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Water molecules in the hydration layer of a bio-molecule (proteins and DNA) and of a self-assembled system
(micelles, lipids) show many anomalous behaviours. In this article, we attempt to present a coherent picture of
dynamics of water in the hydration layer of protein molecules. We will discuss a simple theoretical model (N
Nandi and B Bagchi J Phys Chem 101 (1997) 10954) that assumes a dynamic equilibrium between the bound
and the free states of the water molecules in the hydration layer. It is shown here that both the observed sub-
diffusive translational diffusion and the non-exponential orientational relaxation may arise from a distribution of
binding energies of the surface water molecules. The dynamic equilibrium model (DEM) predicts a slow component
(about 100 ps) in the orientational relaxation of water molecules in the hydration shell. The rate of the slow
relaxation is determined by the rate of transition from the bound to the free state. DEM allows us to establish
arelation between the residence time of the water molecules in the hydration layer and the observed slow component
in solvation dynamics. It is further shown that the hydration shell of the protein molecule gives rise to enhanced
rotational friction which results from the slow relaxation of water in the hydration shell and thus, may be correlated
with the residence time. Finally, we argue that the ultra-slow component (of a few ns) might arise from the
exchange of the probe (rather than the solvent) between different heterogeneous domains in a self-organized assembly.
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1 Imntroduction

Recent experiments have shown that the dynamical
response of water molecules in the immediate
vicinity of many bio-molecules (proteins and DNA)
and complex systems (micelles, lipids) is much
slower than that in the bulk!“. This water, which
is sometimes called biological water, plays an
extremely important role in the stability, structure
and function of these systems. The structure and
dynamics of water around proteins in particular,
have been subject of many recent investiga-
tions''>. Notable dynamical features are
(a) sub-diffusive mean-square displacement,
(b) markedly non-exponential orientational
relaxation, (c) several branches of well-separated
dielectric relaxation and (d) slow solvation dynamics.
Here, we discuss a theory that attempts to explain
and correlate many aspects of the dynamics of water
at the protein surface.

Biological water experiences a surface that is
heterogeneous, even on a molecular length scale.
Strong interactions with the adjacent surface lead
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to partial disruption of the hydrogen bond network
of water. Different experimental studies probe such
systems on different scales of length and time and,
as a result, different studies have often led to
conflicting results. For example, while NMR studies
seem to predict time scales less than (but around)
300 ps from NOE measurements®®, dielectric
relaxation experiments have given time scales of
the order of 10 ns'. While NOE is sensitive to very
short length scales (but with limited time resolution),
dielectric relaxation has no sensitivity to length
scales at all! Both inelastic neutron scattering and
polar solvation dynamics are sensitive to both time
and length scales and can, therefore, be good
probes of the dynamics of hydration layer.

In this article, we discuss a simple theory that
is based on the assumption of a dynamic equilibrium
between the bound and the free states of water
molecules in the hydration layer of a protein
molecule (Fig. 1). A simple relation between the
solvation correlation time and the residence time
of the water molecules in the protein hydration
layer is presented'’. This relation facilitates
an understanding of results from two entirely
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different groups of experiments. We also establish
a correlation between the enhanced friction on a
protein due to the slow water molecules in its
hydration layer and the residence time of water in
the layer's. This relation is approximate but catches
the essential aspects of water-surface interactions.

Computer simulations on water molecules at
protein surfaces show two entirely different
behaviour-one for the bound state and the other for
the moving (free) state. Rapid exchange between
the two states is observed suggesting the existence
of a dynamic equilibrium between the two states.
Simulations find less number of tightly bound water
molecules than observed in diffraction
measurements. The residence time (t,) of water
molecules in the hydration layer of myoglobin is
found to have a distribution between somewhat less
than 30 ps to more than 80 ps which was the longest
run time of the simulation'"'2, The water molecules
with much longer residence times are those which
are either buried inside protein cavities or in the
clefts or have multiple interactions with the protein
and have higher (than average) binding energies.

The binding energy distribution has values ranging
from 0.5 to 9 kcal/mole. In a recent simulation of
the dynamics of water at a micellar surface'>', it
was observed that for the water molecules which
remain within the hydration layer all through the
simulation, the orientational correlation function
decays very slowly. In fact, the correlation function
does not decay to zero, even after 300 ps. This
observation indicates that the rotational motion is
restricted which is a signature of a bound state.

