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2I. INTRODUCTIONIn a reent publiation [1℄, it was argued, by modifying an earlier ansatzby Chen and Wu [2℄, that the total energy density ρ̃ for the universe shouldvary as a−2 where a is the sale fator of its expansion. If the total pressureis p̃, then this argument leads to ρ̃ + 3p̃ = 0 for the universe. This dedutionwas made possible by the use of some dimensional onsiderations in linewith quantum osmology. The reasoning is as follows: Taking the omovingoordinate grid as dimensionless, we attribute a distane dimension to thesale fator a. Sine there is no other fundamental energy sale available, onean always write ρ̃ as Plank density (ρpl = c5/h̄G2 = 5.158 × 1093 g m−3)times a dimensionless produt of quantities. The variation of ρ̃ with a annow be written as
ρ̃ ∝ ρpl

[

lpl

a

]n

,where lpl = (h̄G/c3)1/2 = 1.616× 10−33 m is the Plank length. It is easy tosee that n < 2 (n > 2) will lead to a negative (positive) power of h̄ appearingexpliitly on the right hand side of the above equation. It was pointed outthat suh an h̄-dependent total energy density would be quite unnatural inthe lassial Einstein equation for osmology, muh later than the Planktime. However, the ase n = 2 is just right to survive the semi lassial limit
h̄ → 0. Thus it was argued that if we take quantum osmology seriously,then ρ̃ ∝ a−2 or equivalently ρ̃ + 3p̃ = 0, for a onserved ρ̃. Solving theFriedmann equations gives a oasting evolution for the universe; i.e.,

a = m t,where m =
√

k/(Ω̃ − 1) is a proportionality onstant; Ω̃ is the total densityparameter and k = 0,±1 is the spatial urvature onstant.It shall be noted that ρ̃ + 3p̃ = 0 is an equation of state appropriate forstrings or textures and that it is unrealisti to onsider the present universe asstring-dominated. But in [1℄, it was shown that this ansatz will lead to a real-isti osmology if we onsider that ρ̃ omprises of more than one omponent,say, ordinary matter (relativisti or nonrelativisti) with equation of state
pm = w ρm and a osmologial onstant Λ, whih is time-varying. Let ρΛdenote the energy density arising from Λ and pΛ = −ρΛ be the orrespondingpressure. With



3
ρ̃ = ρm + ρΛ, p̃ = pm + pΛ,the ondition ρ̃ + 3p̃ = 0 will give

ρm

ρΛ

=
2

1 + 3w
,and this gives a realisti model for the universe. It was also shown thatthis simplest osmologial model is devoid of the problems like the horizon,�atness, monopole, osmologial onstant, size, age of the universe and thegeneration of density perturbations on sales well above the present Hubbleradius in the pure lassial epoh. The solution of the osmologial onstant,age and density perturbation problems deserve speial mention sine theseare not solvable in an in�ationary senario. Moreover, the evolution of tem-perature in the model is nearly the same as that in the standard big bangmodel and if we assume the values Ωm = 4/3 and ΩΛ = 2/3, then there isno variation in the freezing temperature with the latter model, and this willenable nuleosynthesis to proeed in an almost idential manner. It also maybe noted that an almost similar model whih predits the above values forthe density parameters was proposed earlier [3℄, from some more fundamentalassumptions based on entirely di�erent grounds.However, it should be remarked that the argument given above, whihleads to this osmology, is heuristi and not based on formal reasoning. Itshould be taken only as a guiding priniple. Also we note that it has someunusual onsequenes like the neessity of ontinuous reation of matter fromvauum energy, though it was argued in [1, 2℄ that suh reation will be tooinaessible to observation.But it was mentioned in [1℄ that, in spite of the those suesses in predit-ing observed values, the reent observations of the magnitudes of 42 high-redshift Type Ia supernovas [4℄ is a set bak for the model. A statement wasexpliitly made to the e�et that the preditions of Ωm and ΩΛ for the presentmodel are outside the error ellipses given in the Ωm − ΩΛ plot in [4℄ and itwas laimed that this disrepany is a serious problem. In this paper, westudy this issue in detail to see how strong is the evidene against this modelwhen ompared with the standard model with a onstant Λ 6= 0, disussedin [4, 5℄. Jakson and Dodgson [6, 7℄ have examined the latter model in thelight of Kellerman's [8℄ and Gurvits' [9℄ ompilations of angular size-redshiftdata for ultraompat (milliarseond) radio soures. Gurvits' ompilation of



