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We study the diffusion of small light particles in a solvent which consists of large heavy particles.
The intermolecular interactions are chosen to approximately mimic a water–sucrose~or water–
polysaccharide! mixture. Both computer simulation and mode coupling theoretical~MCT!
calculations have been performed for a solvent-to-solute size ratio 5 and for a large variation of the
mass ratio, keeping the mass of the solute fixed. Even in the limit of large mass ratio the solute
motion is found to remain surprisingly coupled to the solvent dynamics. Interestingly, at
intermediate values of the mass ratio, the self-intermediate scattering function of the solute,Fs(k,t)
~wherek is the wave number andt is the time!, develops a stretching at long time which could be
fitted to a stretched exponential function with ak-dependent exponent,b. For very large mass ratio,
we find the existence of two stretched exponentials separated by a power law type plateau. The
analysis of the trajectory shows the coexistence of both hopping and continuous motions for both the
solute and the solvent particles. It is found that for mass ratio 5, the MCT calculations of the
self-diffusion underestimates the simulated value by about 20%, which appears to be reasonable
because the conventional form of the MCT does not include the hopping mode. However, for larger
mass ratio, MCT appears to breakdown more severely. The breakdown of the MCT for large mass
ratio can be connected to a similar breakdown near the glass transition.
nt
n

dif
he
n

st
of
cl

er

-
a
s

-
ro

e
,

ar-
ifi-
in

ion

e-
he
at
lso
ic

of
the
x-
de-
on
nce

the
ent
al

nt-
f
the

is

sic

ma
I. INTRODUCTION

The issue of diffusion of small light particles in a solve
composed of larger and heavier particles is unconventio
because the role of the solvent in the solute diffusion is
ferent from the case where the sizes are comparable. T
are two limits that can be identified for such systems. O
limit is the well studied Lorentz gas system, which consi
of a single point particle moving in a triangular array
immobile disk scatters. Here the motion of the point parti
can be modelled by random walk between traps.1–3 The other
limit is where the size of the solute particle is still small
than that of the solvent molecules but it has a finite size~that
is, not a point! and while the solvent is slow~compared to
the solute particles! but not completely immobile. In the lat
ter case, the translational diffusion of the solute is often
tempted to describe the well known hydrodynamic Stoke
Einstein~SE! relation given by,4,5

D5
kBT

ChR
, ~1!

wherekB is the Boltzmann constant,T is the absolute tem
perature,C is a numerical constant determined by the hyd
dynamic boundary condition,h is the shear viscosity of the
solvent, andR is the radius of the diffusing particle. Th
validity of Eq. ~1! for small solutes is, of course
questionable.4–6
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There have been many experimental,6,7 computer
simulation,8–10 and theoretical11,12 studies of diffusion of
small solute particles in a solvent composed of larger p
ticles. All these studies show that the SE relation sign
cantly underestimates the diffusion coefficient. To expla
the enhanced diffusion, sometimes an empirical modificat
of the SE relation is used.6,7 It is considered thatD}h2a,
where a.2/3. This fractional viscosity dependence is r
ferred to as the microviscosity effect which implies that t
viscosity around the small solute is rather different from th
of the bulk viscosity. The enhanced diffusion value has a
been explained in terms of the effective hydrodynam
radius.4,13

The earlier mode coupling theoretical~MCT! studies11,12

of diffusion of smaller solutes in a solvent composed
larger size molecules attributed the enhanced diffusion to
decoupling of the solute motion from the structural rela
ation of the solvent. The MCT studies suggest that this
coupling of the solute motion from the structural relaxati
of the solvent can lead to the fractional viscosity depende
often observed in supercooled liquids.

However, there have been no systematic studies of
effects of the variation of size and mass of the solute–solv
system. In this article we have explored the diffusion
mechanism of the isolated small particles~solute! in a liquid
composed of larger particles~solvent!, both analytically and
numerically. The study is performed by keeping the solve
to-solute size ratio (SR) fixed at 5, but varying the mass o
the solvent over a large range, by keeping the mass of
solute fixed. That is, the mass ratioMR ~solvent mass/solute
mass! is progressively raised to higher values. This system
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expected to mimic some aspects of the water–sucros
water–polysaccharide mixtures.14

The trajectories of the solute and the solvent show
coexistence of both hopping and continuous motions. As
solvent mass is increased, the self-intermediate scatte
function of the solute develops an interesting stretch fo
long time. For the larger mass ratio, we see the existenc
two stretched exponentials separated by a power law
plateau.

The mode coupling theory calculation of the se
diffusion coefficient of solute particles performed in the lim
of small mass ratio~of 5! is found to be in qualitative agree
ment with the simulated diffusion—MCT underestimates
diffusion by about 20%. Thus, although the MCT undere
mates the diffusion, the agreement is satisfactory in ligh
the contribution from the hopping mode to diffusion whic
MCT does not explicitly take into account. However, t
deviation from the simulated value increases with an
crease in mass ratio~which is equivalent to the increase o
the mass of the solvent particles!. In the limit of large mass
ratio, MCT breaks down. The binary contribution to the to
friction is found todecreaseas one increases the mass of t
solvent. In addition, due to the development of stretching
the self-intermediate scattering function of the solute and
inherent slow solvent dynamics, there remains a strong c
pling of the solute motion to the solvent density mode. T
enhanced coupling at larger mass ratio came as a surpri
us.

