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in single molecule spectroscopic studies: Realization of entropic
bottleneck in a simple model
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We study a dynamical disorder model for environmental modulation of rate processes where a need
of dynamical cooperativity presents an entropy barrier, rather than an energy barrier. The rate
depends on a control variabl®, that describes the collective instantaneous state of the environment
and is itself a random walker in finite discrete space with continuous time. We obtain the waiting
time distribution for the relaxation by simulating the model. The time dependence of the average
survival probability is derived there from and also by a numerical solution through the
Liouville-master equation approach to the theoretical problem. We present an analytical treatment of
the first passage time problem that is posed by a limiting case of our model. As the rate of the
environmental quctuatiorv,-;nlv, slows down, the decay of the average survival probability is found

to be more and more nonexponential in short times, but to change to exponential at longer times.
The average survival time, , exhibits a fractional power law dependence «(rF 7onKg), Where

time is scaled in terms dfgl, ko being the intrinsic rate coefficient for the relaxation. The mean
first passage time in the limiting case of the model exhibits an exponential dependence on the total
number of the environmental subsystelhand a non-Arrhenious temperature dependence over the
temperature range studied. We note the likely relevance of a part of this result to single molecule
spectroscopic studies that reveal a tail in the waiting time distribution at long times.

I. INTRODUCTION conventional chemical kinetics. Study at single molecule
level allows one to investigate the static disofdef® which
Environmental modulation of rate processes in complexarises from a distribution of rates among individual mol-
dynamical systems, such as macromolecules, has beeneaules. The local environment of a single moled@#) in a
topic of intense research interest in recent years. The streg®ndensed phase fluctuates with time. If in a rate process
has been on studies of passage through fluctuating bottlenegkth a single molecule this environmental fluctuation con-
which can generally be either geometritor energeti®€®in  trols the rate of the occurrence of the event, dynamical
character. Motivated by experimental studies of the kineticslisordet'® results. SMS allows to probe along a time trajec-
of ligand binding in myoglobin, Zwanzig proposed a mddel tory dynamical disorder free from the static ohie. contrast
where the protein, which is known to fluctuate around itswith ensemble-averaged measurements, single molecule ex-
average structure when embedded in solvents at ambieperiments provide information on distributioh~*° that
temperature, is in a dynamical environment. In his modelwould otherwise be concealed under the mean value of the
the ligand binding is assumed to be governed by the passag®servable. The single molecule time trajectories for systems
through a geometrical bottleneck whose cross-sectional argrictuating under the equilibrium condition contain detail dy-
fluctuates in time because of thermal noise. The model remamical information including that on distribution.
sults in a decay of the molecular concentration which is non-  The purpose of the present work, motivated by the single
exponential at short times, but changes to exponential at longolecule spectroscopic studiés that reveal a distribution
times. If A be the relaxation rate of the radius of the bottle- of waiting time for an event to occur, is to develop a micro-
neck, then the effective rate constant for the long time exposcopic model capable of giving rise to experimentally ob-
nential decay was found to vary as’ served distribution and also to investigate the accompanying
The stochastic aspects of environmental fluctuation cafieatures of such a model. In our model, the relaxation faces
be best studied at single molecule resolution. Single molan entropy barrier, rather than an energy barrier. The entropic
ecule fluorescence spectroscopy permits one to investigashttleneck arises from the need of a dynamical cooperativity
the dynamical behavior of individual biomolecules in thein the environment. The model includes a control variable
condensed phase™ Single molecule spectroscog$MS),  which, being a pointer of the collective instantaneous state of
by definition, eliminates ensemble averaging involved inthe environment, is a random walker in finite discrete space
with continuous time as a result of environmental fluctuation.
dAuthor to whom correspondence should be addressed. Electronic mailVe study the waiting time distribution for the reactive event
bbagchi@sscu.iisc.ernet.in to occur by simulating the model and obtain the time depen-




gence of 'Fhel av?r'?ge sn;rt\;]ivatlhprob?bililty thglre fr?m anldtaljo k(Q(t))=ko[1+tanH Q(t)—N¢)], (6)
y numerical solution of the theoretical problem formulated. _ B
We also investigate the waiting time distribution as wellfqr all Q ex:f(?[_pt fqu—O ar:gik(_O)— ]9 ; ge_ret Ko has thte
as the time dependence of the average survival probabilitg'gmenﬁ'On OI |meh|nverie a C_I.';’ a |x3_ mbeg_er greater
for an instantaneous death model which can be considered ank tde Xa ue ‘:V ere t N egw II rlumk 'SF” utlo?]e?qus
a limiting case of the present model. The instantaneous deafff 3x€a- purely entropic bottieneck arises w '

model can be treated analytically for the average survival'NerePY7o="71= Ten. .
time. In the context of our model, the event may be either the