4suh data, whih are measured by very long-baseline interferometry (VLBI),is laimed to have no evolution with osmi epoh. Several authors (for e.g.,[10℄) have made use of these data to test their osmologial models. In thepresent paper, we also analyze the Gurvits' data to test the new model. Us-ing the Bayesian theory of statistis, we ompare the new model disussedabove with the standard model with a non-zero osmologial onstant, us-ing both the apparent magnitude-redshift data and the angular size-redshiftdata. It is found that there is no strong evidene against the new model whenthe apparent magnitude-redshift data are onsidered. This is ontraditoryto the statement made in [1℄. The angular size-redshift data, on the otherhand, are found to provide equal preferene to the standard model and thenew one.The remainder of this paper takes the new theory as given and ompares itwith other standard osmologial models. The analysis shall be viewed as anexample of using Bayesian theory to test the relative merits of osmologialmodels, a method whih is laimed to have many positive features whenompared to indiret arguments using parameter estimates. As suh, thetehnique desribed here has wider appliability than just to the omparisonof two osmologial models.The paper is organized as follows. In Setion II, we disuss the Bayesiantheory of model omparison for the general ase. Setion III disusses om-parison of the two models using apparent magnitude-redshift data and inSetion IV, we ompare the models with the angular size-redshift data. Se-tion V omprises disussion of the results.II. BAYESIAN THEORY OF MODEL COMPARISONThe Bayesian theory of statistis [11, 12℄ is historially the original ap-proah to statistis, developed by great mathematiians like Gauss, Bayes,Laplae, Bernoulli et., and has several advantages over the urrently usedlong-run relative frequeny (frequentist) approah to statistis, espeially inproblems like those in astrophysis, where the notion of a statistial ensem-ble is highly ontrived. The frequentist de�nition of probability an onlydesribe the probability of a true random variable, whih an take on vari-ous values throughout an ensemble or a series of repeated experiments. Inastrophysial and similar problems, ensembles and repeated experiments arerarely possible and we speak about the probability of a hypothesis, whihan only be either true or false, and hene is not a random variable. The



5Bayesian theory will help assign probabilities for suh hypotheses by onsid-ering the (often inomplete) data available with us. For example, Laplaeused Bayesian theory to estimate the masses of planets from astronomialdata, and to quantify the unertainty of the masses due to observational er-rors [13℄. In fat, this theory �nds appliation in all those problems whereone an only have a numerial enoding of one's state of knowledge.In the Bayesian theory of model omparison, it is ommon to report modelprobabilities via odds, the ratios of probabilities of the models. The posterior(i.e., after onsideration of the data) odds for the model Mi over Mj are
Oij =

p(Mi|D, I)

p(Mj |D, I)
,where p(Mi|D, I) refers to the posterior probability for the model Mi, giventhe data D and assuming that any other information I regarding the modelsunder onsideration is true. Using Bayes's theorem, one an write the aboveequation as

Oij =
p(Mi|I)L(Mi)

p(Mj |I)L(Mj)
, (1)where p(Mi|I) is alled the prior probability; i.e., any probability assigned tothe model Mi before onsideration of the data, but assuming the information

I to be true. When I does not give any preferene to one model over theother, these prior probabilities are equal so that
Oij =

L(Mi)

L(Mj)
≡ Bij . (2)

Bij is alled the Bayes fator. L(Mi) denotes the probability p(D|Mi) toobtain the data D if the model Mi is the true one and is referred to as thelikelihood for the model Mi. The models under onsideration will usuallyhave one or more free parameters (like the density parameters Ωm, ΩΛ et.in the ase of osmologial models), whih we denote as α, β, .. . L(Mi) anbe evaluated for models with one parameter as
L(Mi) ≡ p(D|Mi) =

∫

dα p(α|Mi)Li(α), (3)where p(α|Mi) is the prior probability for the parameter α, assuming themodel Mi to be true. Li(α) is the likelihood for α in the model and isusually taken to have the form
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Li(α) ≡ exp[−χ2(α)/2]. (4)where
χ2 =

∑

k

(

Âk − Ak(α)

σk

)2 (5)is the χ2 statisti. Here Âk are the measured values of the observable A,
Ak(α) are its expeted values (from theory) and σk are the unertainties inthe measurements of the observable.Generalization to the ase of more than one parameter is straight forward.As a spei� ase, onsider a model Mi with two parameters, α and β, having�at prior probabilities; i.e., we assume to have no prior information regarding
α and β exept that they lie in some range [α, α + ∆α℄ and [β, β + ∆β℄,respetively. Then p(α|Mi) = 1/∆α, p(β|Mi) = 1/∆β and hene