In the limit of very large mass ratio, the motion of th
light solute particle resembles that of its motion in an alm
frozen disorder system like near the glass transition temp
ture. Thus, the breakdown of MCT in the limit of large ma
ratio could be connected to its failure near the glass tra
tion temperature. Of course, one should note that in the l
of mass of the solvent goes to infinity, the basic assump
of conventional MCT breaks down.

It is widely believed that in a deeply supercooled liqu
close to its glass transition temperature (Tg), the hopping
mode is the dominant mode in the system which controls
mass transport and the stress relaxation. Recently, a c
puter simulation study of a deeply supercooled bin
mixture15 has shown evidence of an intimate connection
tween the anisotropy in local stress and the particle hopp
It was shown that the local anisotropy in the stress is resp
sible for the particle hopping in a particular direction. Fu
thermore, it was suggested that the local frustration pre
in the system~which is more in a binary mixture with com
ponents of different sizes! could cause the local anisotropy
the stress which in turn acts as a driving force for hoppi
However, in the present study, the density~or the pressure!
of the system is not as high as that of a deeply superco
system. The relaxation of the stress is found to occur m
faster and it relaxes almost completely within our simulat
time window even for the largest mass ratio. Consequen
the microscopic origin of particle hopping here could be d
ferent than that for a deeply supercooled liquid.

The layout of the rest of the paper is as follows: Sect
II deals with the system and simulation details. The simu
tion results and discussions are given in Sec. III, and
or
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mode coupling theoretical analysis is presented in Sec. IV
Sec. V, we discuss the possible effect of heterogen
probed by the solute on the self-intermediate scattering fu
tion of the solute. Finally, in Sec. VI we present the conc
sions of the study.

II. SYSTEM AND SIMULATION DETAILS

We performed a series of equilibrium isotherma
isobaric ensemble~NPT! molecular dynamics~MD! simula-
tion of binary mixtures in three dimensions for an infinites
mal small value of the mole fraction of one of the speci
The binary system studied here contains a total ofN5500
particles consisting of two species of particles, withN1

5490 andN2510 number of particles. Hereafter, we refer
indices 1 and 2, respectively, for the solvent and solute p
ticles. Thus, the mixture under study contains 2% of the s
ute particles. The interaction between any two particles
modeled by means of the shifted force Lennard-Jones~LJ!
pair potential,16 where the standard LJ is given by

ui j
LJ54e i j F S s i j

r i j
D 12

2 S s i j

r i j
D 6G , ~2!

wherei and j denote two different particles~1 and 2!. In our
model system, the potential parameters are as follows:e11

51.0, s1151.0, e2251.0, s2250.2, e1252.0 ~enhanced at-
traction!, and s1250.6. The mass of the solute particles
chosen to bem250.2 where the solvent~species 1! massm1

is increasingly varied and four different values are chosen
5, 10, and 50. Thus, in this study we examined four differ
solvent-to-solute mass ratios,MR5m1 /m255, 25, 50, and
250 for a fixed solvent-to-solute size ratio,SR5s11/s22

55. Note that in the model system being studied the solu
solvent interaction (e12) is much stronger than both of the
respective pure counterparts. In order to lower the comp
tional burden the potential has been truncated with a cu
radius of 2.5s11. All the quantities in this study are given i
reduced units, that is, length in units ofs11, temperatureT
in units of e11/kB , pressureP in units of e11/s11

3 , and the
mass in units ofm, which can be assumed as an argon~Ar!
mass unit. The corresponding microscopic time scale it
5Ams11

2 /e11.
All simulations in the NPT ensemble were perform

using the Nose´–Hoover–Andersen method,17 where the ex-
ternal reduced temperature is held fixed atT* 50.8. The ex-
ternal reduced pressure has been kept fixed atP* 56.0. The
reduced average densityr̄* of the system corresponding t
this thermodynamic state point is 0.989 for all the mass
tios being studied. Throughout the course of the simulatio
the barostat and the system’s degrees of freedom are cou
to an independent Nose´–Hoover chain18 ~NHC! of thermo-
stats, each of length 5. The extended system equation
motion are integrated using the reversible integra
method19 with a small time step of 0.0002. The higher ord
multiple time step method20 has been employed in the NHC
evolution operator which lead to stable energy conserva
for non-Hamiltonian dynamical systems.21 The extended sys
tem time scale parameter used in the calculations was ta
to be 0.9274 for both the barostat and thermostats.
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The systems were equilibrated for 106 time steps and
simulations were carried out for another 2.03106 production
steps following equilibration, during which the quantities
interest are calculated. The dynamic quantities are avera
over three such independent runs for better improvemen
the statistics. We have also calculated the partial radial
tribution functions@g11(r ) and g12(r )] to make sure that
there is no crystallization.

