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We study a dynamical disorder model for environmental modulation of rate processes where a need
of dynamical cooperativity presents an entropy barrier, rather than an energy barrier. The rate
depends on a control variable,Q, that describes the collective instantaneous state of the environment
and is itself a random walker in finite discrete space with continuous time. We obtain the waiting
time distribution for the relaxation by simulating the model. The time dependence of the average
survival probability is derived there from and also by a numerical solution through the
Liouville-master equation approach to the theoretical problem. We present an analytical treatment of
the first passage time problem that is posed by a limiting case of our model. As the rate of the
environmental fluctuation,tenv

21 , slows down, the decay of the average survival probability is found
to be more and more nonexponential in short times, but to change to exponential at longer times.
The average survival time,t , exhibits a fractional power law dependence onk(5tenvk0), where
time is scaled in terms ofk0

21, k0 being the intrinsic rate coefficient for the relaxation. The mean
first passage time in the limiting case of the model exhibits an exponential dependence on the total
number of the environmental subsystemsN and a non-Arrhenious temperature dependence over the
temperature range studied. We note the likely relevance of a part of this result to single molecule
spectroscopic studies that reveal a tail in the waiting time distribution at long times.
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I. INTRODUCTION

Environmental modulation of rate processes in comp
dynamical systems, such as macromolecules, has be
topic of intense research interest in recent years. The s
has been on studies of passage through fluctuating bottle
which can generally be either geometric1–5 or energetic6–8 in
character. Motivated by experimental studies of the kine
of ligand binding in myoglobin, Zwanzig proposed a mod1

where the protein, which is known to fluctuate around
average structure when embedded in solvents at amb
temperature, is in a dynamical environment. In his mod
the ligand binding is assumed to be governed by the pas
through a geometrical bottleneck whose cross-sectional
fluctuates in time because of thermal noise. The model
sults in a decay of the molecular concentration which is n
exponential at short times, but changes to exponential at
times. If l be the relaxation rate of the radius of the bott
neck, then the effective rate constant for the long time ex
nential decay was found to vary asl1/2.

The stochastic aspects of environmental fluctuation
be best studied at single molecule resolution. Single m
ecule fluorescence spectroscopy permits one to investi
the dynamical behavior of individual biomolecules in t
condensed phase.9–11 Single molecule spectroscopy~SMS!,
by definition, eliminates ensemble averaging involved

a!Author to whom correspondence should be addressed. Electronic
bbagchi@sscu.iisc.ernet.in
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conventional chemical kinetics. Study at single molec
level allows one to investigate the static disorder12–15 which
arises from a distribution of rates among individual mo
ecules. The local environment of a single molecule~SM! in a
condensed phase fluctuates with time. If in a rate proc
with a single molecule this environmental fluctuation co
trols the rate of the occurrence of the event, dynami
disorder1,16 results. SMS allows to probe along a time traje
tory dynamical disorder free from the static one.9 In contrast
with ensemble-averaged measurements, single molecule
periments provide information on distribution9,17–19 that
would otherwise be concealed under the mean value of
observable. The single molecule time trajectories for syste
fluctuating under the equilibrium condition contain detail d
namical information including that on distribution.

The purpose of the present work, motivated by the sin
molecule spectroscopic studies9,19 that reveal a distribution
of waiting time for an event to occur, is to develop a micr
scopic model capable of giving rise to experimentally o
served distribution and also to investigate the accompany
features of such a model. In our model, the relaxation fa
an entropy barrier, rather than an energy barrier. The entr
bottleneck arises from the need of a dynamical cooperati
in the environment. The model includes a control varia
which, being a pointer of the collective instantaneous stat
the environment, is a random walker in finite discrete sp
with continuous time as a result of environmental fluctuatio
We study the waiting time distribution for the reactive eve
to occur by simulating the model and obtain the time dep
il:
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dence of the average survival probability there from and a
by numerical solution of the theoretical problem formulate

We also investigate the waiting time distribution as w
as the time dependence of the average survival probab
for an instantaneous death model which can be considere
a limiting case of the present model. The instantaneous d
model can be treated analytically for the average surv
time.

The rest of this paper is organized as follows. Section
describes the model. A theoretical analysis is contained
Sec. III. Section IV outlines the method of simulation. T
results are presented in Sec. V with discussions. We conc
in Sec. VI with a few comments.