L(Mi) =
1

∆α

1

∆β

∫ α+∆α

α
dα
∫ β+∆β

β
dβ exp[−χ2(α, β)/2]. (6)It is instrutive to rewrite this equation as

L(Mi) =
1

∆α

∫ α+∆α

α
dαLi(α).In this ase,

Li(α) =
1

∆β

∫ β+∆β

β
dβ exp[−χ2(α, β)/2]is alled the marginal likelihood for the parameter α.A. Interpretation of the Bayes fatorThe interpretation of the Bayes fator Bij , whih is given by (2) andwhih evaluates the relative merits of model Mi over model Mj , is as follows[14℄: If 1 < Bij < 3, there is an evidene against Mj when ompared with Mi,but it is not worth more than a bare mention. If 3 < Bij < 20, the evideneagainst Mj is de�nite but not strong. For 20 < Bij < 150, this evidene isstrong and for Bij > 150, it is very strong.III. COMPARISON USING REDSHIFT-MAGNITUDE DATA



7For an FRW model whih ontains matter and a osmologial onstant,the likelihood for these parameters, i.e., Li(Ωm, ΩΛ) an be assigned usingthe redshift-apparent magnitude data in the following manner [14℄. Beforeonsideration of the data, let us agree that Ωm lies somewhere in the range
0 < Ωm < 3, ΩΛ in the range −3 < ΩΛ < 3 and aept this as the onlyprior information I. Let µ̂k be the observed best-�t distane modulus for thesupernova number k, sk its unertainty and ẑk is the osmologial redshift,with wk its unertainty. We an write the expression for χ2 as

χ2 =
∑

k

(

µ̂k − µk

σk

)2

. (7)Here,
µ̂k = µk + nk = gk − η + nk, (8)with

µk ≡ gk − η = 5 log

[

DL(z; Ωm, ΩΛ, H0)

1Mp ]

+ 25being the redshift-apparent magnitude relation. The luminosity distane is
DL(z; Ωm, ΩΛ, H0) = cH−1

0 dL(z; Ωm, ΩΛ), where c is the veloity of light, H0is the Hubble onstant at the present epoh and dL is the dimensionlessluminosity distane. gk = g(ẑk) is the part of µk whih depends impliitlyon Ωm and ΩΛ and η is its H0-dependent part. The latter quantity an bewritten as η ≡ 5 log(h/c2) − 25 where H0 = h × 100 km s−1 Mp−1 and c2is the speed of light in units of 100 km s−1. The probability distributionfor the value nk in Equation (8) is assumed to be a zero-mean Gaussianwith standard deviation σk, where σ2
k = s2

k + [µ′(ẑk)]
2w2

k, in the absene ofsystemati or evolutionary e�ets.One an evaluate L(Ωm, ΩΛ, η) in a manner similar to that in (4), where
χ2 now is a funtion of the three parameters Ωm, ΩΛ and η. The likelihoodfor Ωm and ΩΛ, denoted as L(Ωm, ΩΛ) an be obtained by the tehnique ofmarginalising over η, if one assumes a �at prior probability for η in someappropriate range.To do this, we de�ne s−1 =

√

∑

k(1/σ
2
k) where s is the posterior uner-tainty for η and let 1/∆η a �at prior probability be assigned to η. (Thesebeing the same for all models, will get aneled when evaluating probability



8ratios.) Using these de�nitions, the marginal likelihood (de�ned at the endof Se. II) for the density parameters is
L(Ωm, ΩΛ) =

1

∆η

∫

dηe−χ2/2. (9)Evaluating this integral analytially [14℄, one assigns a likelihood for theparameters Ωm and ΩΛ in any one model as
L(Ωm, ΩΛ) =

s
√

2π

∆η
e−q/2, (10)where

q(Ωm, ΩΛ) =
∑

k

(µ̂k − gk + η̂)2

σ2
k

, (11)is of the form of a χ2-statisti, with η̂ the best �t (most probable) value of
η, given Ωm and ΩΛ. The latter an be omputed as [14℄

η̂(Ωm, ΩΛ) = s2
∑

k

(gk − µ̂k)
2

σ2
k

. (12)Now, we ompare the model in [4, 5℄ (model M1, having parameters Ωm,
ΩΛ and η) with the new model disussed in Se. I (model M2, having onlythe parameters Ωm and η). The Bayes fator B12 an be written with thehelp of Eq. (2) and Eq. (3) as

