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The introduction of non-coded amino acids with well defined stereochemi- 
cal and functional properties will greatly enhance the scope of protein 
design and engineering. The present state of methodologies for incorpora- 
tion of non-coded residues into proteins is examined. The prospects for 
conformationally constrained amino acid residues are evaluated in the light 
of peptide structural studies. Templates for secondary-structure nucleation 
and recent experiences in the incorporation of novel residues into proteins 

are considered. 
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Introduction 

Protein engineering using the standard 20 genetically 
c(xled amino acids is necessarily restricted by the limited 
repertoire of residues. Although remarkable structural 
and functional diversity" can be generated by variations 
in polypeptide primary ,~quences, the incorporation of 
non-standard amino acids with well defmed stereochemi- 
c'al and functional properties would greatly enhance the 
,scope of protein engineering. The rich literature on the 
use of an enonnously diverse range of unusual residues 
in designing analogs of biologically active peptides is 
testimony to the potential usefulness of incorporating 
side-chain and backtxmc m(xlifications as a means of 
modulating the stability, and activi W of peptide sequences 
[1,2]. 

In the arc~a of protein engineering, two immediate goals 
appear desirable. First, unusual amino acids with de- 
fined contormational properties could be used to imlx~se 
local restrictions on polypeptide chain stereochemistry, 
thereby conferring stability, on specific regions of sec- 
ondary structure. In d e  n o v o  design approaches, novel 
residues and templates may be employed to nucleate 
and stabilize specific secondary structures as a prelude 
to controlled tertiary organization [3]. Second, residues 
with versatile chemical functions in their side chains can 
be used to impart novel binding and catalytic properties. 
Two requirements critical to the further development of 
protein engineering are: the development of techniques 
to incorlx)rate unusual residues into proteins by genetic 
meth(xts [4,5oo], total chemic~d sTnthesis [6.,7 oo] or by 
semisynthesis using enz2,,'me mediated ligation [8°,9]; and 
the development of a palette of 'designer residues' which 
will permit definitive structural control in the process of 

assembling sequences with predictable folding proper- 
ties. 

Methodologies for unusual residue 
incorporation 

Total chemical sTnthesis using highly developed solid- 
phase approaches is undoubtedly the most direct way 
of introducing novel residues into proteins. However, this 
method is restricted to relatively short pol~q3eptide chains 
of ~ 100 residues or less in length. The present level of 
technology is exemplified by the recent sTnthesis of the 
~)-residue sequence of human immun(x.teficiencT ~rus 
(HIV)-I protc~,~se, which incorporates all amino acids 
of thc unnatural I) configuration 16"1. A particularly dra 
matic example of the power of chemical approaches is 
the intrcxtuction of a thioester bond into 1 llV-1 protease 
b.v chemical ligation of the 1-51 fragment (i.e. residues 
1-51 ), which incorporates a carboxy-terminal thiol nucle- 
ophilc, with the 52-99 fragment, which features an alkyl 
bromide at its amino temainus [7"']. Solid-phase methcxt- 
olo~" is, however, less attractive because of low coupling 
yields in the g'nthesis of segments containing stereo- 
chemic'ally hindered residues, such as a-aminoisobutyric 
acid. In such situations, enzymatic methcxts hoM greater 
promise, as illustrated by recent applications to short- 
peptide antibiotics of the alamethicin family [8"]. Site- 
specific incorporation of non-coded residues ma,v also be 
achieved by semi-sTnthesis, where the chemical s~aathesis 
of a short segment is followed by protease-mediated lig- 
ation to a longer polypeptide in organic-aqueous solvent 
mixtures [8"]. This approach is most suitable for modifi- 
cations at amino- or carbox3'-terminal segments. The reg- 
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ular and routine application of non-standard residues in 
protein engineering will, however, become a reality ord~ 
hen genetic methods of incorporation become readily 
accessible. In early work, non-coded amino acids which 
are largely isosteric with one of the coded residues have 
been incorporated into proteins following the misacy 
lation of tRNA by the appropriate aminoacy-tRNA syn- 
thetase [lo]. 