II. THE MODEL

The model considers occurrence of an event in a cen
system, the rate being controlled by the degree of orde
excitation present in the environment. The environment c
sists ofN identical noninteracting two-state subsystems, e
of which transits back and forth between its two states,
beled 0 and 1, in thermal equilibrium at temperatureT. The
waiting time before a transition can occur from the stati
(50,1) is random, but is drawn from a Poissonian proba
ity density function given by

c i~ t !5
1

t i
exp~2t/t i !, i 50,1, ~1!

wheret i is the average time of stay in the statei. If pi be the
equilibrium probability of the statei being occupied, we
have

p05
1

11exp@2e/~kBT!#
~2!

and

p15
exp@2e/~kBT!#

11exp@2e/~kBT!#
, ~3!

where the 0 state is assumed to have a zero energy and
state an energye, and kB is the Boltzmann constant. Th
following relation, due to detailed balance, holds

K5
p1

p0
5

t1

t0
, ~4!

whereK is the equilibrium constant for the two states. W
define a variablez j (t) ( j 51,2,. . . ,N), which takes on a
value 0 if at the given instant of timet the state 0 of the
two-state subsystemj is occupied and 1 if otherwise.z j (t) is
thus essentially an occupation variable. The control varia
Q(t), is defined as

Q~ t !5(
j 51

N

z j~ t !. ~5!

Q(t) is therefore a stochastic variable in the discrete inte
space@0,N# and carries information of the degree of order
excitation prevailing in the environment at timet. The envi-
ronmental modulation of the rate of the occurrence of
event arises from aQ-dependent rate constantk. We assume
the rate constantk(Q) to be of the form
o
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k~Q~ t !!5k0@11tanh~Q~ t !2Nc!#, ~6!

for all Q except forQ50 and k(0)50. Here k0 has the
dimension of time inverse andNc is a fixed integer greate
than the value where the equilibrium distribution ofQ is
peaked. A purely entropic bottleneck arises whene50,
wherebyt05t15tenv.

In the context of our model, the event may be either
folding of a biomolecule or the reaction controlling an enz
matic turnover or the entry of a small ligand molecule in
pocket of a biomolecule while the subsystems may be
subunits of the biomolecule each of which has two poss
conformations. The particular form of theQ dependence of
the rate constant incorporates a dynamical cooperativity.
rate of the occurrence of the event is large when a ma
fraction of the subunits has a particular conformation. T
present work mostly concentrates on the case wheree is also
equal to zero, whence both the states are equally probab
be occupied at equilibrium witht05t15tenv.

A special case of the model arises whenNc is an absorb-
ing barrier. This means that the event occurs with unit pr
ability at the instantQ reachesNc for the first time. This
limiting case is thus a kind of instantaneous death mod
This model can be solved analytically for the average rel
ation timet.

III. THEORETICAL ANALYSIS

The theoretical treatment of the dynamical disord
model starts with a rate equation for the time dependenc
the average survival probability,^S(t)&, which is

d^S~ t !&
dt

52k~Q~ t !!^S~ t !&, ~7!

where theQ dependence of the rate constant is given by E
~6!. For our model,Q is a stochastic variable which unde
goes a random walk in the discrete integer space@0,N# in
unit steps with time varying continuously. The average tra
sition probabilities per unit time for the stochastic variable
make a jump fromQ to Q8 (5Q61) areW(Q8,Q), given
by

W~Q11,Q!5W1~Q!5~N2Q!/t0 ~8!

and

W~Q21,Q!5W2~Q!5Q/t1 . ~9!

We follow Zwanzig’s prescription16 which first yields a
Liouville-master equation to be satisfied by the nois
averaged probability densityg(S,Q;t) and then performs a
stepwise averaging

S̄~Q;t !5E
1

0

dS Sg~S,Q;t ! ~10!

and subsequently

^S~ t !&5 (
Q50

N

S̄~Q;t !. ~11!

In the present case, the Liouville-master equation reads
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]g~S,Q;t !

]t
5k~Q!

]

]S
@Sg~S,Q;t !#

1@~N2Q11!/t0#g~S,Q21;t !

1@~Q11!/t1#g~S,Q11;t !

2@~N2Q!/t0#g~S,Q;t !2~Q/t1!g~S,Q;t !,

~12!

whence the partially averagedS̄(Q;t) satisfies

]S̄~Q;t !

