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A self-consistent microscopic theory is developed to understand the anomalously weak concentration
dependence of ionic self-diffusion coefficient Dion in electrolyte solutions. The self-consistent equations
are solved by using the mean spherical approximation expressions of the static pair correlation functions
for unequal sizes. The results are in excellent agreement both with the known experimental results for
many binary electrolytes and also with the new Brownian dynamics simulation results. The calculated
velocity time correlation functions also show quantitative agreement with simulations. The theory also
explains the reason for observing different Dion in recent NMR and neutron scattering experiments.
Even after many decades of study, there is still no sat-
isfactory theory of self-diffusion of ions in electrolyte so-
lutions, except perhaps at very low concentrations. In this
limit, Onsager [1], in 1945, described a simple theory of
self-diffusion coefficients which was essentially an exten-
sion of Debye-Huckel ion atmosphere model. The theory
includes the relaxation effect well-known in the conduc-
tivity theory. Onsager’s general equation for ion self-
diffusion coefficient is given by the following well-known
expression:
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where LB is the Bjerrum length and k is the Debye inverse
length. Zi , D0

i , and ci are, respectively, the charge, the
infinitely diluted solution self-diffusion coefficient, and the
concentration of species i. Onsager’s limiting law has
been tested experimentally and found to be valid below
concentrations of about 0.01 M [2].

It is well-known that Onsager’s treatment was phenome-
nological —the use of Debye-Huckel theory itself was a
serious limitation. Onsager’s treatment has been extended
by using more realistic ion-ion pair correlation functions,
but the existing theories all fail to provide a satisfactory de-
scription of the concentration dependence of self-diffusion
coefficient [3]. There is also no quantitative theory of ionic
velocity time correlation function (IVCF). A quantitative
understanding of ionic self-diffusion coefficients and of
IVCF in electrolyte solution [4,5] is a fundamental prob-
lem which has wide ranging applications to problems of
many disciplines of natural and biological sciences [6–9].

There are now compelling reasons for developing a
microscopic theory of self-diffusion of concentrated elec-
trolyte solutions. First, accurate pair correlation functions
for unequal ion sizes have become available recently
[10]. Second, “smart” Monte Carlo technique has been
combined with Brownian dynamics simulations to give
accurate values not only of self-diffusion but also of the
velocity correlation functions [11]. Last, the well-known
mode coupling theory (MCT) [12,13] has been extended
recently to treat electrical conductivity [14,15].

In this Letter we develop such a theory to calculate the
effects of the ion atmosphere relaxation at finite frequency
by using the mode coupling theory. The theory provides
nearly quantitative agreement with all the known experi-
mental and simulated results. The agreement with simu-
lated velocity correlation function is also excellent. We
believe that this is the first quantitative microscopic theory
of self-diffusion of ions in concentrated solutions.

We next describe the theoretical formalism. There are
several nontrivial aspects of this problem. First, we need
to translate the ion-ion interaction (the classical ion atmo-
sphere) term to a time correlation function formalism. Sec-
ond, we need to describe the interplay between the single
particle and the collective dynamics. Third, we need to
develop a self-consistent theory for collective dynamics.
The last two are dealt with by formulating a MCT theory.
We start with an electrolyte solution consisting of posi-
tive and negative ions immersed in a continuum solvent of
dielectric constant e. The ions interact through a spheri-
cally symmetric short-range potential and a long-range
Coulombic interaction potential which is scaled by the
value of the dielectric constant. The pair potential of inter-
action between two ions of charge qa and qb is given by

ua,b�r� � uSR
ab�r� 1
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where r is the distance between the two ions and uSR
ab�r� is

a spherically symmetric short-range interaction potential.
This so-called primitive model is well known in the studies
of structure and dynamics of electrolyte solutions [16].
Throughout this paper, we label the positive ions as species



1 and the negative ions as species 2. We denote the position
(r) and time (t) dependent number density of species a as
ra�r, t� and its Fourier transform ra�k, t� is defined by

ra �k, t� �
Z `

2`
dr eik?rra�r, t� . (4)

As we are interested in calculating the frequency depen-
dent friction on a moving ion, we consider a single tagged
ion of charge qs. The velocity of the tagged ion is ys�t� at
time t. Its time evolution can be described by the follow-
ing generalized Langevin equation:

