Diffusion of small light particles in a solvent of large massive molecules
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We study the diffusion of small light particles in a solvent which consists of large heavy patrticles.
The intermolecular interactions are chosen to approximately mimic a water—suorosater—
polysaccharide mixture. Both computer simulation and mode coupling theoreti®ddCT)
calculations have been performed for a solvent-to-solute size ratio 5 and for a large variation of the
mass ratio, keeping the mass of the solute fixed. Even in the limit of large mass ratio the solute
motion is found to remain surprisingly coupled to the solvent dynamics. Interestingly, at
intermediate values of the mass ratio, the self-intermediate scattering function of the B¢k,
(wherek is the wave number andis the timg, develops a stretching at long time which could be
fitted to a stretched exponential function witlk-@lependent exponensd, For very large mass ratio,

we find the existence of two stretched exponentials separated by a power law type plateau. The
analysis of the trajectory shows the coexistence of both hopping and continuous motions for both the
solute and the solvent particles. It is found that for mass ratio 5, the MCT calculations of the
self-diffusion underestimates the simulated value by about 20%, which appears to be reasonable
because the conventional form of the MCT does not include the hopping mode. However, for larger
mass ratio, MCT appears to breakdown more severely. The breakdown of the MCT for large mass
ratio can be connected to a similar breakdown near the glass transition.

I. INTRODUCTION There have been many experimerital,computer

simulation®~1° and theoretical*? studies of diffusion of

The issue of diffusion of S”.‘a" Iight' partiples in asolvgnt s'mall solute particles in a solvent composed of larger par-
composed of larger and heavier particles is unconventlonqlcles_ All these studies show that the SE relation signifi-

because the role of the solvent in the solute diffusion is OIIf'cantly underestimates the diffusion coefficient. To explain

ferent from the case where the sizes are comparable. The{ e enhanced diffusion, sometimes an empirical modification
are two limits that can be identified for such systems. One ' P

: H 7 H H —a
limit is the well studied Lorentz gas system, which consistsOf the SE relation is usetl It is considered thab 7,

of a single point particle moving in a triangular array of Where @=2/3. This fractional viscosity dependence is re-
immobile disk scatters. Here the motion of the point particle/€'Ted t0 as the microviscosity effect which implies that the
can be modelled by random walk between trapaThe other viscosity around the small solute is rather different from that
limit is where the size of the solute particle is still smaller ©f the bulk viscosity. The enhanced diffusion value has also

than that of the solvent molecules but it has a finite ¢izat ~ Peen explained in terms of the effective hydrodynamic
is, not a point and while the solvent is slocompared to ~ radius*®

the solute particlésbut not completely immobile. In the lat-  The earlier mode coupling theoretigCT) studies™*?

ter case, the translational diffusion of the solute is often atof diffusion of smaller solutes in a solvent composed of

tempted to describe the well known hydrodynamic Stokes-arger size molecules attributed the enhanced diffusion to the

Einstein(SE) relation given by:® decoupling of the solute motion from the structural relax-
ation of the solvent. The MCT studies suggest that this de-

_ I(B_T (1) coupling of the solute motion from the structural relaxation
CnR’ of the solvent can lead to the fractional viscosity dependence

often observed in supercooled liquids.

However, there have been no systematic studies of the
effects of the variation of size and mass of the solute—solvent
system. In this article we have explored the diffusional
mechanism of the isolated small particlsslute in a liquid
composed of larger particlésolveny, both analytically and
numerically. The study is performed by keeping the solvent-
to-solute size ratio%g) fixed at 5, but varying the mass of
dpresent address: Arthur Amos Noyes Laboratory of Chemical Physicsshe solvent over a large range, by keeping the mass of the
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wherekg is the Boltzmann constant, is the absolute tem-
peratureC is a numerical constant determined by the hydro-
dynamic boundary conditiony is the shear viscosity of the
solvent, andR is the radius of the diffusing particle. The
validity of Eq. (1) for small solutes is, of course,
questionablé®