]t
52k~Q!S̄~Q;t !1@~N2Q11!/t0#S̄~Q21;t !

1@~Q11!/t1#S̄~Q11;t !2@~N2Q!/t0#S̄~Q;t !

2~Q/t1!S̄~Q;t !. ~13!

The set of equations given by Eq.~13! for Q50,1,. . . ,N has
a matrix representation

]S̄„t…

]t
5DS̄~ t !. ~14!

We solve numerically by finding the eigenvalues$l% and the
right eigenvectors$Fl% of the matrixD and then expanding
in terms of eigenvectors20

S̄~ t !5(
l

clFl exp~lt !. ~15!

The set of coefficients$cl% are determined byS̄(0) which is
in turn obtained from the simulations.

The instantaneous death model, considered as a lim
case of our dynamical disorder model, poses an interes
first passage time problem. The average survival probab
in this case is given by

^S~ t !&5 (
Q50

Nc21

P~Q;t !, ~16!

whereP(Q;t), the probability of the collective environmen
tal state to be atQ at time t, satisfies the master equation20

dP~Q;t !

dt
5@~N2Q11!/t0#P~Q21;t !

1@~Q11!/t1#P~Q11;t !

2@~N2Q!/t0#P~Q;t !2~Q/t1!P~Q;t !.

~17!

The set of differential equations, given by Eq.~17!, for
Q50,1,. . . ,Nc21, has a compact matrix representation

dP~ t !

dt
5AP~ t !. ~18!

Note that apart from having ak(Q) term in its diagonal
element, the matrixD differs from A in dimension. We nu-
merically find the time dependence of the average surv
probability by diagonalizing the matrixA and then following
ng
ng
ty

al

the method of eigenvector expansion, whence the coe
cients of the expansion are determined fromP(0) which is
again obtained from the simulations.

For the instantaneous death model, we follow the pro
dure outlined in Ref. 21 to find an expression for the me
first passage timet( l ) which is the mean time elapsed befo
the stochastic variableQ ~starting from an initial valuel
<Nc21) reachesNc for the first time. t( l ) satisfies the
equation related to the backward master equation

W1~ l !@t~ l 11!2t~ l !#1W2~ l !@t~ l 21!2t~ l !#521,
~19!

subject to an absorbing boundary condition atQ5Nc ,
t(Nc)50, and a reflecting boundary condition atQ50,
t(21)5t(0). Wedefine

U~ l !5t~ l 11!2t~ l !, ~20!

Q~ l !5 )
m51

l
W2~m!

W1~m!
, ~21!

and

C~ l !5U~ l !/Q~ l !. ~22!

Using these definitions, one can rewrite Eq.~19! as

W1~ l !Q~ l !@C~ l !2C~ l 21!#521, ~23!

which is solved forC( l ) to obtain

C~ l !52 (
m50

l
1

W1~m!Q~m!
, ~24!

where the reflecting boundary condition is used. Then w
the help of the absorbing boundary condition we get
following:

t~ l !5 (
n5 l

Nc21

Q~n! (
m50

n
1

W1~m!Q~m!
. ~25!

Substitution forW1(m) andQ(m) by Eqs.~8! and ~9! and
subsequent simplification yield

t~ l !5
t0

N (
n5 l

Nc21 S N21
n D 21

(
m50

n S N
mDKm2n, ~26!

where ~n
N !5N!/n! ~N 2 n!!. For the special case oft0

5t15tenv, K51. We turn into a new indexr 5N2m for
the inner sum, whence Eq.~26! reads as

t~ l !5
t0

N (
n5 l

Nc21 S N21
n D 21

(
r 5N2n

N S N
r DKN2n2r . ~27!

Use of an integral identity22 allows one to rewrite the abov
equation

t~ l !5t0E
0

1

dx~12x!N2n21~11x/K !n, ~28!

and then introducing the variabley5(11x/K)/(12x), one
gets
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t~ l !5t0~111/K !N (
n5 l

Nc21 E
1

`

dy yn~y11/K !2N21. ~29!

On integration one ends up with a sum over hypergeome
functionsF(a,b;c;z)

t~ l !5t0~111/K !N

3 (
n5 l

Nc21
F~N11,N2n;N2n11;21/K !

N2n
. ~30!