III. SIMULATION RESULTS AND DISCUSSION

In Fig. 1 we show typicalsolute trajectories for four
different solvent-to-solute mass ratios,MR (5m1 /m2 , m1 is
the mass of the solvent particles!. The trajectories reveal a
interesting dependence onMR . At the value ofMR equal to
5, the solute trajectory is mostly continuous with occasio
hops. As the mass ratioMR is increased, the solute motio
gets more trapped, and its motion tends to become dis
tinuous where displacements occur mostly by hopping. T
is because with an increase in the solvent mass the time s
of motion of the solvent particles become increasin

FIG. 1. The time dependence of the displacements for a solute partic
different solvent-to-solute mass ratio,MR : ~a! MR55, ~b! MR525, ~c!

MR550, and~d! MR5250. Note that the time is scaled byAms11
2 /kBT. The

time unit is equal to 2.2 ps if argon units are assumed.
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slower. Thus, the solute gets caged by the solvent parti
and keeps rattling between a cage-until one solvent par
moves considerably to disperse the solute trajectory~see tra-
jectory for MR5250). Thus, there is a remarkable change
the solute’s motion in going fromMR55 @Fig. 1~a!# to MR

5250 @Fig. 1~d!#.
In Fig. 2 we plot thesolventtrajectories for the different

solvent-to-solute mass ratio,MR . We find that for all values
of MR , there is a coexistence of hopping and continuo
motion of the solvent molecules. At higher solvent mass,
expected, the magnitude of displacement becomes less
hopping becomes less frequent, but, surprisingly, the ju
motion still persists.

Figure 3 displays the decay behavior of the se
intermediate scattering function@Fs(k,t)# of the solute for a
different mass ratioMR , at reduced wave numberk*
5ks11;2p. The plot shows thatFs(k,t) begins to stretch
more for higher solvent mass. This stretching ofFs(k,t) is
kind of novel and we have examined it in detail.

After the initial Gaussian decay,Fs(k,t), for smaller val-
ues of MR , can be fitted to a single stretched exponen
where the exponentb.0.6. However, for higher mass of th

at
FIG. 2. The same plot as in Fig. 1, but for a solvent particle at differentMR :
~a! MR55, ~b! MR525, ~c! MR550, and~d! MR5250. Note that here also
the time is scaled byAms11

2 /kBT.
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solvent,Fs(k,t) can be fitted only to a sum oftwo stretched
exponentials.

The behavior ofFs(k,t) of thesolventfor all the solvent
masses studied is shown in Fig. 4. The plot shows that~as
expected! the time scale of relaxation ofFs(k,t) becomes
longer as the solvent mass is increased. However, the
intermediate scattering function of the solvent does not
play any stretching at long times, even for the largest m
ratio considered. The decay can be fitted by sum of a sh
time Gaussian and a long-time exponential function.

The reason thatFs(k,t) of the solute shows such stretc
ing but that of the solvent does not, can be explained
follows. Due to the small size and the lighter weight of t
solute, the time scale of motion of the solute particles

FIG. 3. The self-intermediate scattering functionFs(k,t) for the solute par-
ticles for different mass ratioMR , at reduced wave numberk* 5ks11

;2p. The solid line representsMR55, the dashed line is forMR525, the
dotted line is forMR550, and the dot–dashed line is forMR5250. Note the
stretching inFs(k,t) at longer time with an increase inMR . For details, see
the text.

FIG. 4. The self-intermediate scattering functionFs(k,t) for the solvent
particles for different mass ratioMR , at reduced wave numberk* ;2p.
The solid line representsMR55, the dashed line is forMR525, the dotted
line is for MR550, and the dot–dashed line is forMR5250.
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much shorter compared to that of the solvent particles. C
sequently, the solute motion probes more heterogeneity
ing the time scale of decay ofFs(k,t) of the solute. This
heterogeneity probed by the solute increases as the so
mass is increased. Since the solvent motion is much slo
it probes enough configurations during the time scale of
cay of itsFs(k,t).

In order to quantify the degree of heterogeneity prob
by the solute, we have plotted the non-Gaussian param
a2(t),22 for the solute, in Fig. 5. Clearly, the heterogene
probed by the solute@quantified by the peak height ofa2(t)]
increases as the solvent mass is increased. On the other
a2(t) of the solvent shows no such increase in the pe
height ofa2(t) which remains small and unaltered, althou
the position of the peak shifts to longer time as the mass
the solvent is increased. We have discussed this analys
more detail in Sec. V.

The role of the local heterogeneity can be further e
plored by calculatingFs(k,t) at a wave number correspond
ing to solute–solvent average separation. This correspond
k* 52p/s12, wheres125

1
2 (s11s2). In Fig. 6 we plot the

self-dynamic structure factor of the solute for the differe
mass ratioMR , at a reduced wave numberk* ;2p/s12.
This is primarily the wave number probed by the solute.
this wave number one observes more stretching ofFs(k,t) at
longer times, for all the mass ratios. This is in agreem
with the above argument that since the time window prob
by the solute is smaller at higherk, it probes even larger
heterogeneity.