Because of chemical heterogeneity on the
protein surface, there is always a distribution of
energies of binding of water molecules to the
protein surface. Distribution of residence time is a
direct consequence of the distribution of binding
energy. We shall denote this distribution by P(g)
which we expect to be bimodal with a sharp peak
at small values of € (due to the free water molecules
which are near the hydrophobic residues) and a
broad maximum at larger € values due to the
hydrophilic groups. The distribution is shown
schematically in Fig. 1. For simplicity, we can
assume the following distribution of P(g), given by
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Fig. 1 A schematic illustration of the probability distribution P(€) of the binding energy, €, of water molecules on a protein surface.
The first peak at zero binding energy corresponds to the quasi-free water molecules while the broad maximum at larger values
corresponds to the transiently bound water molecules to sites of large binding energy (like arginine). The inset figure provides
a schematic illustration of the potential energy surface V(z) that a water molecule experiences near the protein surface. The points
on the Z-axis has the following significance. Z=b denotes a position at the surface where the potential energy becomes much
larger than the thermal energy, k, T. We place the reflective barrier at this position in our calculation of the mean first passage
time by the method of images. Z=Z _ denotes the minimum of the potential energy surface.
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P(e) = p,(2 moe)®exp(-(€ - <e>)¥2 oe?) +

p,5(e), ..(D)
where p, and p, are the densities of the free and
bound water molecules at the surface, respectively,
and <&> is the average binding energy at the protein
surface.

This article is organized as follows. In the next
section we discuss the theoretical formulation and
results on orientational relaxation, self-diffusion
and solvation dynamics. Section 3 contains
theoretical discussion of the additional friction on
the protein molecule due to the hydration layer.
Section 4 contains discussions on relation with NOE
experiments. Section 5 concludes with a brief
discussion of the results and of the scope of future
studies.

2 Dynamics in the Hydration Layer:
Theoretical Formulation

The basic model of the following discussion has
been presented earlier. It is assumed that the water
molecules in the hydration shell can be divided into
two categories, bound and free. The bound molecules
are hydrogen bonded to the polar or charged amino
acid groups on the protein surface (Fig. 1). These
species are transient, as there is a dynamic
equilibrium between them, described by

kbf
bound —= free

km

The number of bound molecules in the layer is
larger than that of quasi-free molecules. The water
molecules in the bulk are not considered in this
model, although can be included. The rates of inter-
conversion from bound to free and free to bound
water molecules are denoted by k., and kg,
respectively. The bound water molecules are assumed
to be totally immobile — they can neither rotate nor
translate. The free molecules are free to do both,
with D, and D, as the rotational and translational
diffusion coefficients. The rates of transition between
the bound and the quasi-free states can be calculated
from a simple model, as discussed by Nandi and
Bagchi'®.

2.1 Models of the Rate Process

Let us assume that V(z) denotes the reduced
energy of interaction of a water molecule with the
site i on the protein surface. Here, z is the direction
perpendicular to the surface. V(z) will have a

minimum at z =3-3.5 A. At smaller distances from
the surface, the energy should rise sharply. The
potential is shown schematically in Fig. 3 where
all the coordinates are also shown. Fortunately, we
can obtain a closed form of expression for the
escape time by calculating the mean first passage
time which is obtained by using the method of
images'. The physical picture behind this derivation
is simple and as follows. The diffusing molecule
is modelled as a random walker. The boundary on
the bulk side is an absorbing wall (or barrier) while
the protein surface is modelled as a reflecting
barrier. The random walker (the water molecule)
executes a random walk under the influence of a
potential surface which is given by V,(z). The
equation of motion is given by a Smoluchowski
equation. The first passage time can be obtained
from the adjoint of this equation. An elegant
description of the method is given in ref. [20]. The
final expression for k, is given by

2 Yy
ke, =D [dy exp(BV(y) [dx exp(- AV (x))]
2p b

Note that now the upper limit of integration in the
first integral is z* because the bond is supposed to
break when the particle reaches z*. The expression
for k,, is obtained by reversing the initial and the
final states.

2.2 Non-exponential Orientational Relaxation in
the Hydration Shell

First note that the orientational relaxation of the
water molecules in the bulk is largely single
exponential, with a time constant of about 4.5 ps.
The orientational relaxation of free water molecules
in the hydration shell of a protein is not expected
to slow down appreciably. The existence of the
observed slow component should be attributed to
those water molecules which are trapped in the
hydration sheli for a long time. This slow component,
which could last for hundreds of picosecond, is a
clear signature of bound water molecules.