≠
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where zs�c, t� is the total friction acting on the single
tagged ion and fs�c, t� is the random force. The fre-
quency dependent friction zs�c, v� is defined as the
Fourier-Laplace transform of zs�c, t�,

zs�c, v� �
Z `

0
dt eivtzs�c, t� . (6)

The self-diffusion coefficient Ds�v� is related to the fric-
tion zs�v� by the following generalized Einstein relation:

Dion�v� �
kBT
m

�2iv 1 zs�c, v��21, (7)

where m is the mass of the tagged ion.
The friction on the ion is now divided into two parts:

zs�c, t� � zSR 1 dz�c, t� , (8)

where zSR is the friction from the short-range interactions
and dz�c, t� is the electrolyte friction which we calculate
by mode coupling theory. According to the latter, the elec-
trolyte friction acting on the tagged ion can, on rather gen-
eral terms, be decomposed into two parts [12,13]. The first
part is due to the microscopic interaction of the tagged ion
with the surrounding (Debye-Huckel) ion atmosphere, and
the second part originates from the hydrodynamic coupling
of the velocity of the tagged ion with the charge current
mode of the surrounding ions [14]. It has been shown by
the mode coupling theory that a small neutral solute’s dif-
fusion in nonpolar liquid is dominated by the microscopic
term only, that is, by the terms which arise from collisional
contributions and density fluctuations [12,13]. The situ-
ation for electrolyte friction turns out to be no different,
but for an entirely different reason, as discussed below.

The microscopic friction is most easily analyzed by us-
ing the Kirkwood’s formula for friction which expresses it
in terms of an integration over the force-force time corre-
lation function [16].

dzs,mic�c, t� �
1
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where F�r, t� is the time dependent force exerted on the
tagged ion due to its interaction with all other ions in the
solution. An expression for F�r, t� can be obtained from
time dependent density functional theory, and the micro-
scopic friction can be formally expressed as an integral
over the wave-vector space in the following form:
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where Fs�k, t� is the self-dynamic structure factor of the
tagged ion. Gab�k, t� is the ionic Van Hove function de-
fined by

Gab�k, t� � �NaNb�21�2�ra�k, t�rb�2k, 0�� , (11)

where �· · ·� denotes average over an equilibrium ensemble.
Na and Nb are, respectively, the number of ions of species
a and b in the solution. We denote Gab�k, v� as the fre-
quency dependent Van Hove function obtained by Laplace
transformation of Gab�k, t�. Use of time dependent den-
sity functional theory leads to the following equation for
the frequency dependent Van Hove function:

Gab�k, v� � �2iv 1 Da�v�k2�21Sab�k�
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where the frequency dependent diffusion coefficient
Da�v� is related to friction by Eq. (7). Sab�k� �
Gab�k, t � 0� where Sab�k� is the partial static structure
factor between species a and b. Sab�k� is related to the
Fourier transform of the pair correlation function hab�k�
by the following relation:

Sab�k� � dab 1
p

rarb hab�k� . (13)

The four coupled equations (a,b � 1, 2) as given by
Eq. (12) can be solved analytically to obtain the frequency
dependence of the ionic Van Hove functions. Note that the
Laplace transform of the self-dynamic structure factor of
the tagged ion is related to the frequency dependent diffu-
sion by the following relation:

Fs�k, v� �
1

2iv 1 Dion�v�k2 . (14)

Thus, the MCT equations need to be solved self-
consistently [17]. We still require the solutions of the
static structure factors and the direct correlation functions
for the calculation of the microscopic electrolyte friction.
The direct correlation functions are related to the static
structure factors by the Ornstein-Zernike equations. The
solutions of the pair correlation functions required for
the calculation of the quantities Sab�k� and csa�k� have
been obtained from the solution of the mean spherical
approximation (MSA) [18] by the formula

hab�k� � 2
4p

k
ImG̃ij�ik� , (15)
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FIG. 1. Self-diffusion coefficient of Na1 (upper) and Cl2 (be-
low) in NaCl solution. Comparison between self-consistent
MCT (solid line) and experiments (diamonds).

where G̃ij is the Laplace transform used in the Baxter-
Wertheim factorization method for charged systems [19].
We considered the whole analytical solution of the MSA
with different sizes so that the Stillinger-Lovett sum rule
is exactly verified.