The emergence of the plateau between the two stretc
exponentials inFs(k,t) of the solute~Fig. 6!, can be attrib-
uted to the separation of the time scale of the binary collis
and the solvent density mode contribution to the particle m
tion. This separation of time scale increases as the sol
mass is increased. As the decay after the plateau is ma
due to the density mode contribution, the plateau becom
more prominent as the mass of the solvent is increas

FIG. 5. The behavior of the non-Gaussian parametera2(t) calculated for
the solute particles at different mass ratioMR . The solid line, the dashed
line, the dotted line, and the dot–dashed line are forMR55, 25, 50, and 250,
respectively.
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Table I clearly shows the separation of time scales where
value of the time constants and the exponents obtained f
the two different stretched exponential fits toFs(k,t) are
presented for different mass ratioMR .

The Fs(k,t) of each of the individual solute particle ob
tained from a single MD run is shown in Fig. 7, atk*
;2p/s12 and forMR5250. We find that not only all of them
have a different time scale of relaxation but each of th
shows considerable stretching~the exponentb.0.6) at a
longer time. This confirms further that each of the solu
particles probe the heterogeneous structure and dynami
the solvent.

In Table II we present the scaled average~over all the
solute particles and three independent MD runs! diffusion
value of the solute particles obtained from the slope of
mean square displacement~MSD! in the diffusive limit, for
different mass ratio,MR . The values of the solute diffusio
decreases as the mass of the solvent is increased, a
pected. The mass dependence can be fitted to a power la
clearly manifested in Fig. 8 where we have plotted ln 1/D2

against lnm1 /m2, whereD2 is the self-diffusion of the solute
particles. The slope of the line is about 0.13. The small va
of the exponent is clearly an indication of the weak ma
dependence of the self-diffusion coefficient of the small s
ute particle on the mass of the bigger solvent particles.

FIG. 6. The self-intermediate scattering functionFs(k,t) for the solute par-
ticles for different mass ratioMR as in Fig. 3, but at the reduced wav
numberk* ;2p/s12 . This is primarily the wave number probed by th
solute. Note the emergence of a plateau at larger mass ratio. For detail
the text.

TABLE I. The time constants (t1 andt2) and the exponents (b1 andb2)
obtained from the stretched exponential fit to theFs(k,t) at the reduced
wave numberk* ;2p/s12 for different solvent-to-solute mass ratio (MR).

MR5
m1

m2
t1 b1 t2 b2

5 0.082 0.70
25 0.08 0.96 0.49 0.67
50 0.083 0.94 0.59 0.64

250 0.085 0.91 1.01 0.635
e
m

e
of

e

ex-
as

e
s
l-

Interestingly, it is to be noted that a similar weak pow
law mass dependence was seen in the self-diffusion co
cient of a tagged particle on its mass—the exponent w
often found to be around 0.1. Recently, a self-consist
mode coupling theory~MCT! analysis successfully ex
plained this weak mass dependence.23

In Fig. 9 we plot the normalized velocity autocorrelatio
functionCv(t) of the solute particles for the different value
of MR . The velocity correlation function shows highly inte
esting features at larger mass ratio. Not only does the ne
tive dip becomes larger, but there develops a second m
mum or an extended negative plateau which becom
prominent as the mass of the solvent is increased. Inter
ingly, as can be seen from the figure theCv(t) shows an
oscillatory behavior that persists for a long period. This
clear evidence for the ‘‘dynamic cage’’ formation in whic
the solute particle is seen to execute a damped oscilla
motion. Because of the increasing effective structural rigid
of the neighboring solvent particles as the mass of the
vent increases, the motion of the solute particle can be m
elled as a damped oscillator which is reminiscent of the
havior observed in a deeply supercooled liquid near the g
transition temperature.24

The understanding of the microscopic origin of the d
velopment of an increasingly negative dip followed by pr
nounced oscillations at longer times in the velocity autoc
relation function of a supercooled liquid is the subject

see

FIG. 7. The self-intermediate scattering functionFs(k,t) for each of the ten
individual solute particle obtained from a single MD run for mass ra
MR5250. They are calculated at the reduced wave numberk* ;2p/s12 .

TABLE II. The self-diffusion coefficient values of the solute particle pr
dicted by the simulation and obtained from the MCT calculations for diff
ent solvent-to-solute mass ratio (MR).

MR5
m1

m2
D2

sim D2
MCT

5 0.135 0.1065
25 0.108 0.0675
50 0.101 0.053

250 0.0805 0.032
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much current interest. The novel molecular-dynamics sim
lation study of Kivelson and co-workers25 surely provide a
step forward in this direction. Their simulation study h
shown that the single particle velocity autocorrelation fun
tion could be thought of as a sum of the local rattling moti
relative to the center-of-mass of the neighboring cluster
the motion of the center-of-mass of that cluster. Furtherm
it was observed that the rich structure displayed by the
locity autocorrelation function at high density arise primar
from the relative motion of the tagged particle, that is, t
rattling motion within the cage formed by the neighbori
particles.