expected to mimic some aspects of the water—sucrose onode coupling theoretical analysis is presented in Sec. IV. In
water—polysaccharide mixturé$. Sec. V, we discuss the possible effect of heterogeneity
The trajectories of the solute and the solvent show therobed by the solute on the self-intermediate scattering func-
coexistence of both hopping and continuous motions. As th&ion of the solute. Finally, in Sec. VI we present the conclu-
solvent mass is increased, the self-intermediate scatterirgjons of the study.
function of the solute develops an interesting stretch for a
long time. For the larger mass ratio, we see the existence of
two stretched exponentials separated by a power law typlé' SYSTEM AND SIMULATION DETAILS
plateau. We performed a series of equilibrium isothermal—
The mode coupling theory calculation of the self- jsobaric ensembl&NPT) molecular dynamic$MD) simula-
diffusion coefficient of solute particles performed in the limit tion of binary mixtures in three dimensions for an infinitesi-
of small mass ratigof 5) is found to be in qualitative agree- mal small value of the mole fraction of one of the species.
ment with the simulated diffusion—MCT underestimates theThe binary system studied here contains a totaNef500
diffusion by about 20%. Thus, although the MCT underesti-particles consisting of two species of particles, wkh
mates the diffusion, the agreement is satisfactory in light of=490 and\,= 10 number of particles. Hereafter, we refer to
the contribution from the hopping mode to diffusion which indices 1 and 2, respectively, for the solvent and solute par-
MCT does not explicitly take into account. However, theticles. Thus, the mixture under study contains 2% of the sol-
deviation from the simulated value increases with an in-ute particles. The interaction between any two particles is
crease in mass rati@which is equivalent to the increase of modeled by means of the shifted force Lennard-Jahd}
the mass of the solvent particjesn the limit of large mass pair potentialt® where the standard LJ is given by
ratio, MCT breaks down. The binary contribution to the total o \12 g6
()
rij

friction is found todecreases one increases the mass of the uiLJ-J=4e

solvent. In addition, due to the development of stretching in Fij

the self-intermediate scattering function of the solute and thevherei andj denote two different particled and 2. In our
inherent slow solvent dynamics, there remains a strong counodel system, the potential parameters are as follawsg:
pling of the solute motion to the solvent density mode. This=1.0, g1,;=1.0, €,,=1.0, 0,,=0.2, €;,=2.0 (enhanced at-
enhanced coupling at larger mass ratio came as a surprise fi@ction), and o;,=0.6. The mass of the solute particles is
us. chosen to ben,=0.2 where the solver{species 1 massm;

In the limit of very large mass ratio, the motion of the is increasingly varied and four different values are chosen 1,
light solute particle resembles that of its motion in an almost, 10, and 50. Thus, in this study we examined four different
frozen disorder system like near the glass transition temperaolvent-to-solute mass ratiod] xz=m,/m,=5, 25, 50, and
ture. Thus, the breakdown of MCT in the limit of large mass250 for a fixed solvent-to-solute size ratiGg=01,/05;
ratio could be connected to its failure near the glass transi=5. Note that in the model system being studied the solute—
tion temperature. Of course, one should note that in the limisolvent interaction é;,) is much stronger than both of their
of mass of the solvent goes to infinity, the basic assumptiomespective pure counterparts. In order to lower the computa-
of conventional MCT breaks down. tional burden the potential has been truncated with a cutoff

It is widely believed that in a deeply supercooled liquid radius of 2.%,;. All the quantities in this study are given in
close to its glass transition temperatuigg), the hopping reduced units, that is, length in units ef;, temperaturel
mode is the dominant mode in the system which controls thén units of e;;/kg, pressure® in units of €;;/03,, and the
mass transport and the stress relaxation. Recently, a comass in units ofn, which can be assumed as an argén)
puter simulation study of a deeply supercooled binarymass unit. The corresponding microscopic time scale is
mixture'> has shown evidence of an intimate connection be= \/ma?,/€,;.
tween the anisotropy in local stress and the particle hopping.  All simulations in the NPT ensemble were performed
It was shown that the local anisotropy in the stress is resporusing the NoseHoover—Andersen methddwhere the ex-
sible for the particle hopping in a particular direction. Fur-ternal reduced temperature is held fixedrat=0.8. The ex-
thermore, it was suggested that the local frustration presenérnal reduced pressure has been kept fixd@*at 6.0. The
in the systemwhich is more in a binary mixture with com- reduced average densipf of the system corresponding to
ponents of different siz¢gould cause the local anisotropy in this thermodynamic state point is 0.989 for all the mass ra-
the stress which in turn acts as a driving force for hoppingtios being studied. Throughout the course of the simulations,
However, in the present study, the dengity the pressude the barostat and the system'’s degrees of freedom are coupled
of the system is not as high as that of a deeply supercoole an independent Noséloover chaiff (NHC) of thermo-
system. The relaxation of the stress is found to occur muchktats, each of length 5. The extended system equations of
faster and it relaxes almost completely within our simulationmotion are integrated using the reversible integrator
time window even for the largest mass ratio. Consequentlymethod® with a small time step of 0.0002. The higher order
the microscopic origin of particle hopping here could be dif-multiple time step methdd has been employed in the NHC
ferent than that for a deeply supercooled liquid. evolution operator which lead to stable energy conservation