An approximation, which is valid whenN2n@1, can sim-
plify the cumbersome sum to an extent. It is then reasona
to approximate F(N11, N2n; N2n11; 21/K).F(N
11, N2n; N2n; 21/K)5(111/K)2(N11), whence the
expression for the mean first passage time reduces to

t~ l !.t0~111/K !21 (
n5 l

Nc21
1

N2n
. ~31!

It is then obvious thatNc must be much smaller thanN for
the validation of this expression. A smallK value ensures
that Nc remains larger than the most probable value forQ.
This leads to a very weak dependence onN.

IV. COMPUTER SIMULATION

An outline of the method of simulation is presented he
Each of the two-state subsystems~TSSs! in the environmen-
tal space was initially allowed to be occupied according
the bias, if any, depending upon the value ofe. The waiting
time for a transition to occur in each TSS was drawn from
normalized exponential distribution with the correspond
mean value. The transition was executed in the TSS ha
the least waiting time. Next waiting time was then draw
from the same distribution for that TSS and the waiting tim
of the rest of the TSSs were adjusted by subtracting the l
one from the existing waiting times. The next transition w
then executed in the same way. The process was thus
peated until sufficient number of initial configurations in t
environmental space with waiting time for the next transiti
to occur in each TSS were stored.

For each trajectory, an initial configuration was chos
from the stored ones. The temporal evolution of the envir
ment was executed in the same fashion as effected w
generating the initial configurations. For the sake of gene
ity, time was scaled by settingk0 equal to unity. Each time a
TSS having the least waiting time was picked for a transit
to occur, a time period was obtained during whichQ(t) had
a definite value. The time was advanced in discrete step
Dt unlessDt included the instant whenQ(t) underwent a
change; whenever it did, the time step was shortened acc
ingly to avoid any change inQ(t) during it. In each step, a
random number generator was called to get a random n
ber uniformly distributed between zero and unity. If th
drawn random number was less than or equal tok(Q)Dt, the
trajectory was terminated. Otherwise, the simulation of
trajectory was continued. For the instantaneous death mo
time was advanced in steps of the least waiting times and
trajectory was terminated as soon asQ reachesNc for the
first time.
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On repeating the simulation of the trajecto
Ns (550 000) times and recording the time of the termin
tion of the trajectory, the immediate outcome of the simu
tion was a set of waiting timest i ( i 51,2,. . . .,Ns) for the
event to occur. The histogram obtained from this set gave
waiting time distribution. The time dependence of the av
age survival probability,̂S(t)&, was then derived from

^S~ t !&5
1

Ns
(
i 51

Ns

H~ t2t i !, ~32!

whereH is Heaviside step function. Equation~32! needs to
be understood. Ifw(t8) be the waiting time density function
w(t8)dt8 gives the probability that the event occurs betwe
time intervalt8 andt81dt8. The survival probability is then
given by23

S~ t !512E
0

t

w~ t8!dt8. ~33!

For a simulated trajectoryw(t8) has ad-function form, and
therefore, the survival probability in theith simulation is

Si~ t !512E
0

t

d~ t82t i !dt8. ~34!

On averaging over trajectories, one gets

^S~ t !&5
1

Ns
(
i 51

Ns

Si~ t !. ~35!

Equations~34! and ~35! together result in Eq.~32!.
A dimensionless parameterk, defined ask5k0tenv, was

introduced and the set of simulations was repeated for dif
ent values ofk with k0 kept constant. Ask changes, the time
stepDt needs to be reset accordingly. We set the time ste
be equal to 531023k for a particular value ofk<10. For
higher values ofk, we setDt50.5. This gives an almos
perfect agreement of the simulation result with the numer
solution of the time dependence of the average surv
probability.

V. RESULTS AND DISCUSSIONS

The dynamical disorder modelwith a purely entropic
bottleneck corresponding tot05t15tenv is simulated with
N510 andNc58 for a range of values ofk between 1 and
500. The nonexponentiality in both the waiting time dist
bution and the decay of the average survival probability
comes progressively prominent ask increases. Fork51, the
waiting time distribution is Poissonian and this results in
exponential decay of the average survival probability
shown in Figs. 1~a! and 1~b!. As k increases, the waiting
time distribution exhibits a longer tail as evident from Fig.
This is reflected in the decay of the average survival pr
ability which is nonexponential at short times, but changes
exponential at longer times. Fig. 3 which shows^S(t)& in the
logarithmic scale against timet illustrates this behavior.
When the average rate of the environmental fluctuati
tenv

21 , is comparable to the intrinsic ratek0 , the reactive event
occurs infrequently and the average survival probability
cays exponentially. As the environmental fluctuation slo
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down, the event occurs from a broader window leading
nonexponentiality. Fig. 4 shows a plot of ln^S(t)& versust
for two values ofNc with N kept fixed at 10. It is eviden
that the nonexponentiality is more pronounced with a l
severe entropic bottleneck.