B12 =
L(M1)

L(M2)
=

∫

dΩm

∫

dΩΛp(Ωm, ΩΛ|M1)L1(Ωm, ΩΛ)
∫

dΩm p(Ωm|M2)L2(Ωm)
. (13)With the information I at hand, one an assign �at prior probabilities

p(Ωm, ΩΛ|M1) = 1/18 and p(Ωm|M2) = 1/3 . Using Eqs. (6) and (10) wean write the above as
B12 =

∫ 3

−3 dΩΛ

∫ 3

0 dΩm exp[−q1(Ωm, ΩΛ)/2]

6
∫ 3

0 dΩm exp[−q2(Ωm)/2]
. (14)Our �rst step in the evaluation of B12 is to �nd q given in Eq. (11), forboth the models. For Model 1, we have to use

g(z) = 5 log{(1 + z) |Ωk|−1/2sinn[|Ωk|1/2I(z)]},



9where Ωk = 1−Ωm−ΩΛ and sinn(x) = sin x for Ωm+ΩΛ > 1, sinn(x) = sinh xfor Ωm + ΩΛ < 1 and sinn(x) = x for Ωm + ΩΛ = 1. Also
I(z) =

∫ z

0

[(1 + z′)2(1 + Ωmz′) − z′(2 + z′)(ΩΛ)]−1/2 dz′.For Model 2, the funtion g(z) an be written as
g(z) = 5 log{m(1 + z)sinn[

1

m
ln(1 + z)]},where m =

√

2k/(3Ωm − 2) for the nonrelativisti era and sinn(x) = sin xfor Ωm > 2/3, sinn(x) = sinh x for Ωm < 2/3 and sinn(x) = x for Ωm = 2/3.Using these expressions, Eq. (14) is numerially evaluated to obtainB12 =
3.1. (In this alulation, we have used the data orresponding to the Fit Cin [4℄, whih involve 54 supernovas.) As per the interpretation of Bij givenin Se. II.A, the above is an evidene against Model 2, but it is only barelyde�nite; the disrepany is not a "serious problem" as had been stated in [1℄.IV. COMPARISON USING ANGULAR SIZE-REDSHIFT DATAFor this purpose, we use the Gurvits' data and divide the sample whihontains 256 soures into 16 redshift bins, as done by Jakson and Dodgsonand shown in their Fig. 1 [7℄. For Model 1, we use the expression for angularsize

∆θ =
d

dA
≡ d

(1 + z)−1 (k/Ωk)
1/2 c

H0
sinn[|Ωk|1/2I ′(z)]

=
dH0

c

(1 + z)

(k/Ωk)
1/2 sinn[|Ωk|1/2I ′(z)]

, (15)where
I ′(z) =

∫ 1+z

1

dx

x
(

Ωk + Ωmx + ΩΛ

x2

)1/2
. (16)Here d is the linear dimension of an objet, dA is the angular size distaneand Ωk and sinn(x) are de�ned as in the ase of Model 1 in the last setion.Similarly for Model 2, we have
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∆θ =

d

dA

=
dH0

c

(1 + z)

m sinn[ 1

m
ln(1 + z)]

, (17)where m and sinn(x) are de�ned as in the earlier ase of Model 2. For thepurpose of omparison, we only need to ombine the unknown parameters
d and H0 to form a single parameter p ≡ dH0/c. Thus Model 1 has threeparameters p, Ωm and ΩΛ whereas Model 2 has only the parameters p and
Ωm. As in the previous ase, we aept 0 < Ωm < 3 and −3 < ΩΛ < 3 as theprior information I. With these ranges of values of Ωm and ΩΛ, p is found togive signi�antly low values of χ2 only for the range 0.1 < p < 1 in both themodels, p being given in units of milliarseonds. The formal expressions tobe used are

χ2 =
∑

k

(

∆̂θk − ∆θk

σk

)2 (18)and
B12 =

L(M1)

L(M2)
=

1

∆p
1

∆Ωm

1

∆ΩΛ

∫

dp
∫

dΩm

∫

dΩΛ exp[−χ2
1(p, Ωm, ΩΛ)]

1

∆p
1

∆Ωm

∫

dp
∫

dΩm exp[−χ2
2(p, Ωm)]

=

∫ 1

0.1 dp
∫ 3

0 dΩm

∫ 3

−3 dΩλ exp[−χ2
1/2]