The layout of the rest of the paper is as follows: Sectionfor non-Hamiltonian dynamical systerfisThe extended sys-

[l deals with the system and simulation details. The simulatem time scale parameter used in the calculations was taken
tion results and discussions are given in Sec. lll, and theéo be 0.9274 for both the barostat and thermostats.
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FIG. 2. The same plot as in Fig. 1, but for a solvent particle at diffevigt

FIG. 1. The time dependence of the displacements for a solute particle g) Mz=5, (b) Mg= 25, (c) Mg=>50, and(d) Mr=250. Note that here also
different solvent-to-solute mass rativg: (@ Mg=5, (b) Mg=25, (¢ the time is scaled by/ma2/kgT.
Mg=50, and(d) M= 250. Note that the time is scaled k)/y_nalzl/kBT. The
time unit is equal to 2.2 ps if argon units are assumed.
slower. Thus, the solute gets caged by the solvent particles
and keeps rattling between a cage-until one solvent particle

simulations were carried out for another 2.00° production moves considerably to disperse the solute trajectses tra- .
fjectory forMr=250). Thus, there is a remarkable change in

;teps following equilibration, durmg_ which t.h.e gquantities o tge solute’s motion in going frorM x=5 [Fig. ()] to M
interest are calculated. The dynamic quantities are averaged 250[Fig. 1(d)]
over three such independent runs for better improvement of In Fig. 2 we plot thesolventirajectories for the different

the statistics. We have also calculated the partial radial dis- . )
L . solvent-to-solute mass ratit] z. We find that for all values
tribution functions[gq4(r) and g;5(r)] to make sure that . : . .
X I of Mg, there is a coexistence of hopping and continuous
there is no crystallization. ; :
motion of the solvent molecules. At higher solvent mass, as
expected, the magnitude of displacement becomes less and
hopping becomes less frequent, but, surprisingly, the jump
In Fig. 1 we show typicalsolute trajectories for four motion still persists.
different solvent-to-solute mass ratiddg (=m;/m,, m, is Figure 3 displays the decay behavior of the self-
the mass of the solvent particleShe trajectories reveal an intermediate scattering functigr4(k,t) ] of the solute for a
interesting dependence dhg. At the value ofMy equal to  different mass ratioMg, at reduced wave numbek*
5, the solute trajectory is mostly continuous with occasionakko;~27. The plot shows thaF¢(k,t) begins to stretch
hops. As the mass ratibl is increased, the solute motion more for higher solvent mass. This stretchingFafk,t) is
gets more trapped, and its motion tends to become discorkind of novel and we have examined it in detail.
tinuous where displacements occur mostly by hopping. This  After the initial Gaussian decals(k,t), for smaller val-
is because with an increase in the solvent mass the time scales of Mg, can be fitted to a single stretched exponential
of motion of the solvent particles become increasinglywhere the exponem@=0.6. However, for higher mass of the

The systems were equilibrated for®1fme steps and

Ill. SIMULATION RESULTS AND DISCUSSION
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FIG. 3. The self-intermediate scattering functieg(k,t) for the solute par-
ticles for different mass ratiMg, at reduced wave numbée* =koq;
~2. The solid line representd ;=5, the dashed line is favig=25, the
dotted line is folM g=50, and the dot—dashed line is fdrzr=250. Note the
stretching inF4(k,t) at longer time with an increase My . For details, see
the text.

solvent,F¢(k,t) can be fitted only to a sum aivo stretched
exponentials.