We can derive an expression for this slow
relaxation by using the same dynamic exchange
model, described earlier. The model is to consider
rotation of the molecules within the hydration layer.
The details of the model have been discussed
elsewhere'’- here we present a somewhat simpler
version. The starting point is the coupled reaction-
diffusion equations of Nandi and Bagchi* for the
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orientation dependent densities p (Q,t) and p(K,1).
The bound molecules undergo only reaction while
free molecules undergo both rotational diffusion
and reaction. These equations can be solved to
obtain the two rate constants, k, given by

k, = 0.5 [-BxV(B>4D,k,)], ..(3)

with B = 2D, + k . + k.. Typically, the rate of free
to bound reaction, k, will be larger than that for
the reverse process, k. In the limit when the rate
of conversion from bound to free becomes very
small, the above expression further simplifies and
the two rates are given by 2D, and k. Thus, while
one time constant remains fast, of the order of 4-
5 ps, the other one can slow down appreciably, even
to the extent of hundreds of picoseconds. The rate
k. is of course determined by the binding energy.
For majority of sites, the time constant may range
between 20 to 300 ps or so. The theory thus predicts
a bi-exponential decay for a given binding energy.
It is important to note that there is a distribution
of binding energy. This can lead to highly non-
exponential orientational dynamics and can explain
the stretched exponential decay of orientational
relaxation observed in simulations recently. The
general forms of the orientational relaxation
function is

C_{R}(t) = [ de P(e) [A exp(-k, t) +
B exp(-k_ t)] ...(4)

The constants A and B can be determined as
follows. In the limit of large binding energy, the
two rate constants are widely separated, one
determined by rotational diffusion coefficient of
water while the other by the rate of bound to free
transition. Since the correlation function is for the
quasi-free molecules only, the time derivative at
time t=0 should be determined by the concentration
of the free molecules. In addition, k remains close
to the rotational diffusion rate ((2D,)' as the free
molecules will relax according to their rotational
relaxation time. We thus have the following
expression for the rotational correlation time

C_{R}(t) =p,(2 moe)**[de exp(-(e - <e>)¥
20e?) exp(kf) + pexp(-2D,t) ...(5)

where p, and p, are the equilibrium densities of
the bound and free water molecules at the surface.
The above equation gives a bimodal decay of the
orientational correlation function, with an initial fast

decay, which, for proteins, may be between 20-
30%. That is, the slower component should have
the larger amplitude because of preponderance of
polar and charged groups on the surface. Another
prediction of the above expression is that it is the
slow component, which will be markedly non-
exponential because the slow one will be mostly
affected by the binding energy distribution.

Therefore, the general prediction is that
orientational relaxation of water molecules in the
hydration layer should be given by a sum of two
stretched exponentials. The faster term will have
a time constant close to (2D,) and the slower second
term will have a time constant that will be average
of k.

In Fig. 2, we show a typical orientational time
correlation function and also a stretched exponential
fit to the calculated function. The stretched
exponential exponent is found to be about 0.4,
signifying considerable non-exponentiality.

2.3 Translation Diffusion: Sub-diffusive Behaviour

Our model also provides specific predictions
about translational diffusion of water molecules at
the surface. One again expects two different kinds
of behaviour. The initially bound molecules will
have a inertial component at very short times
followed by a plateau whose duration is determined
approximately by the inverse of the average rate
of bound to free transition. This plateau will be
followed by linear growth of the mean square
displacement with time. The free water molecules
will show, after the initial inertial regime, a linear
growth, which can be followed by a plateau if they
bind to the surface. As larger fraction of water
molecules in the hydration layer of a protein is in
the bound state at any given time. The above
consideration leads to the following expression for
the mean-square displacement (MSD), averaged
over all the water molecules in the layer

<(Ar)()> = at?, t< t, , ...(6a)
<(ArX(t)> = [deP(e)H(t-k, D, (t-k ") +
P, ODL Y, ...(6b)

The integration is over all the bound states of the
water molecules. This formulation gives mean
square displacement, which is slower than that of
the free molecules.

A numerical solution of the reaction diffusion
equation has been carried out®. This gives rise to
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Fig. 2 The calculated orientational correlation time plotted against time. The dashed line shows a stretched exponential fit with exponent

equal to 0.38.

a sub-linear growth of MSD at short times, followed
by a super-linear dependence.The calculated MSD
agrees rather well with the ones computed
numerically.