The rest of this paper is organized as follows. Section IIfoldlng of a biomolecule or the reaction controlling an enzy-

describes the model. A theoretical analysis is contained iﬁnatl'(c ttur?ovzr or tlhe elntrthlf atsmallglgar:d moIecuIebmtﬁ
Sec. IlI. Section IV outlines the method of simulation. The POCKEt Of @ biomolecule while the Subsystéms may be the

results are presented in Sec. V with discussions. We conclud”ﬁéubunlts O_f the blomolequle each of which has two possible
in Sec. VI with a few comments. conformations. The particular form of th@ dependence of

the rate constant incorporates a dynamical cooperativity. The
rate of the occurrence of the event is large when a major
fraction of the subunits has a particular conformation. The
The model considers occurrence of an event in a centrgdresent work mostly concentrates on the case whéselso
system, the rate being controlled by the degree of order osqual to zero, whence both the states are equally probable to
excitation present in the environment. The environment conbe occupied at equilibrium withg= 7,= 7en,.
sists ofN identical noninteracting two-state subsystems, each A special case of the model arises wHenis an absorb-
of which transits back and forth between its two states, laing barrier. This means that the event occurs with unit prob-
beled 0 and 1, in thermal equilibrium at temperatlirdhe  ability at the instantQ reachesN, for the first time. This
waiting time before a transition can occur from the stiate limiting case is thus a kind of instantaneous death model.
(=0,1) is random, but is drawn from a Poissonian probabil-This model can be solved analytically for the average relax-
ity density function given by ation timer.

Il. THE MODEL

d/i(t):%exq_t/ﬂ), i=0,1, (1)

. . . . IIl. THEORETICAL ANALYSIS
wherer; is the average time of stay in the statéf p; be the

equilibrium probability of the state being occupied, we The theoretical treatment of the dynamical disorder
have model starts with a rate equation for the time dependence of
1 the average survival probabilityS(t)), which is
Po= T exd — el (kgT @ d(S(t
Aoeltken] B sy, )
and
ext — el (kgT)] where theQ dependence of the rate constant is given by Eq.

p1= — , 3 (6). For our modelQ is a stochastic variable which under-
L+exd —el(ksT)] goes a random walk in the discrete integer spa@dl] in

where the O state is assumed to have a zero energy and theuhit steps with time varying continuously. The average tran-

state an energy, andkg is the Boltzmann constant. The sition probabilities per unit time for the stochastic variable to

following relation, due to detailed balance, holds make a jump fromQ to Q' (=Q=1) areW(Q’',Q), given
b
k=22 D @
“he 7 W(Q+1Q)=W"(Q)=(N-Q)/q (8)
whereK is the equilibrium constant for the two states. We and
define a variableZ;(t) (j=1,2,...,N), which takes on a W(Q-1Q)=W (Q)=Q/,. 9)

value O if at the given instant of timethe state O of the - o o _
two-state subsystejris occupied and 1 if otherwisg;(t) is ~ We follow Zwanzig's prescriptiotf which first yields a

thus essentially an occupation variable. The control variablesiouville-master equation to be satisfied by the noise-
Q(t), is defined as averaged probability density(S,Q;t) and then performs a

N stepwise averaging

t)= i(t). 5 — 0
A=, & © saqw-[ dsseson (10
Q(t) is therefore a stochastic variable in the discrete integer d sub "
spacq O,N] and carries information of the degree of order ornd subsequently
excitation prevailing in the environment at timeThe envi- N
ronmental modulation of the rate of the occurrence of the (S(t))= E_ S(Qst). (11)
event arises from &-dependent rate constakt\We assume Q=0
the rate constark(Q) to be of the form In the present case, the Liouville-master equation reads as



d9(S,Q;t)
ot

d
=k(Q) 7g[SdS.Qit)]
FIN=Q+ 1)/ 70]g(S.Q~1;t)
+I(Q+1)/m]g(S.Q+ 1)