The behavior of¢(k,t) of the solventfor all the solvent
masses studied is shown in Fig. 4. The plot shows tast
expectedl the time scale of relaxation d¥¢(k,t) becomes
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FIG. 5. The behavior of the non-Gaussian parametgt) calculated for

the solute particles at different mass rality, . The solid line, the dashed
line, the dotted line, and the dot—dashed line areM@r=5, 25, 50, and 250,
respectively.

much shorter compared to that of the solvent particles. Con-
sequently, the solute motion probes more heterogeneity dur-
ing the time scale of decay d¥(k,t) of the solute. This
heterogeneity probed by the solute increases as the solvent
mass is increased. Since the solvent motion is much slower,
it probes enough configurations during the time scale of de-

longer as the solvent mass is increased. However, the seffay of itsFq(k,t).

intermediate scattering function of the solvent does not dis-

In order to quantify the degree of heterogeneity probed

play any stretching at long times, even for the largest masBY the solute, we have plotted the non-Gaussian parameter
ratio considered. The decay can be fitted by sum of a short@2(t),” for the solute, in Fig. 5. Clearly, the heterogeneity

time Gaussian and a long-time exponential function.

probed by the solutgguantified by the peak height af,(t)]

The reason tha(k,t) of the solute shows such stretch- increases as the solvent mass is increased. On the other hand,
ing but that of the solvent does not, can be explained ag(t) of the solvent shows no such increase in the peak
follows. Due to the small size and the lighter weight of the height ofa5(t) which remains small and unaltered, although
solute, the time scale of motion of the solute particles isthe position of the peak shifts to longer time as the mass of
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FIG. 4. The self-intermediate scattering functibg(k,t) for the solvent
particles for different mass ratiMg, at reduced wave numbée* ~27.
The solid line representdl =5, the dashed line is favlg= 25, the dotted
line is for Mg=50, and the dot—dashed line is fiotg=250.

the solvent is increased. We have discussed this analysis in
more detalil in Sec. V.

The role of the local heterogeneity can be further ex-
plored by calculatind-4(k,t) at a wave number correspond-
ing to solute—solvent average separation. This corresponds to
k*=2mlo,,, Whereo,=3(0,+ 05). In Fig. 6 we plot the
self-dynamic structure factor of the solute for the different
mass ratioMy, at a reduced wave numbé&* ~27/o,.

This is primarily the wave number probed by the solute. At
this wave number one observes more stretching0k,t) at
longer times, for all the mass ratios. This is in agreement
with the above argument that since the time window probed
by the solute is smaller at highés, it probes even larger
heterogeneity.

The emergence of the plateau between the two stretched
exponentials irF4(k,t) of the solute(Fig. 6), can be attrib-
uted to the separation of the time scale of the binary collision
and the solvent density mode contribution to the particle mo-
tion. This separation of time scale increases as the solvent
mass is increased. As the decay after the plateau is mainly
due to the density mode contribution, the plateau becomes
more prominent as the mass of the solvent is increased.
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FIG. 6. The self-intermediate scattering functiég(k,t) for the solute par-  FIG. 7. The self-intermediate scattering functieg(k,t) for each of the ten
ticles for different mass ratidg as in Fig. 3, but at the reduced wave individual solute particle obtained from a single MD run for mass ratio
numberk* ~2/a4,. This is primarily the wave number probed by the Mg=250. They are calculated at the reduced wave nurkber2/oy,.
solute. Note the emergence of a plateau at larger mass ratio. For details, see

the text.

Interestingly, it is to be noted that a similar weak power
law mass dependence was seen in the self-diffusion coeffi-
Table | Clearly shows the Separation of time scales where th@ient of a tagged particie on its mass—the exponent was
value of the time constants and the exponents obtained frogften found to be around 0.1. Recently, a self-consistent
the two different stretched eXponential fits m(k,t) are mode Coupiing theory(MCT) anaiysis Successfuiiy ex-
presented for different mass rafidr . plained this weak mass dependefte.