The substrate specificity of the tRNA synthetases is strict, 
however, and only structurally very similar residues can 
be introduced in this way. Site-specific incorporation is 
also generally not possible, with the exception of cases 
where the replaced residue occurs at a lone position in 
the sequence. For example, L-2aminohexanoic acid (or 
norleucine) has been substituted for methionine at posi- 
tion 21 in human epidermal growth factor [ 111. Another 
intriguing report has suggested that the novel residue fu- 
ranomycin (1) [Fig. 11, which is structurally quite distinct 
from isoleucine, is charged onto tRNA1le by the isoleucy- 
tRNA synthetase and, indeed, incorporated into a j!-lac- 
tamase precursor in an in vitro biosynthetic experiment 
[=I. 
Recent approaches which appear to point towards gen- 
erally applicable procedures involve the use of semi- 
synthetic aminoacylated suppressor tRNAs [ 139•,14*,15*] 
and the incorporation of an appropriate translatable am- 
ber codon at the site chosen for mutagenesis [4,5**,14*]. 
Interestingly, a biochemical precedent for such a strategy 
does exist. The biosynthetic incorporation of selenocys- 
teine into E. coli formate dehydrogenase is directed by 
a UGA codon and utilizes selenocysteinyl-tRNA and a 
unique translation factor [16]. Efficient procedures for 
the chemical acylation of suppressor tRNAs by any amino 
acid analog are a prime requirement for the success of 
this method. 

Elaborate protection and deprotection strategies and low 
yields are major limitations in the use of tRN4.s acylated 
with non-coded residues. Procedures developed recently 
for chemical aminoacylation of tRNAs using a photola- 
bile protecting group (nitroveratryl) have allowed prepa- 
ration of the aminoacyl tRNAs in high yields [13-l. 
Chemical strategies may, however, be intrinsically lim- 
ited in scope because of synthetic difficulties. The high 
specificity of aminoacyltRNA synthetases precludes their 
use at present, although an engineered, non-discriminat- 
ing tRNA synthetase presents an attractive possibility for 
the future. 

Chemoenzymatic procedures that permit acylation of the 
terminal 2’,3’-diol of the suppressor tRNA with an amino 
acid ester using a non-selective lipase constitute another 
potential strategy [ 171. Initial reports have suggested that 
the suppressor tRNA route can be used to incorporate a 
wide variety of amino acids into T4 lysozyrne (see below) 
[5-l. 

Conformationally constrained residues 

Stereochemically constrained non-coded residues may 
have great potential in protein engineering studies once 
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Fig. 1. Structures of some representative non-coded amino acids 
and templates discussed in the text. (1) Furanomycin; (2) a- 
aminoisobutyric acid; (3) qwdi-n-alkylglycines (n = 1, diethyl- 
glycine; n = 2, dipropylglycine; (4) l-aminocycloalkane-l-car- 
boxylic acids; (5) cr-methyl-a-amino acid CR groups can be identi- 
cal to those found in the coded amino acids); (6) pipecolic acid; 
(7) a#-dehydroamino acids CR = H, dehydroalanine; R = phenyl, 
Z-a,P-dehydrophenylalanine); (8) w-amino acids (n = 2, p-ala- 
nine; n = 3, y-aminobutyric acid; n = 5 &-aminocaproic acid); (9) 
u-hydroxy acid; (10) helical template; (11) template for P-sheets; 
(12) 2-amino-4methylhexanoic acid; (13) amino-3-cyclopentyl- 
propanoic acid. 

the problem of incorporation has been overcome. The 
a+dialkylated glycines constitute the most widely stud- 
ied class of amino acids that introduce backbone rigid- 
ity. a-Aminoisobutyric acid (2) [Aib; also known as 2- 
methylalanine] (Fig. 1) is the most extensively investi- 
gated residue of this group because of its widespread 
occurrence in voltage-gated membrane-channel-forming 
polypeptides of fungal origin [l&19]. The presence 
of an additional methyl group at the C” atom in Aib 
greatly restricts the sterically allowed region of confor- 
mational space because of van der Waals clashes. Ener- 
getically favourable minima are limited to helical regions 
(~z:660~20”and$~ f 30 f 20”) [20]. Experimen- 
tally, the Aib residue has been found to be strongly 
helicogenic and to stabilize 310- and a-helical confor- 
mations in a very large number of synthetic peptides, 
a feature which has been established conclusively by 
crystallographic studies (Fig. 2) [21,22*,23]. 
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Fig. 2. Crystallographically observed ~,~1/values for at-aminoiso- 
butyric acid (Aib) residues in peptide structures. 305 Aib residues 
from 108 independent crystal structures are represented [24]. 
In the case of achiral peptides crystallizing in centrosymmetric 
space groups, the choice ol ~ the sign of the dihedral angles is ar- 
bitrary. The sterically allowed regions of the Ramachandran map 
for  an t-alanine residue are marked (these are also valid for all 
coded residues except glycine and proline). Note the extremely 
intense clustering of residues in right- and left-handed helical 
(3m/0t) conformations. Residues lying in non-helical regions are 
almost always observed at the carboxyl terminus of very short 
peptides or in cyclic systems. 