—[(N=Q)/7]9(S,Q;t) = (Q/71)9(S,Q;t),
12

whence the partially averagé(Q;t) satisfies

IS(Q;t)
ot

=—k(Q)S(Q;t) +H[(N=Q+1)/7]S(Q—1;1)

+[(Q+1)/7]S(Q+1;) —[(N—Q)/7]S(Q;t)
—(Q/7)S(Q;t). (13

The set of equations given by Ed.3) for Q=0,1,...,N has
a matrix representation
aS(t)

We solve numerically by finding the eigenvalies and the
right eigenvectorgd,} of the matrixD and then expanding

in terms of eigenvectof$
S(t)=> ¢, ®, expAt). (15)
A

The set of coefficientéc,} are determined b§(0) which is
in turn obtained from the simulations.

the method of eigenvector expansion, whence the coeffi-
cients of the expansion are determined fr&j®) which is
again obtained from the simulations.

For the instantaneous death model, we follow the proce-
dure outlined in Ref. 21 to find an expression for the mean
first passage time(l) which is the mean time elapsed before
the stochastic variabl€® (starting from an initial valud
<N,—1) reachesN, for the first time. 7(l) satisfies the
equation related to the backward master equation

W[ (1+1) = n(D]1+W- (D[ (1 - 1) — () ]=—1,
(19

subject to an absorbing boundary condition @&=N,,
7(N.)=0, and a reflecting boundary condition =0,
7(—1)=7(0). We define

uh=r1+1)—7(l), (20
W (m

om=11 W+Em;, (22)
and

w(h=U)/e). (22
Using these definitions, one can rewrite EfP) as

WO M) -w(-1)]=-1, (23
which is solved for¥ (l) to obtain

' 1
\If(l)z—mE:() Wmem” (24)

The instantaneous death model, considered as a liminghere the reflecting boundary condition is used. Then with

case of our dynamical disorder model, poses an interesting,q help of the absorbing boundary condition we get the
first passage time problem. The average survival probabilityonowing:

in this case is given by
Ne—1

(S()y= > P(Q;t), (16)
Q=0

whereP(Q;t), the probability of the collective environmen-

tal state to be a@ at timet, satisfies the master equatfdn

dP(Q;t
Ej? L[N Q+ 1/l Lt

+(Q+1)/m]P(Q+1t)
~[(N=Q)/7]P(Q;t) = (Q/ 7)) P(Q;1).
17

The set of differential equations, given by E.7), for
Q=0,1,...,N;.—1, has a compact matrix representation

PO _ap).

dt (18)

Note that apart from having &(Q) term in its diagonal
element, the matriD differs from A in dimension. We nu-

Ne—1 n 1
()= n2:| @(n)mZZO W (25)

Substitution forw* (m) and®(m) by Egs.(8) and (9) and
subsequent simplification yield

N

m

N—1) 12
) (26)

7_ONC—l
=y 2 ( nl2

n= m=0

)Km—ﬂ

where (})=N!/n!(N — n)!. For the special case of,
=71=Tenys» K=1. We turn into a new index=N-—m for
the inner sum, whence E{6) reads as

Ng—1

N

>

=N-n

N

N—1)"1
) r ] KN—n—r_ (27)

n

Use of an integral identiy allows one to rewrite the above
equation

T(l):TOJ’OldX(l—X)N7n71(1+X/K)n, (28

merically find the time dependence of the average survivaand then introducing the variable= (1+x/K)/(1—x), one

probability by diagonalizing the matri& and then following

gets



Ne-1 ., On repeating the simulation of the trajectory
() =7o(1+ VKN D) dy y"(y+1/K)"N"1 (299 N (=50000) times and recording the time of the termina-
n=tJ1 tion of the trajectory, the immediate outcome of the simula-
On integration one ends up with a sum over hypergeometriton was a set of waiting timeg (i=1,2,....,Ny) for the
functionsF(a,b;c;z) event to occur. The histogram obtained from this set gave the
(1) = 7o( 1+ 1K) waiting time distribution. The time dependence of the aver-
0 age survival probability{ S(t)), was then derived from
Ne—1