The Fy(k,t) of each of the individual solute particle ob- In Fig. 9 we plot the normalized velocity autocorrelation
tained from a single MD run is shown in Fig. 7, Bt  functionC,(t) of the solute particles for the different values
~2mlay, and forMg= 250. We find that not only all of them of M. The velocity correlation function shows highly inter-
have a different time scale of relaxation but each of therresting features at |arger mass ratio. Not oniy does the nega-
shows considerable stretchirithe exponents=0.6) at a tive dip becomes larger, but there develops a second mini-
Ionger time. This confirms further that each of the SO'Utemum or an extended negative p|ateau which becomes
particles probe the heterogeneous structure and dynamics gfominent as the mass of the solvent is increased. Interest-
the solvent. ingly, as can be seen from the figure tBg(t) shows an

In Table Il we present the scaled averageer all the  oscillatory behavior that persists for a long period. This is
solute particles and three independent MD judgfusion  clear evidence for the “dynamic cage” formation in which
value of the solute particles obtained from the slope of thehe solute particle is seen to execute a damped oscillatory
mean square displacemeiMSD) in the diffusive limit, for  motion. Because of the increasing effective structural rigidity
different mass ratioM . The values of the solute diffusion of the neighboring solvent particles as the mass of the sol-
decreases as the mass of the solvent is increased, as &¢nt increases, the motion of the solute particle can be mod-
pected. The mass dependence can be fitted to a power law gfed as a damped oscillator which is reminiscent of the be-
clearly manifested in Fig. 8 where we have plotted D/ havior observed in a deeply supercooled liquid near the glass
against Irmy /m,, whereD;, is the self-diffusion of the solute  transition temperatur&.
partiCIeS. The Slope of the line is about 0.13. The small value The understanding of the microscopic Origin of the de-
of the exponent is Clearly an indication of the weak maSS/eiopment of an increasingiy negative dip followed by pro-
dependence of the self-diffusion coefficient of the small solmounced oscillations at longer times in the velocity autocor-
ute particle on the mass of the bigger solvent particles.  relation function of a supercooled liquid is the subject of

TABLE I. The time constants#; and r,) and the exponentsg; and 3,) TABLE Il. The self-diffusion coefficient values of the solute particle pre-
obtained from the stretched exponential fit to fhgk,t) at the reduced dicted by the simulation and obtained from the MCT calculations for differ-

wave numbek* ~ 2/ o, for different solvent-to-solute mass ratiMg). ent solvent-to-solute mass rativg).
my my i
MR:E 1 B1 72 B2 MR:@ D™ DyeT
5 0.082 0.70 5 0.135 0.1065
25 0.08 0.96 0.49 0.67 25 0.108 0.0675
50 0.083 0.94 0.59 0.64 50 0.101 0.053

250 0.085 0.91 1.01 0.635 250 0.0805 0.032




' ' ' ’ IV. MODE COUPLING THEORY ANALYSIS

o5 | 1 Mode coupling theory remains the only quantitative
fully microscopic theory for self-diffusion in strongly corre-
lated systems. In this section we present a mode coupling
theory calculation of the solute diffusion for different
23 . solvent-to-solute mass ratid 5. Diffusion coefficient of a
tagged solute is given by the well known Einstein relation,

D,=kgT/my{5(z=0), ()

21 . whereD, is the diffusion coefficient of the soluté,(z) is
the frequency dependent friction, ang is the mass of the
solute particle. Mode coupling theory provides an expression
of the frequency dependent friction on an isolated solute in a
1.9 : ' : L . : : L solvent.
15 25 35 45 55 In the normal liquid regimdin the absence of hopping
In (m,/m,) trans . : 112
port it can be given by’

FIG. 8. The plot of In1/D, vs Inom, /m,, whereD, is the self-diffusion of 1 1
the solute.m; and m, are the masses of the solvent and solute particles,

respectively. The slope of the straight line is about 0.13. This suggests a {5(2) g?(z)+ R5%(2)

weak power-law mass dependence of the solute diffusion on the mass of the . . . .
bigger solvent particles. where {5(2) is the binary part of the frictionR54(2) is the