2.4 Polarization Relaxation in the Protein Hydration

Layer

In the presence of the dynamic equilibrium, the
theoretical description requires solution of two
coupled reaction-diffusion equations. Two rate
constants, k, and k, are introduced to describe
the rate of transition from bound to free and the
reverse, respectively. The resulting equations can
be solved to find two wavenumber dependent
polarization relaxation times given by

T, = 2[-A+V(A4k /T *HK)], (D)

with A =[t™(Kk)]"'+ k,, +k,. Here T™*(k) is the
wavenumber dependent bulk solvation time. These
rates depend on the binding energy and will vary
from site to site.

The above expression of the rate gives simple
results in the limit of large activation barrier

between the bound and free states. This is because
t>%(k) is close to 10" sec” and the transition rates
are expected to be much smaller. The limiting time
constants are given by!’

T =71

- bulk
fast T ’
T

...(8a)
...(8b)

In the same limit of large activation energy separating
the bound state from the free one, the residence
time of the bound water molecules is given essentially
by k.. The expressions of the rates are given later.

- s
~ -1
slow T+ kib :

2.5 Solvation Dynamics of a Static Probe in the
Hydration Layer

A simple way to address the dynamics of polar
solvation is to start with the following expression
for the solvation energy, E_, (1),

E_, (© = -(1/2) Jdr Er). P(x,), (9

where E(r) is the instantaneously created, position
dependent electric field from the ion or the dipole
and P(r, t) is the position and time dependent
polarization. The latter is defined by the following
expression
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Pr,t) =[dQ pQ) p (r, Q, 1, ...(10)

where n(€2) is the dipole moment vector of a
molecule at position r and p (r,Q,t) is the position,
orientation and time dependent density. Therefore,
the time dependence of the solvation energy is
determined by the time dependence of polarization
that is in turn determined by the time dependence
of the density. If the perturbation due to the probe
on dynamics of bulk water is negligible, then the
time dependence of polarization is dictated by the
natural dynamics of the liquid.

A simple but fairly accurate way to describe
the slower part of solvation dynamics (that involves
re-arrangement of the solvent molecules which are
the nearest neighbours of the probe) is to use a
wave-vector dependent relaxation time (as is
routinely used in the description of the neutron
scattering experiments). In the slow relaxation
regime we are interested here, one can use a
Smoluchowski-Vlasov type kinetic equation of
motion to describe the rotational and translational
motion of water molecules. This translational-
rotational diffusion equation can be solved to obtain
the following expression for the k-dependent
relaxation time of longitudinal polarization
relaxation?!

ik (k)= (1/2D) f)[1+(DK/2D)T,  ...(11)

with D, and D, as the rotational and translational
diffusion coefficients, respectively, and f(k) is a
force constant which describes orientational
correlation among the water molecules at wave-
vector k. At the wavenumbers that correspond to
the distance of nearest-neighbour separation, f(k)
= 1.0-1.5. At small wavenumbers (k = 0), the
relaxation time goes over to the standard form of
the longitudinal relaxation time.

The above expression indeed reproduces the
observed slow decay with time constant about
1 ps. Actually, the above excellent agreement is a
bit fortuitous because one expects some perturbation
of the values of the transport properties near the
solute. The slowest time constant is about 1 ps,
which is determined by the individual rotational and
translational motions of the molecules which are
close to the probe.

In the hydration layer, the situation changes
because now the long time component of the
solvation dynamics is coupled to slow component
of orientational correlation time. This slow

component of orientational relaxation is given by
€q.(8b). Since the long time component in solvation
dynamics comes from the single particle orientation
(as discussed above), we deduce that approximately
solvation dynamics, in the long time limit, is
controlled by the slow component of orientational
relaxation. However, translational diffusion
continues to play a role, as discussed in the next
section where a relation between solvation dynamics
and residence time is derived.