The use of this residue in a de  n o v o  approach to the 
design of helical super-secondary structural motifs has 
been explored [24,25"]. In this 'Meccano (Leg()) Set' ap- 
proach, prefabricated conformationally rigid helical frag- 
ments containing strategically positioned Aib residues 
are covalently connected by flexible linking segments. 
The crystallographic characterization of a linked helix 
structure, employing c-aminocaproic acid as a connect- 
ing element between two helical heptapeptide modules, 
each of which is stabilized by a single centrally placed Mb 
residue, is a good illustration of this strategy [26"]. The 
achiral Aib residue can adopt l-x)th right- (atR) and left- 
handed (atl) helical conformations, depending on the 
context of the sequence. In short oligopeptides, Aib 
residues at the penultimate position (position n - 1  in 
an n-residue sequence) adopt % conformations which 
result in the formation of a n-turn involving a 6--+1 
hydrogen bond, leading to helix terminati(m (IL Karle 
el a/., unpublished data). This feature is reminiscent 
of helix-tem~ination signals in proteins, which generally 
involve glycine or, less often, asparagine residues in ot L 
conformations [27]. A pronounced feanare of the large 
number of studies on model Aib peptides is the high de- 
gree of local stereochemical rigidity that accompanies 
the incorporation of this residue into peptkle chains. 
Ks a consequence, relatively long oligopeptides (up to 
16-20 residues in length) crystallize readily and there is 
generally excellent agreement between the solid-state 

and solution conformations. In contrast, oligopeptides 
comprising the 20 coded amino acids only are highly 
conformationally flexible. Most biologically active pep- 
tides (such as bradykinin, angiotensin, endorphins and 
adrenocorticotropic hormone) have resisted efforts to 
crystallize them over many years. Definitive conforma- 
tional information can be deduced only in specific cases 
where complexes with macromolecules are crystallizable, 
as illustrated by a recent structure of an angiotensin com- 
plex with an anti-idiotypic antibody [28]. 

The single reported attempt at introducing Aib into pro- 
teins was the replacement of Ala82 in T4 lysozyme by 
Schultz and colleagues [5"] .  In the wild-tytye enzyme, 
Ma82 has qb,~ values of - 6 7  ° and - 2 4  °. The Ma82Mb 
mutant was shown to be marginally more stable ( ~ 1 °C) 
in thermal denaturation experiments. Mthough the re- 
suhs are undramatic, this study" clearly emphasizes the 
feasibility of intr(x:lucing unusual residues into proteins 
(the terms 'unusual' or 'non-coded' are preferable to 
the term 'unnatural'). In retrospect, it appears that the 
choice of Ma82, which is a surface residue and not part 
of a regular helix, may have contributed to the small ob- 
served stabiliTation. Residues in surface loops may be less 
important in determining the temperature at which ther- 
mal unfolding commences. In general, the introduction 
of Aib at sites on protein helices might stabilize local 
secondary structure, with a consequent effect on over- 
all melting temperature. It is also conceivable that refold- 
ing processes might be facilitated by the more etl~cient 
nucleation of secondary structures. 