friction due to the coupling of the solute motion to the col-
lective density mode of the solvent, aRj;(z) is the con-
tribution to the diffusion(inverse of friction from the cur-
much current interest. The novel molecular-dynamics simuf€nt modes of the solvent.
lation study of Kivelson and co-workéfssurely provide a For the present system, we have neglected the contribu-
step forward in this direction. Their simulation study hadtion from the current termR;{(z) which is expected to be
shown that the single particle velocity autocorrelation func-"éasonable at high density and low temperature. Thus the
tion could be thought of as a sum of the local rattling motiontotal frequency dependent friction can be approximated as
relative to the center-of-mass of the neighboring cluster and {o(2)=8(2) + RE(2). (5)
the motion of the center-of-mass of that cluster. Furthermore, _ _ _ o
it was observed that the rich structure displayed by the ve-  The expression for the time dependent binary friction
locity autocorrelation function at high density arise primarily ¢2(t), for the solute—solvent pair, is given By

In (1/D,)

+R3{(2), 4

frorr_1 the re!ative.m.otion of the tagged particle, tr_\at is, .the {?(t)zwglzexp(—tzlrg), (6)
rattling motion within the cage formed by the neighboring _ ) _ )
particles. where wy1, IS Now the Einstein frequency of the solute in

presence of the solvent and is given by

p
wglzzs_mzf drgao(r)VZuH(r). (7)

0.1

Here g45(r) is the partial solute—solvent radial distribution
function.

In Eq. (6), the relaxation timer, is determined from the
second derivative of5(t) att=0 and is given b}{#?3

()

0.05

w§12/72= (P/szﬂ)f dr(VeVPu15(r)gasr)

X(VEVPu o))+ (1/6p)

-0.05

X f [dk/(27)%]ygL5(k) (S(K) — 1) vgfx k),

velocity autocorrelation function C

8
01, v » 5 ) . where summation over repeated indices is implieds the
' time @) ' reduced mass of the solute—solvent pair. H8(g) is the

static structure factor which is obtained from the HMSA
FIG. 9. The velocity autocorrelation functidd, (t) for the solute particles  scheme® The expression fowé‘ffz(k) is written as a combi-
at different values of mass ratiblz. The solid line represents favlg : ot
=25, the dotted line foM g=50, and the dashed line fd g=250. The plot nathn o_f the distinct parts of the second mo.ments Of. the
shows an increase in the negative dip with an increase in mass ratio. FépngnUd'nal and transverse current correlation functions

detalils, see the text. y'dlz(k) and yfm(k), respectively,



TABLE lll. The contribution of the binary&?) and the density modeR(Y)
')’gfz( k)=— (P/mz) j dr exp( —i k_r)glz(r)V“Vﬁv 1Z(r) of the friction for different solvent-to-solute mass ratid ).

=k kYol K)+ (Bop=k k) Yina k), (9 Me=ret & RY
where yy1o(K) = Y51(k) and yi;o(k) = v51AK). 5 23,65 .95
The expression foR5{(t), for the solute—solvent pair, 25 25.4 338
can be written d$% 50 25.45 50.2
T 250 25.58 99.8
[ ’ L i ’ ’
RE(D) =~ J [dk'1(2m)2](k- k') %k 2 il K) T2
X[FS(K" ,t)F(k',t)—F3(k’,t)Fo(k’ . @2
[ ( 1t) ( !t) 0( vt) o( 1t)] ( 0) . k2<AI’2(t)>
In Eq. (10), c1(k) is the two particle(solute—solvent Fo(k,t)=exp — 6
direct correlation in the wave numbek)( space which is )
obtained here from the HMSA scherffeThe partial radial o] kel 2J‘ B
distribution function[g4,(r)] required to calculate the Ein- —exp{ _Zk odTC”(T)(t it (12

stein frequency ¢,1,) and the binary time constant) is
obtained from the present simulation studi(k,t) is the
intermediate scattering function of the solvent, ank,t)

is the inertial part of the intermediate scattering function.
Fs(k,t) is the self-intermediate scattering function of the sol-
ute andrF(k,t) is the inertial part of4(k,t).

