction (Fig. 3) and therefore has a strong im-
pact on transconductance degradation. However for stressing at
high ’s the peak of interface trap moves inside the gate-LDD
overlap region (Fig. 5). Therefore, transconductance degrada-
tion will be affected more by the interface traps situated in the
channel region estimated by the spread. This implies that both
the magnitude and spread of the interface-state density profile
are separately responsible for degradation, each contributing
to a larger or lesser degree depending on the bias condition.

In Fig. 8, (left axis) and
(right axis) are plotted as a function of stress.

The gate voltage was held at for all values , and
the stress time was 100 s. It can be seen that
and thus increase with and follow an
dependence. With increase in , the increase in
( V) is higher than the increase of (
V). As expected, the slope of ( V) is close to
that of ( V). has a higher
slope ( V) than , and the difference is due
to the increase in with . This verifies that both the peak
and the spread of the generated interface traps are responsible
for degradation. However note that , which
implies that depends nonlinearly on and .
This nonlinearity can be attributed to the fact that the peak of
generated interface traps is in the gate-LDD overlap region,
and interface traps situated in the overlap region do not affect
the transconductance as strongly as the traps situated in the
channel region as estimated by the spread.

In Fig. 9, (log scale, left axis) and (linear scale,
right axis) are plotted as a function of stress time (log scale).
The stress ’s were 1.2, 2.5, and 4.25 V, and the stresswas
fixed at 5 V. Also shown is for stressing at V on a
log scale (left axis). It can be seen that follows a strong

variation with distinct values of for different stress ’s .
For the present device, we observe , 0.55 and 0.34 for

, 2.5, and 4.25 V, respectively. Both the magnitude and

rate of buildup is maximum for stressing at
V, which however shows a saturation for larger times. The time
evolution of shows a slower rate and goes as . The
rate of increase of is maximum for stressing at V.
The value of is 0.08 ( V) and 0.05 ( and
4.25 V)µm/decade. No saturation is observed in buildup for
larger times. These trends are also observed on devices having
different channel length and oxide thicknesses. shows the
well known dependence with time, with for

V (plotted) and and 0.36 for and 4.25
V (not shown) respectively, similar to the published results [3].
Once again, the higher slope of as compared to can
be attributed to the increase in with time. These observations
confirm the fact that both the peak and spread of the generated
interface trap profiles are responsible for degradation.

IV. CONCLUSION

To summarize, a novel CP technique is employed to obtain
the interface ( ) and oxide ( ) trap distributions in hot-car-
rier stressed MOSFET’s. The new technique does not require
computer simulation, neutralization, or iteration, is inherently
immune to measurement noise and directly provide separate
and profiles along the channel. We have obtained an unique
comprehensive set of data on damage distributions as a function
of stress time for various stress biases. It has been found that
hole trapping near the drain junction and electron trapping in the
gate-LDD overlap region are the dominant degradation modes
respectively at low and high gate biases. Interface traps are cre-
ated for all stress conditions, the maximum being at medium
gate biases. The nature and position of the generated defects
correlate well with the lateral and transverse field distributions
as obtained from device simulations, and it has been shown that
both electrons and holes are required in the oxide for the cre-
ation of interface traps. Both and profiles increase in
magnitude and in spread with increased stress time, though the
increase in magnitude is more compared to the spread. Finally
the observed degradation is found to be dependent on both
the peak magnitude and spread of the generated interface traps.
The degradation follow the trends observed in interface trap
formation with variations in stress gate and drain biases, and
stressing times. This study therefore provides fresh insight into
the hot-carrier degradation mechanisms.
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