2.6 Residence Time of Water Molecules in the
Hydration Layer, the Transition Rates, k,, and
kﬂ, and the Solvation Time

One often obtains an approximate estimate of
the residence time of a water molecule in a layer
of width (or, thickness) L, by using the following
expression

D, =L,261 .(12)

res’

where D is the diffusion in the perpendicular (to
the protein surface) direction and tT__ is the time
taken to cross the layer. Note the factor 6 here —
not 2, because we are still in 3 dimensions. L, is
typically 4 A and D.. is to be calculated as follows.
In the bulk, D - is (1/3) D, Typical values of
D, is 2.5. 10° cm?¥sec. However, in the hydration
shell, both the parallel and perpendicular components
of diffusion coefficient decrease — the perpendicular
one gets more affected. Thus, it is reasonable to
assume that D, is approximately (1/4)th -(1/5)th
of the bulk value. Combining all these considerations,
we get an estimate of t_ in the 40- 50 ps range.
Note that this is much shorter than the estimate (300
ps) sometimes quoted in the literature of NOE
experiments.

In fact, the above method gives only a rough
estimate of the residence time. In reality, the
residence time in the biological layer will certainly
have a broad distribution. The molecules that are
bound to the hydration sites of the protein will have
much longer residence time. The residence time of
these molecules are expected to be a function of
the binding energy. In fact, the expression derived
above for the mean first passage time can be used
to obtain a reliable estimate of the residence time.
The final expression of the mean first passage time
is given by

T(x) = (1/D) Idy exp(BV(y)) B Jdz exp(-p V (2)).
...(13)
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This T(x,) has a dependence on the initial position
x_0 and also on the hydrogen bond strength,
through V,(z). Thus, this T(x_0) will also have a
distribution. The average residence time will be
given by double averaging

t_ =<<T(x,)>>=Jdx P(x,) JdeP(e)T (x,).

» ...(14)
Here P(x,) is the initial population distribution in
the potential well and P(g) is the distribution of the
hydrogen bond energy. P(¢) can have a wide
distribution. One can even include the effects of
hydrophobic interaction by including a repulsive
surface. Note that the above expression for the
residence time is perfectly general. Actually, the
residence time of bound water should be a sum of
time to get free and time to travel across the layer.
The above expression can be used to find out the
distribution of residence times in the hydration
shell. The main idea is to translate the distribution
of binding energy to the distribution of residence
time. This is trivial because we can calculate the
residence time at each energy.

One intuitively expects a relation between the
solvation dynamics and the residence time of a
water molecule in the hydration layer because the
residence time is a measure of the mobility of the
water molecules. It turns out that there can exist
two such relations, one for the fast, 1 ps component
and another for the slow, 20-40 ps component of
solvation. We have already discussed that the time
constant for the fast part of solvation is given by
eq. (8a) This equation allows us to make a simple
connection with the residence time of the free
molecules for whom the residence time can be
defined as T = L./ (6 Dperp). We now use this
relation to eliminate D, from the above equation
to obtain the following expression

= [1 + AL? t_/t ], -(13)

where T is the solvation time from the hydration
shell. L is the length of the shell. A/6? = 4n%/4 =
10. We have also used D__ = D /3. We have also
used the relation t_ = (2DR)“. This relation shows
that in the limit of long residence time, solvation
is determined by rotational diffusion.

For strongly bound water molecules, on the
other hand, the residence time is given by the
inverse of the rate of transition from the bound to
the free state! ’

Trcs = [kﬂwl-l :

T /T

solv’ “rot

...(16)

This is an interesting result that shows that the
long time component of polar solvation
dynamics is equal to the residence time of the water
molecules.

Because of the existence of binding sites of
different energies on the protein surface, it is
convenient to discuss dynamics in terms of a
distribution of residence time. Once an expression
of the residence time is available, it is easy to
translate the distribution of binding energy to the
distribution of residence time. This is trivial because
we can calculate the residence time at each energy.

3 Connection with NOE Experiments

NOE provides us with an approximate estimate of
the residence time from the sign of the NOE signal.
When the sign of the signal is positive, there is
significant dynamics at the Larmor frequency, w,.
NOE signal is found to be negative for the protons
inside the protein, implying that for those protons
there are no dynamics, which populate at 600 MHz.
The functional relation between the NOE cross-
section and the density of states is given by®®

oV = 6J(20,) - J(0), ..(17)

where @, is the Larmor frequency of the protons.
A simple exponential approximation for the decay
of J(t) with correlation time T, shows that oMo
changes sign when the product w7t is greater
than 1.12. At ®, = 600 MHz, one finds the signal
to be positive which in turn implies that T is less
than 300 ps. Since NOE is sensitive to the spatial
resolution, it is safe to assume that the stochastic
modulation populating J(®) is due to exchange of
water between the hydration layer and the bulk.
Note however that NOE can only give an upper
estimate of the residence time.