FIG. 8. The plot of lne 1/D2 vs lne m1 /m2, whereD2 is the self-diffusion of
the solute.m1 and m2 are the masses of the solvent and solute partic
respectively. The slope of the straight line is about 0.13. This sugges
weak power-law mass dependence of the solute diffusion on the mass o
bigger solvent particles.

FIG. 9. The velocity autocorrelation functionCv(t) for the solute particles
at different values of mass ratioMR . The solid line represents forMR

525, the dotted line forMR550, and the dashed line forMR5250. The plot
shows an increase in the negative dip with an increase in mass ratio
details, see the text.
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IV. MODE COUPLING THEORY ANALYSIS

Mode coupling theory remains the only quantitati
fully microscopic theory for self-diffusion in strongly corre
lated systems. In this section we present a mode coup
theory calculation of the solute diffusion for differen
solvent-to-solute mass ratioMR . Diffusion coefficient of a
tagged solute is given by the well known Einstein relatio

D25kBT/m2z2~z50!, ~3!

whereD2 is the diffusion coefficient of the solute,z2(z) is
the frequency dependent friction, andm2 is the mass of the
solute particle. Mode coupling theory provides an express
of the frequency dependent friction on an isolated solute
solvent.

In the normal liquid regime~in the absence of hopping
transport! it can be given by,11,12

1

z2~z!
5

1

z2
B~z!1R21

rr~z!
1R21

TT~z!, ~4!

wherez2
B(z) is the binary part of the friction,R21

rr(z) is the
friction due to the coupling of the solute motion to the co
lective density mode of the solvent, andR21

TT(z) is the con-
tribution to the diffusion~inverse of friction! from the cur-
rent modes of the solvent.

For the present system, we have neglected the contr
tion from the current term,R21

TT(z) which is expected to be
reasonable at high density and low temperature. Thus
total frequency dependent friction can be approximated a

z2~z!.z2
B~z!1R21

rr~z!. ~5!

The expression for the time dependent binary fricti
z2

B(t), for the solute–solvent pair, is given by11,12

z2
B~ t !5vo12

2 exp~2t2/tz
2!, ~6!

wherevo12 is now the Einstein frequency of the solute
presence of the solvent and is given by

vo12
2 5

r

3m2
E drg12~r !¹2v12~r !. ~7!

Here g12(r ) is the partial solute–solvent radial distributio
function.

In Eq. ~6!, the relaxation timetz is determined from the
second derivative ofz2

B(t) at t50 and is given by12,23

vo12
2 /tz

25~r/6m2m!E dr ~¹a¹bv12~r !!g12~r !

3~¹a¹bv12~r !!1~1/6r!

3E @dk/~2p!3#gd12
ab ~k!~S~k!21!gd12

ab ~k!,

~8!

where summation over repeated indices is implied.m is the
reduced mass of the solute–solvent pair. HereS(q) is the
static structure factor which is obtained from the HMS
scheme.26 The expression forgd12

ab (k) is written as a combi-
nation of the distinct parts of the second moments of
longitudinal and transverse current correlation functio
gd12

l (k) andgd12
t (k), respectively,

,
a

the

or
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gd12
ab ~k!52~r/m2!E dr exp~2 ik.r !g12~r !¹a¹bv12~r !

5 k̂ak̂bgd12
l ~k!1~dab2 k̂ak̂b!gd12

t ~k!, ~9!

wheregd12
l (k)5gd12

zz (k) andgd12
t (k)5gd12

xx (k).
The expression forR21

rr(t), for the solute–solvent pair
can be written as12,23

R21
rr~ t !5

rkBT

m2
E @dk8/~2p!3#~ k̂• k̂8!2k82@c12~k8!#2

3@Fs~k8,t !F~k8,t !2Fo
s~k8,t !Fo~k8,t !#. ~10!

In Eq. ~10!, c12(k) is the two particle~solute–solvent!
direct correlation in the wave number (k) space which is
obtained here from the HMSA scheme.26 The partial radial
distribution function@g12(r )# required to calculate the Ein
stein frequency (vo12) and the binary time constant (tz) is
obtained from the present simulation study.F(k,t) is the
intermediate scattering function of the solvent, andFo(k,t)
is the inertial part of the intermediate scattering functio
Fs(k,t) is the self-intermediate scattering function of the s
ute andFo

s(k,t) is the inertial part ofFs(k,t).
It should be noted here that the short time dynamics

the density term used in Eq.~10!, is different from the con-
ventional mode coupling formalism.27 This prescription has
recently been proposed to explain the weak power law m
dependence of the self-diffusion coefficient of a tagg
particle.23 The detailed discussion on this prescription h
been given elsewhere.12,23