FIG. 1. ~a! Waiting time histogram for the dynamical disorder model wi
N510, Nc58, andk51. The solid line is a fit to a normalized exponenti
waiting time distribution with the mean equal to 12.84.~b! The circles are
the data point for the time dependence of the average survival proba
obtained from the waiting time distribution shown in~a! and the solid line
corresponds to the numerical solution. The agreement is nearly perfec

FIG. 2. ~a! Waiting time histogram for the dynamical disorder model wi
N510, Nc58, and k5100. The solid line is a fit to the biexponentia
aet/ta1bet/tb with a50.0075,ta597.99,b50.027, andtb55.56. ~Inset!
Expansion of the first two bins of the main histogram.
o

s

We have obtained the average survival timet, defined as
t5*0

`dt^S(t)P&, from the area under thêS(t)& versust
curve for the range of values ofk. The average survival time
is found to have a fractional power law dependence onk,
t;ka, with the exponenta50.52 for largek. This follows
from the ln(t/k0

21) versus lnk plot shown in Fig. 5. The rate
of the environmental fluctuation slows down as the viscos
h of the solvent is increased. It is then reasonable to ass
that tenv is proportional toh, whence we end up with an
inverse fractional power lawdependence of the average ra
of the occurrence of the event,t21, on the solvent viscosity
Such fractional viscosity dependence has been earlier
dicted by Zwanzig in a different model of dynamic
disorder1 with geometric bottleneck. However, Zwanzig

ity

FIG. 3. ln̂ S(t)& plotted as a function of timet for k51,10,100~dashed line,
dashed–dotted line, and solid line, respectively! in the case of the dynamica
disorder model withN510 andNc58. The change over from the short tim
nonexponential decay to long time exponential decay of the average sur
probability is notable.

FIG. 4. ln̂ S(t)& versust plot at short times forNc57 and 8~dashed line and
solid line, respectively! with N held fixed at 10. With an enhanced tim
resolution at short times initial slow decay of the average survival proba
ity is evident in both the cases.
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the
treatment is in the context of ensemble-averaged experim
and discusses in terms of molecular concentration.

However, when theinstantaneous death model~with
only the entropy constraint! is simulated forN510 andNc

58, both the waiting time distribution and the decay of t
average survival probability, shown in Figs. 6~a! and 6~b!,
are found to be exponential. We have studied the system
dependence of the average survival timet by simulating the
model for differentN values with the fractionf, defined as
f5Nc /N, kept fixed at 0.8. For the instantaneous de
model, the average survival time is essentially the m
first passage time. The mean first passage time obse
in simulation, tobs, is a weighted average astobs

5( l 50
Nc21P( l ;0)t( l ). An exponential dependence oftobs on

N is evident from Fig. 7 which shows a linear dependence
ln(tobs/tsc) on N, tsc being the scaling unit.

The instantaneous death model has also been simu
to study the temperature dependence of the mean first
sage time for a nonzero value ofe. In this case, time is
scaled in terms oftsc, which equalst1 for the lowest tem-
perature studied. The scaling is based on the assumption
the proportionality constantc in pi5ct i , i 50 and 1, is in-
dependent of temperature. The curvature in the plot
ln(tobs/tsc) againste/(kBT), shown in Fig. 8, indicates a
non-Arrhenious behavior. The observed mean first pass
time tobs can be fitted well to the form

ln~tobs/tsc!52.812.6~e/kBT!10.89~e/kBT!2. ~36!