There is, however, a misconception that needs
to be clarified. In the initial analysis of the NOE
data, it was assumed that the translational self-
diffusion coefficient of water is only about 1.5 x10-
¢ cm?/sec. This gave an estimate of the residence
time in the same range as 300 ps. Thus, it is often
stated that NOE provides an estimate of the
residence time in the range of 300 ps. This is not
correct because the self-diffusion coefficient of
water in the hydration layer in general does not
decrease by 16 fold as assumed in the above
analysis. A more realistic value reduces the estimate
significantly.
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4 Relation of the Rotational Friction on
Protein with the Residence Time

As mentioned in the introduction, despite
considerable interest, this has remained an unsolved
problem for a long time. We expect the residence
time to give a measure of the additional friction on
the rotating protein or bio-molecule due to the
hydration layer. How to find this additional
contribution? Fortunately, we know the answer in
the two opposing limits. When the residence time
of the hydration water is very long, even longer
than the rotational correlation time of the protein
(Tgp)» then the friction would be larger and this can
be approximately incorporated by increasing the
size of the protein. However, if the residence time
is very short, the effect of the hydration layer will
not be felt by the protein. Thus, the ratio of the two
times, T_/ Ty, is an important quantity.

One way to proceed is to assume a splitting of
the total friction as is common in the dielectric
friction theories

E=&,.+5&., - ...(18)

where 2';hy o is the hydrodynamic contribution, which
can be equated to the total on the protein friction
in the absence of the biological water and is equal
to 8tMR3, where 1 is the viscosity of bulk water.
The biological water contribution now needs to be
calculated microscopically which we now describe.

If R is the radius of the protein, then the torque
due to this friction can be calculated from the
torque-torque time correlation function (TTTCF).
This TTTCF will be proportional to the number of
water molecules on the surface, which is equal to
4nR?%L p where p is the number density of water
at the hydration shell. The friction can be calculated
by using Kirkwood formula which is given by*

g, = (8/3) ] dt <N(0). N(v)>, . (19

where <.> denotes a standard time averaging. We
assume that the decay of the torque occurs by
orientation of the water molecules, which, as we
have already shown, is related to the residence time
of the water molecules. Thus, the biological water
friction is given by '
.= B (4rRL p) <x>> 1/3, ...(20)

where <y 2> is the mean square torque by a single
water molecule on the protein. Note that the
rotational correlation time is closely related to the

residence time, T_. <)Y *> can approximately be
calculated by assuming that the water molecule
faces a polar stationary surface and the mean square
torque comes from the different orientations and
positions of the water molecule in the layer. That
is, < *> can be expressed in terms of ion-water pair
correlation function.

There is an interesting aspect of this problem
- the additional friction due to the biological water
must also contain the dielectric friction due to the
interaction of polar charges of the amino acids with
the water molecules. The dielectric friction contains
a significant part that is local and this part is
absorbed in the above expression of & .

When the size of the protein is very large
(R>>L), the hydrodynamic term dominates, as
expected and the influence of hydration layer on
total rotational friction is not significant. However,
when R is not too much larger than L (may be a
factor of 5 or so), then the contribution from the
biological water can be non-negligible, especially
if the residence time is long. On the contrary, if the
residence time is short, then the effect of the
hydration layer on the rotational motion can be
neglected.

In the limit of very long residence time
(corresponding to slow hydration water dynamics),
an interesting scenario can develop. In this ice-like
situation, the mean-square torque also decreases
(because even equilibrinm fluctuations decrease).
Although it is very hard to calculate either <y %>
or T, in this condition, the product <) 2> T, must
obey the following relation

<x*> 1, =18k, T n/p. ..(21)

Thus one recovers the correct limiting friction (that
R should go over to R+L in the hydrodynamic
friction). This relation, valid in the case of immobile
hydration layer, can be used to get a measure of
<y *>. While the above is by no means a complete
theory, it clarifies the relation between the friction
due to the hydration shell and the dynamical
quantity like the residence time. Details of this work
is available elsewhere's.