Other residues that might impose conformational re- 
straints and which have been well characterized in pep- 
tides arc shown in Fig. 1. The achiral Aib homologs, 
at,0t-dialkylated glycines (3) ,  have been shown to favour 
flflly extended (~ ~ ~ 180 °) confonnations in homo- 
oligopeptides, for the cases of diethyl and dipropyl- 
glyvines [29"]. Nevertheless, this stereochemical prc'f- 
erence is not absolute. Energy' minima have been de- 
fined theoretically in the region of helical conformations 
(qb ~ :1:50 °, ~/~, 4-50°). A recent crystal structure of a 
fully p r()tected h()mt)-t ri txeptide ( )f at, ¢t-di-n- p r()pylglycine 
did indeed reveal a gl>e III [3-turn conformation [30]. 

The 1-amino-cycloalkane-l-carbo~,lic acids (4)  [Acnc, 
where n is the number of carbon atoms in the W- 
cloalkane ring] are limited almost exclusively to heli- 
cal conformations in peptides [31]. ACnC residues x~4th 
n = 3-6 have been incorporated at position 82 of "1"4 
lysozyme, but no details of mutant enzyme stabilities 
were reported [5"].  The high yield preparation of chiral 
at-methyl-:t-amino acids (5)  by chen~oenzymatic proce- 
dures [32] promises to make available conformationally 
restricted analogs of many of the cox.ted amino acids. 
This, in turn, should provide great scope for the im- 
position of backbone conformational restraints without 
major side chain alterations. The introduction of such 
residues would only Jinx)lye replacement of  the C ~ hydro- 
gen with a methyl group. Such mutations should, in gen- 
eral, stabilize helical conformations at the site of replace- 
ment. 

Pipecolic acid (6)  [Pip], a proline homolog, has also 
been shown to be a useful local conformational determi 
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nant in small peptides. This residue is conformationally 
distinct from proline because the carboxylic acid occu- 
pies an axial I-x)sition in the cyclohexane ring. Wher~.~as 
Lproline residues prefer conformations in the helical 
(qb ,~ - 6 0  °, ~ ~ - 3 0  °) and semi-extended, pol~l")roline- 
like (qb ~ - 6 0  °, ~ ~ 120 °) regions of q~,~/ space, the(}- 
retical studies have indicated that low positive values of 
t~ may be preferred for the Pip residue [33]. Indeed, the 
incorporation of a Pip residue at position 82 of T4 ly- 
sozyme resulted in a lowering of the melting temper- 
ature by ~2°C, whereas the Ala82Pro mutant is more 
stable by 2°C [5"].  Although Schultz and coworkers 
attributed this to a larger q5 angle in Pip, peptide co's- 
tal s!oructures [34] suggest that ~l,ip is indeed close to 
- 6 0 ,  a value similar to that for AlaS2 in the wild-t~t)e 
enzyme. The observed destabilization may indeed be a 
consc~tuence of changes in the ~ value at the Pip residue. 

0q~-Dehydro residues ('7) also offer a means of restrict- 
ing backbone coiR'ormations, l)ehydroalanine residues 
have indeed been found in enzymes, albeit very infre- 
quently, and are formed by the post translational dehy- 
dration of serine residues [35]. Recent studies of model 
peptides suggest that ~-turns are often stabilized in short 
scNuences, whereas helix formation may be promoted 
in longer peptides, t towever, the available experimental 
data are limited, with most of the studies that have been 
reportt.x.I featuring relatively short lxeptides containing Z- 
dehydrophenylalanine [36], whereas veo' few fc~ltured 
investigations of dehydroalanine [37]. Interestingly, the 
incorporation of dehydroalanine into proteins may be 
possible by chemical modification of charged tRNA set or 
tR~NA(:.vs. 

ever, the hydroxyl residue was at a t-x)sition uninvolved 
in intramolecular hydrogen bonding. The intr(x.tuction of 
ester bonds into proteins may eventually provide an ex- 
cellent chemical handle for controlled site-specific cleav- 
age, a feature which may be useful in the processing of 
expressed fusion proteins to x4eld desired products. 