F(IN+IN—n;N—n+1;-1/K) 1 Ns
X2 N=n B sy S H, (32

An approximation, which is valid wheN—n>1, can sim-  \ypereH is Heaviside step function. Equatié82) needs to
plify the cumbersome sum to an extent. It is then reasonablgg | nderstood. liv(t') be the waiting time density function,
to approximate F(N+1,N—n; N—n+1; —1/K)=F(N \y;")gt' gives the probability that the event occurs between

- NN — —(N+1) . R . L.
+1,N=n; N—n; —1K)=(1+1K) ", whence the imeintervalt’ andt’ +dt’. The survival probability is then
expression for the mean first passage time reduces to given by

Ne—1 .
(=7o(1+ 1K) " 2 S 31) S(t)zl—f w(t')dt'. (33
n=I n 0
It is then obvious thaN. must be much smaller thai for  For a simulated trajectorw(t’) has as-function form, and
the validation of this expression. A smd{l value ensures therefore, the survival probability in théh simulation is
that N, remains larger than the most probable value Gor .
This leads to a very weak dependenceMNn S(t)= 1_f S(t'—t)dt’. (34)
0

IV. COMPUTER SIMULATION On averaging over trajectories, one gets

An outline of the method of simulation is presented here. 1Y
Each of the two-state subsysteff$SSs in the environmen- (S(t)= N. ;1 S(1). (35
tal space was initially allowed to be occupied according to °
the bias, if any, depending upon the valueeofThe waiting ~ Equations(34) and (35) together result in Eq(32).
time for a transition to occur in each TSS was drawn from a A dimensionless parameter defined asc=Kkq7eny, was
normalized exponential distribution with the correspondingintroduced and the set of simulations was repeated for differ-
mean value. The transition was executed in the TSS havingnt values of with k, kept constant. A& changes, the time
the least waiting time. Next waiting time was then drawnStepAt needs to be reset accordingly. We set the time step to
from the same distribution for that TSS and the waiting timesPe equal to 5 10~ *« for a particular value ofk=<10. For
of the rest of the TSSs were adjusted by subtracting the leagigher values ofk, we setAt=0.5. This gives an almost
one from the existing waiting times. The next transition wasperfect agreement of the simulation result with the numerical
then executed in the same way. The process was thus reolution of the time dependence of the average survival
peated until sufficient number of initial configurations in the Probability.
environmental space with waiting time for the next transition
to occur in each TSS were stored. V. RESULTS AND DISCUSSIONS

For each trajectory, an initial configuration was chosen
from the stored ones. The temporal evolution of the environ-  The dynamical disorder modelith a purely entropic
ment was executed in the same fashion as effected whilkottleneck corresponding tey= 7= 7¢p, IS Simulated with
generating the initial configurations. For the sake of generalN=10 andN.=8 for a range of values of between 1 and
ity, time was scaled by settirig, equal to unity. Each time a 500. The nonexponentiality in both the waiting time distri-
TSS having the least waiting time was picked for a transitiorbution and the decay of the average survival probability be-
to occur, a time period was obtained during whi@ft) had  comes progressively prominent asncreases. Fok=1, the
a definite value. The time was advanced in discrete steps ofaiting time distribution is Poissonian and this results in an
At unlessAt included the instant whe@®(t) underwent a exponential decay of the average survival probability as
change; whenever it did, the time step was shortened accorgdhown in Figs. (&) and Xb). As « increases, the waiting
ingly to avoid any change i@Q(t) during it. In each step, a time distribution exhibits a longer tail as evident from Fig. 2.
random number generator was called to get a random nun¥his is reflected in the decay of the average survival prob-
ber uniformly distributed between zero and unity. If the ability which is nonexponential at short times, but changes to
drawn random number was less than or equ&l@)At, the  exponential at longer times. Fig. 3 which sho{@t)) in the
trajectory was terminated. Otherwise, the simulation of thdogarithmic scale against time illustrates this behavior.
trajectory was continued. For the instantaneous death modalVhen the average rate of the environmental fluctuation,
time was advanced in steps of the least waiting times and the, ., is comparable to the intrinsic rakg, the reactive event
trajectory was terminated as soon @sreachesN. for the  occurs infrequently and the average survival probability de-
first time. cays exponentially. As the environmental fluctuation slows
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FIG. 3. INS(t)) plotted as a function of timefor «=1,10,100(dashed line,

1 dashed—dotted line, and solid line, respectiy@iythe case of the dynamical
disorder model witiN=10 andN.= 8. The change over from the short time
nonexponential decay to long time exponential decay of the average survival
1 probability is notable.