Since the solvent is much heavier than the solute,
decay of solvent dynamical variables are naturally mu
slower than those of the solute. Since the decay ofFs(k,t) is
much faster thanF(k,t), in Eq. ~10! the contribution from
the product,Fs(k,t)F(k,t) is mainly governed by the time
scale of decay ofFs(k,t). Thus the long time part of the
F(k,t) becomes unimportant and the viscoelas
expression12 for F(k,z) @Laplace transform ofF(k,t)] ob-
tained by using the well-known Mori continued-fraction e
pansion, truncating at second order would be a reason
good approximation. The expression ofF(k,z), can be writ-
ten as11,12

F~k,z!5
S~k!

z1
^vk

2&

z1
Dk

z1tk
21

, ~11!

where F(k,t) is obtained by the Laplace inversion o
F(k,z), the dynamic structure factor. Because of the v
coelastic approximation,̂vk

2& andDk and alsotk are deter-
mined by the static pair correlation functions. The static p
correlation functions needed are the static structure fa
S(q) and the partial solvent–solvent radial distribution fun
tion g11(r ). S(q) is obtained by using the HMSA scheme26

andg11(r ) is taken from the present simulation study.
We have used the recently proposed12,23generalized self-

consistent scheme to calculate the friction,z(z), which
makes use of the well-known Gaussian approximation
Fs(k,t),28
.
-

f

ss
d
s

e
h
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-

ir
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-

r

Fs~k,t !5expS 2
k2^Dr 2~ t !&

6 D
5expF2

kBT

m2
k2E

0

t

dtCv~t!~ t2t!G , ~12!

where^Dr 2(t)& is the mean square displacement~MSD! and
Cv(t) is the time-dependent velocity autocorrelation functi
~VACF! of the solute particles. The time-dependent VACF
obtained by numerically Laplace inverting the frequenc
dependent VACF, which is in turn related to the frequenc
dependent friction through the following generalized E
stein relation given by

Cv~z!5
kBT

ms~z1z~z!!
. ~13!

Thus in this scheme the frequency-dependent friction
been calculated self-consistently with the MSD. The deta
of implementing this self-consistent scheme is giv
elsewhere.12,23

We have evaluated the diffusion coefficientD2 by using
the above mentioned self-consistent scheme. The calcul
diffusion value was found to be higher than the simula
one. This may be partly due to the observed faster deca
calculatedFs(k,t) than the simulated one. This in turn cou
be due to the Gaussian approximation forFs(k,t) which
truncates the cumulant expression ofFs(k,t) beyond the
quadratic (k2) term.29 However, the higher order term
which are the systematic corrections to the Gaussian fo
can be increasingly important at intermediate times and w
numbers (k).28

Therefore, we have performed MCT calculations usi
the simulated Fs(k,t) evaluated at different values of th
wave number,k5nkmin , wherekmin52p/L̄ (L̄ stands for the
average size of the simulation cell! andn is an integer varied
in the range, 1<n<35. Fs(k,t) is then obtained by interpo
lating the simulatedFs(k,t) so obtained at different wave
numbers. The calculated value of the binary term and
density term contribution to the friction for different value
of MR are presented in Table III.

Earlier mode coupling theoretical calculations11 for
small solute was performed by keeping the solute and
solvent massequal. In those calculations it was found tha
for size ratioSR55, the solute motion is primarily deter
mined by the binary collision between the solute and
solvent particles. It was also shown that due to the dec
pling of the solute motion from the structural relaxation
the solvent, the contribution of the density mode of the s

TABLE III. The contribution of the binary (z2
B) and the density mode (R21

rr)
of the friction for different solvent-to-solute mass ratio (MR).

MR5
m1

m2
z2

B R21
rr

5 23.65 13.95
25 25.4 33.8
50 25.45 50.2

250 25.58 99.8
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vent was much smaller than that of the binary term. In
present calculation we find that due to smaller mass of
solute, the contribution of the binary term decreases w
an increase in the solvent mass as is clearly evident f
Table III.

When compared to the simulated diffusion values, it
clearly seen from Table II that although the MCT qualit
tively predicts the diffusion value forMR55, it breaks down
at large values of the mass ratios. This may be because M
overestimates the friction contribution from the dens
mode. This breakdown of the MCT for large mass ratio c
be connected to its breakdown observed near the glass
sition temperature. For large solvent mass, the system i
most frozen and the dynamic structure factor of the solv
decays in a much longer time scale when compared to
solute. So from the point of view of the solute, it probes
almost quenched system which can be expected to show
behavior to be very similar to a system, near the glass t
sition. Just as near the glass transition temperature, the
ping mode also plays the dominant role in the diffusion p
cess.

V. EFFECT OF DYNAMIC HETEROGENEITY
ON Fs„k ,t … OF THE SOLUTE

It is well-known that the self-intermediate scatterin
function,Fs(k,t) can be formally expressed by the followin
cumulant expansion in powers ofk2:29

Fs~k,t !5exp~2 1
6 k2^Dr 2~ t !&!@11 1

2 a2~ t !

3~ 1
6 k2^Dr 2~ t !&!21O~k6!#, ~14!

wherea2(t) is defined as

a2~ t !5
3^Dr 4~ t !&
5^Dr 2~ t !&2 21. ~15!