It should be noted here that the short time dynamics o
the density term used in E¢L0), is different from the con-
ventional mode coupling formalisif.This prescription has kgT
recently been proposed to explain the weak power law mass Cv(2)= Mzt 22)" (13

dependence of the self-diffusion coefficient of a tagged ) ] o
particle?® The detailed discussion on this prescription has!hus in this scheme the frequency-dependent friction has
been given elsewhefd?3 been calculated self-consistently with the MSD. The details

Since the solvent is much heavier than the solute, th®f implemzezr;ting this self-consistent scheme is given
decay of solvent dynamical variables are naturally muctglsewhere? o o _
slower than those of the solute. Since the decaly£k,t) is We have evaluated the diffusion coefficiény by using
much faster tharF(k,t), in Eq. (10) the contribution from the above mentioned self-consistent scheme. The calculated
the product,F4(k,t)F(k,t) is mainly governed by the time diffusior_n value was found to be higher than the simulated
scale of decay of (k,t). Thus the long time part of the On€. This may be partly due to the observed faster decay of
F(k,t) becomes unimportant and the viscoelasticcalculatedr4(k,t) than the simulated one. This in turn could
expressioft for F(k,z) [Laplace transform of (k,t)] ob- be due to the Gaussian approximation fou(k,t) which
tained by using the well-known Mori continued-fraction ex- fruncates the cumulant expression ©f(k,t) beyond the

: ) ic K2 29 :
pansion, truncating at second order would be a reasonabfiadratic k%) term™ However, the higher order terms
good approximation. The expressionfefk,z), can be writ-  Which are the systematic corrections to the Gaussian forms

where(Ar?(t)) is the mean square displaceméSD) and
C,(t) is the time-dependent velocity autocorrelation function
(VACF) of the solute particles. The time-dependent VACF is
obtained by numerically Laplace inverting the frequency-
dependent VACF, which is in turn related to the frequency-
pependent friction through the following generalized Ein-
stein relation given by

ten adb12 can be increasingly important at intermediate times and wave
numbers k).
F(k.2)= S(k) 1) Therefore, we have performed MCT calculations using
' <w§> ' the simulated F(k,t) evaluated at different values of the
z+ A wave numberk=nkp,,, wherek,,,=2#/L (L stands for the
7+ lel average size of the simulation gedindn is an integer varied

in the range, £n=<35. F4(k,t) is then obtained by interpo-
where F(k,t) is obtained by the Laplace inversion of lating the simulated-¢(k,t) so obtained at different wave
F(k,z), the dynamic structure factor. Because of the vis-numbers. The calculated value of the binary term and the
coelastic approximation,w?) andA, and alsor, are deter- density term contribution to the friction for different values
mined by the static pair correlation functions. The static pairof Mg are presented in Table IlI.
correlation functions needed are the static structure factor Earlier mode coupling theoretical calculatiGhsfor
S(q) and the partial solvent—solvent radial distribution func-small solute was performed by keeping the solute and the
tion gy4(r). S(q) is obtained by using the HMSA scheffle solvent massqual In those calculations it was found that
andgq4(r) is taken from the present simulation study. for size ratio Sg=5, the solute motion is primarily deter-
We have used the recently propo¥edgeneralized self- mined by the binary collision between the solute and the
consistent scheme to calculate the frictiaf(z), which  solvent particles. It was also shown that due to the decou-
makes use of the well-known Gaussian approximation fopling of the solute motion from the structural relaxation of
Fo(k,t),8 the solvent, the contribution of the density mode of the sol-



vent was much smaller than that of the binary term. In the T
present calculation we find that due to smaller mass of the gl
solute, the contribution of the binary term decreases with
an increase in the solvent mass as is clearly evident from
Table IIl. 07F
When compared to the simulated diffusion values, it is ool
clearly seen from Table Il that although the MCT qualita-
tively predicts the diffusion value favlg=5, it breaks down
at large values of the mass ratios. This may be because MCT o4}
overestimates the friction contribution from the density
mode. This breakdown of the MCT for large mass ratio can
be connected to its breakdown observed near the glass tran
sition temperature. For large solvent mass, the system is al- o1}
most frozen and the dynamic structure factor of the solvent ,
decays in a much longer time scale when compared to the 10"
solute. So from the point of view of the solute, it probes an time (1)
aImos’F quenched SySFer.n which can be expected to show t . 10. Comparison of the simulated self-intermediate scattering function
behavior to be very similar to a system, near the glass tral’}:S(k,t) of the solute particles with thEg(k,t) obtained after incorporating
sition. Just as near the glass transition temperature, the hofe lowest order correctiorkt term) to the Gaussian approximation in the