Several single molecule experiments9,19 have recently
measured the distribution of the waiting time for the rela
ation to occur. The waiting time distribution predicted by o
dynamical disorder model for slow environmental fluctuati
qualitatively resembles the folding time distribution o
served in RNA folding@Note the similarity between Fig
5~B! of Ref. 19 and Fig. 2 of the present work.# It is worth
mentioning here that a recent experiment on single-mole
enzymatic dynamics has revealed at long times a power
distribution of reaction time.24

FIG. 5. Log–log plot oft/k0
21 vs k. The solid line is a linear fit with slope

a50.52. This means a fractional power law dependence oft on k with the
exponenta.
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VI. CONCLUDING REMARKS

Let us first summarize the main aspects of this paper.
have introduced and studied a model of dynamical disor
The salient feature of this model is the dynamical coope
ivity between the central system and its environment. T
entropic bottleneck is severe when a large fraction of
environmental subsystems needs to be in a particular s
for the relaxation to happen. The waiting time distributio
obtained by simulating the model, exhibits a long time t
for slow environmental fluctuation. The numerical solutio
for the time dependence of the average survival probabilit
in agreement with the simulation result. A limiting case
the model is treated analytically for the average survi
time. The waiting time distribution for slow environment
fluctuation looks alike with the experimentally observ
folding time distribution in RNA folding.19

We note the resemblance of the qualitative predictio
that our dynamical disorder model makes to those of Zw
zig’s model1, in spite of several differences between the tw
Apart from the difference of the particular form of the co

FIG. 6. ~a! First passage time histogram for the instantaneous death m
with N510, Nc58 and a purely entropic bottleneck. The solid line is a
to the normalized exponential distribution with the mean equal to 4.01.~b!
The corresponding decay of the average survival probability. The data p
obtained from the simulation are marked with circles and the solid line is
numerical solution. The agreement between the two is almost perfect.
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trol variable dependence of the rate constant, the main
ference is that the control variable in our model moves
discrete space while its variation in Zwanzig’s model is co
tinuous. In addition, an element of dynamical cooperativ
is present in our model. The resemblance thus suggests
the qualitative findings are more general in nature tha
appears from a particular model being under considerat
An advantage with our model is that an energy barrier can
easily incorporated into it. While the dependence of the r
constant on the control variable enters our model natur
through a requirement of a dynamical cooperativity, the
sumed form of the dependence is not so obvious at a

FIG. 7. ln(tobs/tsc) vs N plot with the fractionf5Nc /N held fixed at 0.8
for the instantaneous death model. The data points for sole entropy
straint, when time is scaled bytsc5tenv, are within circles. The square
mark the data points for the case with an energy bias havingK52/3,
whencetsc5t1 . A linear fit in each case, with slopes 0.17 and 0.30, resp
tively, illustrates an exponential dependence oftobson N. The dependence is
stronger with an energy constraint.

FIG. 8. Logarithmic plot of the scaled mean first passage timetobs against
the reduced inverse temperaturee/(kBT) for the instantaneous death mod
with N510 andNc58. The solid line is quadratic fit to the data indicatin
non-Arrhenious behavior.
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glance. We, however, emphasize that this particular form
quite effective to provide a properly placed window whe
from the event can occur with variable rates. The instan
neous death model comes naturally as a limiting case of t
The existence of the two parametersN andNc in the present
dynamical disorder model opens up the scope of the stud
the dependence on the system size and on the required
gree of cooperativity, respectively.

In a typical ensemble-averaged measurement with b
samples, it is difficult, if not impossible, to distinguis
whether the nonexponential behavior is intrinsic to each
dividual molecule or is due to inhomogeneous averag
over large population where each individual member d
plays different single exponential behavior. Single molec
study has, however, proved to be valuable in this rega
Slow conformational dynamics can be best probed at sin
molecule level.

The present study has explored the applicability o
dynamical disorder model in the context of slow conform
tional dynamics, where an entropy barrier rather than an
ergy barrier controls the relaxation. Since the content of
model is rather general, we envisage its applications to s
eral different problems where entropy crisis slows down
dynamics. The two-state subsystems~TSSs! could be the
representative of the fluctuating states of the subunits o
biopolymer~rotational isomers!. It could also represent, with
a nonzero value ofe, the bonded and nonbonded states o
hydrogen bond between two groups. A well known model
biochemical reactions employs the opening of a gate for
relaxation to occur.25 The opening of the reaction gate is,
turn, determined by the environment. The model develo
here provides a more general description of the dynamic
gate opening and also of configurational modulation of r
processes.26 Another application of the present model cou
be to the area of cooperative dynamics in supercooled liqu
near the glass transition. We hope to address these issu
future.
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