In the stable fluid range, it has been generally found that
Gaussian approximation toFs(k,t), the leading term in the
above cumulant expansion, provides a reasonably good
scription of the dynamics of the system. The higher or
terms which are the systematic corrections to the Gaus
approximation in the cumulant expansion are found to
small.

However, in a supercooled liquid, this is not the ca
The dynamical heterogeneities observed in a deeply su
cooled liquid are often manifested as the magnitude of
deviation of a2(t), the so-called non-Gaussian parame
from zero. It has been observed thata2(t) deviates more and
more strongly and decays more and more slowly with
increase in the degree of supercooling.30 In the present study
a similar behavior has also been observed ina2(t) ~calcu-
lated for the solute!. The height of the maximum ina2(t)
increases as the mass of the solvent is increased~see Fig. 5!,
which is clear evidence that the solute probes increasin
heterogeneous dynamics.

It is generally believed that the dominant corrections
the Gaussian result are provided by the term contain
a2(t). Thus, it would be interesting to see whether this te
alone is sufficient to explain the observed stretching
e
e
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Fs(k,t) of the solute at a longer time. In order to quanti
this, we have plotted in Fig. 10 the simulatedFs(k,t) along
with the Fs(k,t) obtained after incorporating the lowest o
der correction (k4 term! to the Gaussian approximations fo
mass ratio, MR550 at the reduced wave numberk*
;2p/s12. For comparison, the Gaussian approximation
Fs(k,t) is also shown. It is clearly seen that the first no
Gaussian correction toFs(k,t) is not sufficient to describe
the long time stretching predicted by the simulation. Th
clearly indicates that at the length scales probed by the
ute, the higher order corrections cannot be neglected. It is
the nearly quenched inhomogeneity probed by the solute
ticles over small length scales which play an important r
in the dynamics of the system. The stretching ofFs(k,t)
observed in simulation could be intimately connected w
this nearly quenched inhomogeneity probed by the so
particles.

VI. CONCLUSIONS

Let us first summarize the main results of this study. W
have investigated by using the molecular dynamics simu
tion the diffusion of small light particles in a solvent com
posed of larger massive particles for a fixed solvent-to-so
size ratio (SR55) but with a large variation in mass rati
~where the mass of the solute is kept constant!. In addition, a
mode-coupling theory~MCT! analysis of diffusion is also
presented. It is found that the solute dynamics remain
prisingly coupled to the solvent dynamics even in the limit
highly massive solvent. Most interestingly, with increase
mass ratio, the self-intermediate scattering function of
solute develops a stretching at long time which, for interm

FIG. 10. Comparison of the simulated self-intermediate scattering func
Fs(k,t) of the solute particles with theFs(k,t) obtained after incorporating
the lowest order correction (k4 term! to the Gaussian approximation in th
cumulant expansion@Eq. ~14!#. The Gaussian approximation toFs(k,t) is
also shown. The mean-squared displacement@^Dr (t)2&# and the non-
Gaussian parameter@a2(t)# required as an input are obtained from th
simulation. The plot is at the reduced wave numberk* ;2p/s12 and for the
mass ratioMR550. Fs(k,t) obtained from the simulation is represented b
the solid line, the dashed line represents theFs(k,t) obtained after the low-
est order correction to the Gaussian approximation, and the dotted line
resents the Gaussian approximation. For a detailed discussion, see the
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diate values of mass ratio, could be fitted to a sin
stretched exponential function with the stretching expone
b.0.6. In the limit of very large mass ratio, the existence
two stretched exponential separated by a power law t
plateau is observed. This behavior is found to arise fr
increasingly heterogeneous environment probed by the
ute particle as one increases the mass of the solvent part
The MCT calculation of self-diffusion is found to agre
qualitatively with the simulation results for small mass rat
However, it fails to describe the simulated prediction at la
mass ratios. The velocity correlation function of the solu
shown interesting oscillatory structure.

Several of the results observed here are reminiscen
the relaxation of the self-intermediate scattering functi
Fs(k,t) observed in the deeply supercooled liquid near
glass transition temperature. In that case also, one often
serves a combination of power-law and stretched expone
in the decay of the intermediate scattering function. We fi
that even the breakdown of MCT at large mass ratio could
connected to its breakdown near the glass transition temp
ture because it is the neglect of the spatial hopping mod
particles which is responsible for the breakdown of MCT.
is to be noted that those hoppings which are mostly balli
in nature~after a binary collision! have already been incor
porated in MCT. However, MCT does not include the ho
pings which involve collective displacement involving se
eral molecules.15

It should be pointed out that in the MCT calculation, w
have neglected the contribution of the current term. Wh
the current contribution may improve the agreement betw
the simulation and MCT result for small mass ratio (MR

55), its contribution at larger mass ratio is not expected
change the results significantly, because the discrepanc
very large.