t)-Residues provide an attractive means of stabilizing con- 
fomlations with tx}sitive q~ values, which are generally 
adopted in proteins by glycine and, to a lesser extent, 
by asparagine [27]. Such conformations (al)  occur in 
[3-turns and are critical in detennining folding patterns. 
Although D-residues are used extensively in the design 
of analogs of biologically active peptide, particularly with 
a ~iew to enhancing proteolytic stability, few g,stematic 
investigations of their influence on regular secondary 
structures have been reported. A study of a model 29- 
residue peptide with a centrally placed [>alanine residue 
revealed a helix destabilization of 0.95 kcal mol - 1, com- 
pared with the parent L-alanine peptide I40]. Although 
two recent reports have described the chemical g,nthe- 
sis of all D analogs of HIV 1 prote,ase [6"J and rubredoxin 
[41"], the stereochemical conseqt,ences of the site-spe- 
citic introduction of D-residues into proteins have not 
been explored. Attempts to incorporate D-alanine into [3- 
lacmmase [4], "1'4 lysozy~lle [ 5"]  and model 16-residue 
sc~quences [14"] by the suppressor tRNA route proved 
unsuccessful. This failure m W be a consequence of dis- 
crimination at the lm'el of the formation of the complex 
be~'een aminoacT1 tRNA and elongation factor EF-Tu 
[5"] ,  illustrating the nature of the difficulties that may 
be encountered in the biosynthetic intr(x]uction of non- 
coded residues. 

Flexible residues and conformational 
variability 

m-kallino acids [glycine homologs] (8) ,  which incorpo- 
rate additional methylene groups between the amino and 
carboxyl groups (e.g. ]3-alanine, y-aminobutyric acid and 
~;-aminocaproic acid), might be expected to enhance 
confonnational flexibility. Relatively little information is 
available on their conformational influences in pep- 
tides 138]. It is noteworthy that an attempt to intro- 
duce [3-alanine at l'x)sition 82 of "I'4 lysozy'nle by the 
suppressor tRNA route was not particularly successful, 
with less than 5% suppression being observed [5"J. 
a-Hydroxy acids (9) ,  e.g. lactic acid (lac) and phenyl- 
lactic acid, have been incortx~rated at position 82 in "I'4 
lysozy,me [5"].  The Ala82Iac mutant is thermally desta- 
bilized by 3.7°C, a rather surprising result `as the AlaS2 
NH group is only hydrogen bonded to water in the wild- 
type enzyme. Hydros '  acid residues may be expected to 
enhance local conformational freedom because they lack 
the NIt group fbr intramolecular hydrogen bonding. Fur- 
ther, differences in the barriers to rotation about the ester 
and amide groups may also contribute. The incorpora 
tion of a-hydrox~3sobug,ric acid into proline-containing 
peptides has been shown to lead to structures an~ogous 
to the ¢t-aminoisobutyryl peptide [39]. In this case, how- 

Templates 

A survey of non-standard residues and protein structure 
would be incomplete without mentioning at least some 
of the many ingenious templates that have been used 
to nucleate specific secondaw structures in oligopeptides 
and to assemble super-secondao' structural motifs in d e  

n o v o  protein-design approadles. Template 10, which is 
tbmlally related to a Pro-Pro dit~ptide, has two bonds 
tixed in pyrrolidine rings at qb values necessary for he- 
lix fonnation while a -CII2-S- bridge contains a third 
rotatable bond. This template nucleates or-helical con- 
tbmlations in oligoq, alanine sequences [42",43"]. In an- 
other study, diac3'laminoepindoleidiones (11)  have been 
shown to act ,as templates for ~-sheet formation [44]. 
In these cases, chimeric molect, les were constructed 
by attaching linear peptide sequences to non-peptidc 
functions bearing appropriately oriented hydrogen-bond 
donors and acceptors. The studies ret'x.~rted, however, 
are conlined to relatively short sequences. 

A fi'uitful use of templates is the orientation of heli- 
cal peptides to generate helix bundles mimicking those 
found in proteins. The covalent attachment of multiple 
helices to side-chain functions on a rigid cTclic pep  
tide base has been examined in an attempt to prepare 
template-assembled synthetic proteins [45"]. In addition, 
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metal-ion-promoted oligomerization of helical peptides 
bearing a terminal pyri~/l or bipyridyl metal-coordinat- 
ing site has been used to demonstrate self assembly 
of designed three- and four-helix bundles [40-48"].  
The insertion of templates into native protein sequences 
appcmrs to be technically forbidding at present, yet tem- 
plates may be central to d e  tlot,o design strategies using 
total chemic'al sTnthesis. 