We particularly studied three dissociated electrolytes
KCl, LiCl, NaCl up to 1 M. The experimental data have
been taken from the critical analysis given in [2]. The
MSA, which is a primitive model approximation, needs to
know the diameters si of the ions. The latter have been
taken from [20] sK1 � 2.95 Å, sLi1 � 4.35 Å, sNa1 �
3.05 Å, and sCl2 � sPauling � 3.62 Å. These parame-
ters are able to reproduce equilibrium (osmotic pressure)
and transport properties (conductivity and mutual diffu-
sion) accurately from Smoluchowski-MSA theory of elec-
trolytes. Thus, our MCT of self-diffusion does not involve
any adjustable parameter.

Because of the long time tail of the relaxation term,
whose characteristic time is the Debye relaxation time,
close to 1 ns in our case, classical molecular dynamics is
not able to calculate self-diffusion coefficients properly.
Thus we used Brownian dynamics (BD) at the Smolu-
chowski level of approximation [11] to obtain such long
time correlation functions. Indeed, this method is able
to calculate exactly the Kirkwood integral (9). The effi-
ciency of the simulation has been improved by evaluating
the probability of each displacement with a smart Monte
Carlo criterion in order to increase the time step.

The self-diffusion coefficients are shown in Figs. 1
and 2. It is clear that the theoretical predictions are in
excellent agreement with both the experimental results
and the Brownian dynamics simulations even at high
concentrations.

The time dependence of the phenomenon can be given
by the IVCF Z�t�. If the electrolyte friction dz �c, t� is
less than the short-range friction zSR, and if the Debye
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FIG. 2. Self-diffusion coefficient of Li1 (upper) and Cl2 (be-
low) in NaCl solution. Comparison between self-consistent
MCT (solid line), Brownian dynamics (circles), and experiments
(diamonds).

relaxation time [t21
D �

e2

ekBT �D1Z2
1C1 1 D2Z2

2 C2�] of
the ionic atmosphere is greater than the short-range time
tSR � m�zSR, which is indeed the case in our electrolyte
solutions, then we have the following simple expression:

Z�t� �
kBT

m
exp�2zSRt�m� 2

kBT

z
2
SR

dz �c, t� . (16)

Note that for 1 M solutions, tSR is typically 1 ps while tD

is only 1 ns. Thus, the above approximate equation should
be satisfactory. Two examples of IVCF (relaxation part)
are given in Fig. 3. The more the concentration, the faster
is the long time decay. We believe this provides the micro-
scopic explanation of the weak concentration dependence
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FIG. 3. Velocity correlation function of Cl2 for c � 0.5 M
and c � 1 M KCl solutions. Comparison between MCT (solid
line) and Brownian dynamics (dashed line).



0e+00 1e−10 2e−10 3e−10 4e−10 5e−10
t  /  s

1.7e−09

1.8e−09

1.9e−09

2.0e−09

2.1e−09
D

(t
) 

 / 
 m

2 s−1

 BD
 MCT

0.5 M

1 M

FIG. 4. Time dependent self-diffusion coefficient of Cl2 for
c � 0.5 M and c � 1 M KCl solutions. Comparison between
MCT (solid line) and Brownian dynamics (dashed line).

of the self-diffusion coefficients of the ions. The agree-
ment with the BD simulations is again excellent.

The time dependent self-diffusion coefficient, Dion�t�
(Fig. 4) shows a very interesting shape. For small times
(greater than tSR but less than tD), the self-diffusion
coefficient is close to the infinitely diluted solution value.
The relaxation effect decreases this transport coefficient
only for times greater than tD . This result can indeed
explain the discrepancy between the self-diffusion coeffi-
cients measured by time of flight neutron scattering and
NMR or tracer methods [21]. The typical time scale
of such neutron scattering experiments is typically 20 ps,
which is much less than the relaxation time of the ionic
atmosphere. Consequently the values obtained do not take
into account the whole relaxation effect. They are found to
be greater that those measured by long time methods such
as NMR.

The present study reveals several interesting points.
First, the weak concentration dependence of ionic self-
diffusion arises not only from the absence of the charge
current contribution, but also from the faster decay of the
velocity time correlation functions in the more concen-
trated solutions. Second, the hydrodynamic interactions
are not important for the diffusion of these small ions.
Third, because of the great separation of time scale be-
tween ion atmosphere relaxation time and the other time
scales of the system, different experiments can measure
different values of the self-diffusion coefficient, as indeed
has happened in the past.

With the success of the present theory for self-diffusion,
the important remaining problem of viscosity and the vis-
coelasticity of concentrated solutions can now be treated
within the mode coupling theory approach, where the self-
consistent dynamic structure evaluated here shall prove
useful.
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