ping mode also plays the dominant role in the diffusion pro-cumulant expansiofEq. (14]. The Gaussian approximation Ey(k,t) is

cess. also shown. The mean-squared displacenfdur(t)2)] and the non-
Gaussian parametgra,(t)] required as an input are obtained from the
simulation. The plot is at the reduced wave numier 27/ o4, and for the

mass ratioM g=50. F4(k,t) obtained from the simulation is represented by

V. EFFECT OF DYNAMIC HETEROGENEITY the solid line, the dashed line representsfQEk,t) obtained after the low-

ON F4(k,t) OF THE SOLUTE est order correction to the Gaussian approximation, and the dotted line rep-
resents the Gaussian approximation. For a detailed discussion, see the text.
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It is well-known that the self-intermediate scattering
function, F4(k,t) can be formally expressed by the following

P .29
cumulant expansion in powers kf: F<(k,t) of the solute at a longer time. In order to quantify
F.(kt)=exp — Lk(Ar2())[ 1+ L aq(t this, we have plotted in Fig. 10 the simulateg(k,t) along

s(kit) R skHArH O zaz(t) with the F¢(k,t) obtained after incorporating the lowest or-
X(LKA(AT3(1)))2+0(k%)], (14) der corre(?tion k* term) to the Gaussian approximations for
_ _ mass ratio, Mg=50 at the reduced wave numbds*
wherea,(t) is defined as ~2mloq,. For comparison, the Gaussian approximation to
3(Ar4(1)) Fs(k,t) is also shown. It is clearly seen that the first non-
as(t)= (15 Gaussian correction tB4(k,t) is not sufficient to describe

5(Ar(t))? ) : . : : .
the long time stretching predicted by the simulation. This
In the stable fluid range, it has been generally found that thelearly indicates that at the length scales probed by the sol-
Gaussian approximation 4(k,t), the leading term in the ute, the higher order corrections cannot be neglectéidis
above cumulant expansion, provides a reasonably good dehe nearly quenched inhomogeneity probed by the solute par-
scription of the dynamics of the system. The higher ordeticles over small length scales which play an important role
terms which are the systematic corrections to the Gaussian the dynamics of the system. The stretchingFafk,t)
approximation in the cumulant expansion are found to bepbserved in simulation could be intimately connected with
small. this nearly quenched inhomogeneity probed by the solute
However, in a supercooled liquid, this is not the case particles.
The dynamical heterogeneities observed in a deeply super-
coo!eql liquid are often manifested as the mggnltude of th?n_ CONCLUSIONS
deviation of a,(t), the so-called non-Gaussian parameter,
from zero. It has been observed thg{t) deviates more and Let us first summarize the main results of this study. We
more strongly and decays more and more slowly with arhave investigated by using the molecular dynamics simula-
increase in the degree of supercoolfdn the present study, tion the diffusion of small light particles in a solvent com-
a similar behavior has also been observedviiit) (calcu- posed of larger massive particles for a fixed solvent-to-solute
lated for the solute The height of the maximum im,(t) size ratio Sg=5) but with a large variation in mass ratio
increases as the mass of the solvent is increésssl Fig. 3, (where the mass of the solute is kept congtdntaddition, a
which is clear evidence that the solute probes increasinglynode-coupling theorfMCT) analysis of diffusion is also
heterogeneous dynamics. presented. It is found that the solute dynamics remain sur-
It is generally believed that the dominant corrections toprisingly coupled to the solvent dynamics even in the limit of
the Gaussian result are provided by the term containindiighly massive solvent. Most interestingly, with increase in
a,(t). Thus, it would be interesting to see whether this termmass ratio, the self-intermediate scattering function of the
alone is sufficient to explain the observed stretching insolute develops a stretching at long time which, for interme-



diate values of mass ratio, could be fitted to a singlegood candidate to understand qualitative features of relax-
stretched exponential function with the stretching exponentation in a large variety of systems, such as, concentrated
B=0.6. In the limit of very large mass ratio, the existence ofsolution of polysaccharide in water and also the motion of
two stretched exponential separated by a power law typaater in clay.

plateau is observed. This behavior is found to arise from
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