Prospects for proteins incorporating non-coded 
residues 

Data on the purposeful intrcKtuction of non coded 
residues into proteins in order to address issues of 
structure and stability., are extremely limited. In the ini- 
tial study of Schultz's group [4], Phe66 in a [3 lactmnase 
could be replaced by closely related analog resktues 
such as pnitrophenylalanine, p-flu()rophenylalanine and 
homophenylalanine, which differ from phcnylalanine in 
electr(mk: properties and to some extent in steric bulk. 
Interestingly, the pnitro and homo-phenylalanine mu- 
tams appeared to be less stable and were degraded 
proteolytically during purificatkm [4]. Attempts to modify 
the backb(me by the introduction of an ester linkage, an 
addition;d methylene group or a D-phenylalanine residue 
were unsuccessful [4]. A later stud.,,' of T4 lysozyme 
demonstrated the successful introduction of an ester link- 
age (hydroxyacid) but yew little or no incorporation of 
[3 alanine and D-residues was observed [5"']. This study 
also established the pt)ssibilit T of incorporating 0t,at-dialk- 
ylated residues and Pip at i~.)siti()n 82 ()f T4 lysozyme 
[49"'], Ks discussed alxwe. 

A recent report has explored the use of non-¢xMed 
residues to replace Phe133, a buried residue, in T4 ly- 
sozTme [.t9"']. Norvaline, ethylglycine, O-methylserine, 
S,S-2-amino-,t-methyl hexanoic acid (12)  and S-2-mnino- 
3-cTclopenwl propanoic acid (13)  were used to examine 
the cost of stepwise removal of mcthvl grot, ps, side-chain 
solvation, the effect of packing densi W and side-chain 
confimnational entropy on protein stability'. These ex- 
perinaents were supported by m(Melling and molecular 
dynamics simulatkms and ~.ielded two interesting 'non- 
ctmlcd' ca~ity-filling mutants which are stabilized by 1.9 °C 
and 4.3 *C compared with the v~ild-t3Tm end,me, whk'h 
has a mehing temperature of 43.5 °C under identical con- 
ditions [49"']. Clearly, the availability of a structurally 
diverse set of anaino acids can enhance the scope of 
protein engineering for stabilization. In particular, amino 
acids that intrtxtuce confomtational constraints may be 
usefully employed in stabilizing specific secondaw struc- 
tural features. The introduction of such residues should 
also reduce conformational entropy of the unfolded state, 
so indirectly stabilizing the folded form. At present, Aib 
and related residues offer a me, ms of reinlbrcing helical 
and [3-tum backbones. Obligatoo' [3-sheet or extended 
structure stabilizers are, as yet, less well characterized. 
Achiral or D-residues may also help in promoting a L 
conformations, which are generally attained in proteins 
only by glycine or asparagine residues. 

Rational site-directed mutagenesis, however, requires a 
clear understanding of the structural role of the residue 
being replaced and an equally clc~ar definition of the con- 
formational properties of the non-coded replacement. 
The identification of t-x)tential weak sites (Achilles' heels) 
in protein structures is a pre-requisite for rationally en- 
gineering stability. The s3aathetic development of novel 
anaino acids with a strong preference for well defined re- 
gions of backbone (qS,~) conformational space would 
incrc~ase the tools available to the protein engineer. 
Novel residues that permit covalent disulfide crosslinks 
over longer distances than cTstine bridges have also 
l>een develt)ped [50"]. Although enhancing the reper- 
toire of available residues is a desirable goal, the sub- 
tie stereochemical requirements of ribosomal sTnthesis 
may lead to unexpected problems in incorporation. For 
relatively small proteins ( < 100 residues), total chemical 
sTnthesis ,nay provide an alternative approach, although 
solid-phase methodolog5" may falter with increasing stere- 
ochemical constraints [8"]. 

Although this review has focussed largely on the effect of 
non-c(Med residues on backbone ct)nfornmtion, modili- 
cation of functional side chains m W provide interesting 
insights into en~'me mechanisms. At present, site-specific 
changes are restricted to special situations, as illustrated 
in a recent study of conversion of an active-site arginine 
in aspartate aminotransferase into homoarginine [51"]. 
Novel resktues and templates are particularly attractive 
elements in d e  not ,o  design, as the}," offer a definitive 
mc~ans of controlling the fold of the polypeptide back- 
b( }ne. 
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