5 Origin of the Ultra-slow Component
Observed in the Solvation Dynamics in
Lipids and Micelles

Many experiments have reported observation of a
very slow component in the time dependence of
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the fluorescence Stokes shift of a polar probe in
micelles, lipids and membranes'®. This component
seems to have a significant weight (estimated to be
as high as 50% in some cases). The time constant
can be as high as a few ns. Given that solvation
dynamics in water are almost within 1 ps and that
in the protein surface within less than 100 ps, this
large value is indeed surprising. There could be
several possibilities, including structural changes
in the self-assembled systems. Since many of the
probes used are rigid molecules, one can rule out
the possibility of structural change in the probe
molecules themselves. While the possibility of
structural change in these systems cannot be ruled
out, there are two reasons why such changes may
not play significant role here. These structural
changes are expected to occur even slower, may
be in the ns scale. Second, the probe molecules,
which are expected to be largely in the hydrophobic
core, may not experience overall change in the
environment. One should also consider the possibility
of constrained water molecules contributing to such
slow solvation. Simulations and theoretical studies
rule out the existence of such very slow water
molecules on the surface of these assemblies. There
still remains the possibility of water molecules
constrained inside the hydrophobic core. For
example, in micelles, water molecules could seep
into the core up to 3-4 hydrocarbon layers counting
from the head group carbon atom. These water
molecules will solvate by individual rotations.
However, it is unlikely that the individual rotation
of these water molecules slows down by three
orders of magnitude.

We propose the following scenario. Before
excitation, a significant number of probe molecules
are in the hydrophobic core. As the probe is excited
at time t=0, the probe develops a large dipole
moment. The free energy surface of the probe
changes as a result, with the outer surface becoming
more stable than the hydrophobic core. There will
be a net flow of probe molecules from inside the
core to the outside. The total flow will be determined
by the magnitude of the dipole moment change.
This process is slow because it involves transport
through the hydrophobic core. If the thickness L,
is 10 A, the self-diffusion of the probe is 10¢ cm?/
sec, then the time takes to cross the hydrophobic
core to reach the surface is 1.67 ns. This is in the
correct range.

We next need to address the amount of energy
gained by transporting to the surface. If the change
in dipole moment on excitation is Ap and if the
radius of the probe is a, then the gain in energy
(AE) is given, within the continuum model, by

2
AE=2(A,u) i R 1)

@ 25+1 2e,+1

where &) and € are the static dielectric constant
of water and the self-assembly (hydrophobic core),
respectively. What is probably involved in g, is the
dielectric constant of the hydration layer, so €, is
less than 80. However, £_ is much lower, of the
about 3 or so. If the change of dipole moment is
5D and radius is 4 A, then the gain in energy is
about 380 cm™. This is a very crude estimate, as
one should also include the increase in energy due
to the hydrophobic interactions. The main idea of
the above calculation is to demonstrate that one can
indeed account for a significant shift in fluorescence
Stokes shift within this model. Note that the time
constant of this shift is determined by the time taken
by the probe to diffuse from the core to the surface.

6 Concluding Remarks

In this article, we have discussed several aspects
of protein hydration dynamics. They include
solvation dynamics of a natural probe on protein
surface, orientational relaxation and residence time
of the water molecules, the friction on a protein due
to the presence of the hydration layer and the
relationship between NOE and solvation dynamics
experiments. The emphasis of this article has been
on understanding the elementary processes that
give rise to the complex dynamics in the hydration
layer.

The most notable aspects of hydration dynamics
are the recently discovered slow solvation dynamics
of a natural probe and non-exponential orientational
relaxation of the water molecules in the layer. It
is demonstrated here that both these aspects can
be understood in terms of a simple model which
assumes the existence of a dynamic equilibrium
between bound and free water molecules. This
dynamic equilibrium introduces a slow time scale
in the relaxation of water molecules in the layer
and is also responsible for the observed highly non-
exponential orientational dynamics. The slow time
is equal to the inverse of the rate of transition from
the bound to the free state of water at the interface.
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Another aspect of this work is the establishment
of a relationship between the residence time of
water molecules in the layer and the solvation
dynamics. It is shown that in the limit of large
binding energies, these two become equal to each
other. This result is expected on physical grounds.
The theory also provides a relationship for the
general case.

The effect of the hydration layer on the mobility
of the protein is a problem that has remained
unsolved for a long time. This is clearly a very
difficult problem. In this article, we have presented
an expression of this friction. The novel aspect of
this expression is the dependence of this friction
on the residence time of the water molecules. In
the limit of vanishing residence time, the effect of
the hydration layer becomes negligible. In the
opposite limit of very slow dynamics in the
hydration layer (the glassy state), the effect becomes
significant. Further work is required in this problem.

We have established that NOE experiments are
likely to be senmsitive to strongly bound water
molecules, with binding energy more than 8-10
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