<S(t)>

We have obtained the average survival timelefined as
1 7= [odt(S(t)P), from the area under théS(t)) versust
curve for the range of values af The average survival time
0 10 20 30 40 50 80 70 80 . .
(b) it is found to have a fractional power law dependencexon
7~ k%, with the exponentr=0.52 for largex. This follows
FIG. 1. (a) Waiting time histogram for the dynamical disorder model with from the |n(7-/k61) versus I plot shown in Fig. 5. The rate
N=10, N.=8, and«=1. The solid line is a fit to a normalized exponential of the environmental fluctuation slows down as the viscosity

waiting time distribution with the mean equal to 12.88) The circles are fth | tis i d. Itis th ble t
the data point for the time dependence of the average survival probability” or tne solvent Is Increased. 11 1S then reasonable 10 assume

obtained from the waiting time distribution shown @@ and the solid line ~ that 7¢p, iS proportional ton, whence we end up with an
corresponds to the numerical solution. The agreement is nearly perfect. inverse fractional power lawdependence of the average rate
of the occurrence of the event, !, on the solvent viscosity.

. . Such fractional viscosity dependence has been earlier pre-
down, the event occurs from a broader window leading to y dep P

nonexponentiality. Fig. 4 shows a plot of(B(t)) versust d!cted by .ZWan2|g n a different model of dynam[cal
: : . . . disordet with geometric bottleneck. However, Zwanzig's
for two values ofN. with N kept fixed at 10. It is evident

that the nonexponentiality is more pronounced with a less
severe entropic bottleneck. 0

0.04 T T T T \

0.06 T T T T

0.05 - g
0.03 g N

In<S(v)>
e
7/

0.02 {

wi(t)

0.01 H

1 L L L L L L L L L

o P o o ™ 500 0 2 4 6 8 10 12 14 16 18 20
t/k,

t/k"

FIG. 2. (a) Waiting time histogram for the dynamical disorder model with FIG. 4. InS(t)) versust plot at short times foN.=7 and 8(dashed line and
N=10, N.=8, and x=100. The solid line is a fit to the biexponential solid line, respectivelywith N held fixed at 10. With an enhanced time
ae’7a+be!’™ with a=0.0075,7,=97.99,b=0.027, andr,=5.56. (Insed resolution at short times initial slow decay of the average survival probabil-
Expansion of the first two bins of the main histogram. ity is evident in both the cases.
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treatment is in the context of ensemble-averaged experiment | |
and discusses in terms of molecular concentration. A
However, when thenstantaneous death modéhith @ °° |
only the entropy constrainis simulated forN=10 andN, 0.4p 8
=8, both the waiting time distribution and the decay of the .| ]
average survival probability, shown in Figsiaband Gb),
are found to be exponential. We have studied the system siz ~ ®?[ l
dependence of the average survival timby simulating the 01} .
model for differentN values with the fractionp, defined as 0 , , ;
¢»=N./N, kept fixed at 0.8. For the instantaneous death e 2 B l® =8 =2 %

env

model, the average survival time is essentially the mean
first passage time. The mean first passage time observedt. 6. (a) First passage time histogram for the instantaneous death model
in simulation, Tobs is a Weighted average aSps with N=10, N.=8 and a purely entropic bottleneck. The solid line is a fit

_yNc—-1 . ; to the normalized exponential distribution with the mean equal to 4i91.
2' =0 P(1:0)7(1). An eXponemlal dePendence 0&’5 on The corresponding decay of the average survival probability. The data points

N is evident from Fig. 7 which shows a linear dependence Obptained from the simulation are marked with circles and the solid line is the

IN(7ops/ Ts9 ON N, 75c being the scaling unit. numerical solution. The agreement between the two is almost perfect.
The instantaneous death model has also been simulated

to stud_y the temperature dependence of_ the mean f|rs_t PaSi CONCLUDING REMARKS

sage time for a nonzero value ef In this case, time is

scaled in terms of-., which equalsr; for the lowest tem- Let us first summarize the main aspects of this paper. We
perature studied. The scaling is based on the assumption thaave introduced and studied a model of dynamical disorder.
the proportionality constantt in pj=c7;, i=0 and 1, is in- The salient feature of this model is the dynamical cooperat-