The origin of the power law remains to be investigat
in more detail. Our preliminary analysis shows that this m
be due to the separation of the time scale between the
weakly stretched exponential~due to the dispersion in th
binary-type interaction term! and the second, later mor
strongly stretched exponential~which is due to the coupling
of the solute’s motion to the density mode of the slow s
vent!. This separation arises because these two motions
very different in nature. However, a quantitative theory
this stretching and power-law is not available at present.

While the origin of the stretching ofFs(k,t) can be at
least qualitatively understood in terms of the inhomogene
experienced by the solute, the origin of hopping is less cl
In the supercooled liquid, hopping is found to be correla
with an anisotropic local stress15 which is unlikely in the
present system which is at lower density and pressure.

Finally, we note that the system investigated here i
e
t,
f
e

l-
es.
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good candidate to understand qualitative features of re
ation in a large variety of systems, such as, concentra
solution of polysaccharide in water and also the motion
water in clay.

ACKNOWLEDGMENTS

This work was supported in part by the Council of Sc
entific and Industrial Research~CSIR!, India and the Depart-
ment of Science and Technology~DST!, India. One of the
authors~R.K.M.! thanks the University Grants Commissio
~UGC! for providing the Research Scholarship.

1L. A. Bunimovich and Ya. G. Sinai, Commun. Math. Phys.78, 247~1980!;
78, 479 ~1980!.

2J. Machta and R. Zwanzig, Phys. Rev. Lett.50, 1959~1983!; R. Zwanzig,
J. Stat. Phys.30, 275 ~1983!.

3B. Bagchi, R. Zwanzig, and M. C. Marchetti, Phys. Rev. A31, 892~1985!.
4R. Zwanzig and A. K. Harrison, J. Chem. Phys.83, 5861~1985!.
5G. Phillies, J. Phys. Chem.85, 2838~1981!.
6G. L. Pollack and J. J. Enyeart, Phys. Rev. A31, 980 ~1985!; G. L.
Pollack, R. P. Kennan, J. F. Himm, and D. R. Stump, J. Chem. Phys.92,
625 ~1990!.

7B. A. Kowert, K. T. Sobush, N. C. Dang, L. G. Seele III, C. F. Fuqua, a
C. L. Mapes, Chem. Phys. Lett.353, 95 ~2002!.

8F. Ould-Kaddour and J.-L. Barrat, Phys. Rev. A45, 2308~1992!.
9F. Ould-Kaddour and D. Levesque, Phys. Rev. E63, 011205~2000!.

10A. J. Easteal and L. A. Woolf, Chem. Phys. Lett.167, 329 ~1990!.
11S. Bhattacharyya and B. Bagchi, J. Chem. Phys.106, 1757~1997!.
12B. Bagchi and S. Bhattacharyya, Adv. Chem. Phys.116, 67 ~2001!.
13R. Castillo, C. Garza, and S. Ramos, J. Phys. Chem.98, 4188~1994!.
14P. B. Conrad and J. J. de Pablo, J. Phys. Chem. A103, 4049~1999!; N. C.

Ekdawi-Sever, P. B. Conrad, and J. J. de Pablo,ibid. 105, 734 ~2001!.
15S. Bhattacharyya and B. Bagchi, Phys. Rev. Lett.89, 025504~2002!.
16M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids~Oxford

University Press, Oxford, 1987!.
17G. J. Martyna, D. J. Tobias, and M. L. Klein, J. Chem. Phys.101, 4177

~1994!; H. C. Andersen,ibid. 72, 2384 ~1980!; S. Nose, Mol. Phys.52,
255 ~1984!; W. G. Hoover, Phys. Rev. A31, 1695~1985!.

18G. J. Martyna, M. E. Tuckerman, and M. L. Klein, J. Chem. Phys.97,
2635 ~1992!.

19M. E. Tuckerman, G. J. Martyna, and B. J. Berne, J. Chem. Phys.97, 1990
~1992!.

20H. Yoshida, Phys. Lett. A150, 260 ~1990!; M. Suzuki, J. Math. Phys.32,
400 ~1991!.

21G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mo
Phys.87, 1117~1996!.

22A. Rahman, Phys. Rev. A136, 405 ~1964!.
23S. Bhattacharyya and B. Bagchi, Phys. Rev. E61, 3850~2000!.
24B. Bernu, J. P. Hansen, Y. Hiwatari, and G. Pastore, Phys. Rev. A36, 4891

~1987!; D. Thirumalai and R. D. Mountain, J. Phys. C20, L399 ~1987!.
25J. E. Variyar, D. Kivelson, and R. M. Lynden-Bell, J. Chem. Phys.97,

8549 ~1992!.
26S. A. Egorov, M. D. Stephens, A. Yethiraj, and J. L. Skinner, Mol. Ph

88, 477 ~1996!.
27L. Sjogren and A. Sjolander, J. Phys. C12, 4369~1979!.
28U. Balucani and M. Zoppi,Dynamics of the Liquid State~Oxford Univer-

sity Press, New York, 1994!.
29B. R. A. Nijboer and A. Rahman, Physica~Amsterdam! 32, 415 ~1966!.
30W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Ph

Rev. Lett.79, 2827~1997!.