dependent of temperature. The curvature in the plot ofvity between the central system and its environment. The
In(7ops/ Ts) againste/(kgT), shown in Fig. 8, indicates a entropic bottleneck is severe when a large fraction of the
non-Arrhenious behavior. The observed mean first passaggvironmental subsystems needs to be in a particular state
time 74ps Ccan be fitted well to the form for the relaxation to happen. The waiting time distribution,
obtained by simulating the model, exhibits a long time tail
IN(7ops/ 750) =2.8+ 2.6(e/kgT) +0.89 e/ksT)*. (36 for slow er?vironmentgl fluctuation. The numericgl solution
Several single molecule experimeht$ have recently for the time dependence of the average survival probability is
measured the distribution of the waiting time for the relax-in agreement with the simulation result. A limiting case of
ation to occur. The waiting time distribution predicted by ourthe model is treated analytically for the average survival
dynamical disorder model for slow environmental fluctuationtime. The waiting time distribution for slow environmental
qualitatively resembles the folding time distribution ob- fluctuation looks alike with the experimentally observed
served in RNA folding[Note the similarity between Fig. folding time distribution in RNA foldingt®
5(B) of Ref. 19 and Fig. 2 of the present wofkt is worth We note the resemblance of the qualitative predictions
mentioning here that a recent experiment on single-moleculthat our dynamical disorder model makes to those of Zwan-
enzymatic dynamics has revealed at long times a power lawig’s model, in spite of several differences between the two.
distribution of reaction timé? Apart from the difference of the particular form of the con-
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y glance. We, however, emphasize that this particular form is
quite effective to provide a properly placed window where
] from the event can occur with variable rates. The instanta-
neous death model comes naturally as a limiting case of this.
The existence of the two paramet&t@andN, in the present
dynamical disorder model opens up the scope of the study of
the dependence on the system size and on the required de-
8 gree of cooperativity, respectively.

In a typical ensemble-averaged measurement with bulk
samples, it is difficult, if not impossible, to distinguish
whether the nonexponential behavior is intrinsic to each in-
dividual molecule or is due to inhomogeneous averaging

10F

2r ] over large population where each individual member dis-

plays different single exponential behavior. Single molecule

o . . . . . . . . . study has, however, proved to be valuable in this regard.

e 5 0 12 2; % % 4 4 %0 glow conformational dynamics can be best probed at single
molecule level.

FIG. 7. In(ryps/ 7s) VS N plot with the fractiong=N./N held fixed at 0.8 The present study has explored the applicability of a

for t'he instant:_aneoys death model. The data_ p_oints'; for sole entropy cordynamica| disorder model in the context of slow conforma-
f;:;ftih‘ghg;t:'giir']stss'f:gr'eg] :ygs;"”vvv’it; anwg:Z]rg(;rct:ieass; ;g;:g;;gres tional dynamics, where an entropy barrier rather than an en-
whencer,= 7, . A linear fit in each case, with slopes 0.17 and 0.30, re,spec—ergy barrier controls the relaxation. Since the content of the
tively, illustrates an exponential dependence-gf on N. The dependence is model is rather general, we envisage its applications to sev-
stronger with an energy constraint. eral different problems where entropy crisis slows down the
dynamics. The two-state subsysteifisSS3 could be the

) __representative of the fluctuating states of the subunits of a
trol variable dependence of the rate constant, the main difyionolymer(rotational isomers It could also represent, with
ference is that the control variable in our model moves ing yonzero value oé, the bonded and nonbonded states of a
discrete space while its variation in Zwanzig’'s model is CON-hydrogen bond between two groups. A well known model of
tinuous. In addition, an element of dynamical cooperativitypigchemical reactions employs the opening of a gate for the
is present in our model. The resemblance thus suggests thafiaxation to occu?® The opening of the reaction gate is, in
the qualitative findings are more general in nature than ity determined by the environment. The model developed
appears from a particular model being under consideratiomere provides a more general description of the dynamics of
An advantage with our model is that an energy barrier can bgate opening and also of configurational modulation of rate
easily incorporated into it. While the dependence of the ratg) qcesse& Another application of the present model could
constant on the control variable enters our model naturallyg 1o the area of cooperative dynamics in supercooled liquids

through a requirement of a dynamical cooperativity, the aspear the glass transition. We hope to address these issues in
sumed form of the dependence is not so obvious at a firs{,i,re.
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