6
∫ 1

0.1 dp
∫ 3

0 dΩm exp[−χ2
2/2]

. (19)The result obtained is B12 ≈ 1. This may be interpreted as providingequal preferene to both models.V. DISCUSSIONWhile evaluating the Bayes fators using both kinds of data, we haveassumed that our prior information I regarding the density parameters is
0 < Ωm < 3 and −3 < ΩΛ < 3. The range of values of ΩΛ onsidered in[4℄ is −1.5 < ΩΛ < 3 and in [7℄ it is −4 < ΩΛ < 1. Even if we modify therange of this parameter in our analysis to some reasonable extent, the mainonlusions of the paper will remain unaltered. For example, if we aept
0 < Ωm < 3 and −1.5 < ΩΛ < 1.5 as some prior information I ′, the Bayesfators in eah ase beome 3.8 and 0.8, in plae of 3.1 and 1, respetively.Instead, if we hoose I ′ as 0 < Ωm < 3 and −6 < ΩΛ < 6, the orresponding



11values are 1.55 and 1.4, respetively. These do not hange our onlusionsvery muh in the light of the disriminatory inequalities mentioned in Se.II.A.In order to get an intuitive feeling why the standard (M1) and new(M2) models have omparable likelihoods, onsider Figs. 1 and 2. Fig.1 is for the apparent magnitude-redshift data and plots the quantities L′ =
1

6

∫ 3

−3 dΩΛ exp[−q1(Ωm, ΩΛ)/2] (urve labeled M1) and L′ = exp[−q2(Ωm)/2](urve labeled M2) against Ωm. From the de�nition of marginal likelihoodgiven at the end of Se. II and from Eqs. (9)-(14), it an be seen that thesetwo urves orrespond to the marginal likelihoods for the parameter Ωm inmodels M1 and M2, respetively (apart from some multipliative onstants,whih anel on taking ratios). Similarly, Fig. 2, whih is for the angularsize-redshift data, plots L = 1

6×0.9

∫ 1

0.1 dp
∫ 3

−3 dΩΛ exp[−χ2
1/2] (urve M1) and

L = 1

0.9

∫ 1

0.1 dp exp[−χ2
2/2] (urve M2) against Ωm. Eq. (19) allows us to in-terpret these terms as the marginal likelihoods for Ωm in models M1 and M2,respetively. In fat, these urves rigorously show the integrands one mustintegrate over Ωm to get the Bayes fators. Using the apparent magnitude-redshift data, a lower value of value of q (whih is a modi�ed χ2 statisti)is obtained for model M1 whereas for angular size-red shift data, lower χ2 islaimed by model M2. However, the areas under the urves are omparablein both ases and this shows why the Bayes fators are also omparable. Thisis one of the strong points of the Bayesian method, in ontrast to frequentistgoodness of �t tests, whih onsider only the best �t parameter values foromparing models [11℄.These �gures, however, show some feature that is disturbing for the newmodel. Figs. 1 and 2 indiate best �t values of Ωm = 0 and Ωm = 0.42,respetively, for this model. In both ases it appears to rule out the value

Ωm = 4/3 that is needed to meet the onstraints on nuleosynthesis, a on-dition whih had been stated in the introdution. Though, as mentionedabove, Bayesian model omparison does not hinge upon the best �t values inevaluating relative merits of models, one would desire to have an agreementbetween predited and observed parameter values. A natural option in suhases would be to ompare the models by adjusting the prior regarding theparameters so that any additional information is aounted for. But we havenot attempted this in our analysis.The onstant ΩΛ 6= 0 model we onsidered has one parameter in exessof the new model in both ases. It should be kept in mind that in the



12Bayesian method, simpler models with less number of parameters are oftenfavored unless the data are truly di�ult to aount for with suh models.Bayes's fators thus implement a kind of automati and objetive Oam'srazor. In this ontext, it is interesting to hek how the new model fareswhen ompared with �at (in�ationary) models where Ωm +ΩΛ = 1, by whihondition the number of parameters of model M1 are redued by one. Thismakes the two models at par with eah other, with regard to the numberof parameters. We have alulated the Bayes fator between this �at model
M1 and the new model M2, using the apparent magnitude-redshift data andthe result is B12 = 5.0. This appears to be a slightly more de�nite evideneagainst the new model than the orresponding result obtained in Se. III(B12 = 3.1). (However, in�ationary models with a onstant Λ-term su�erfrom the `graeful exit problem' for Λ; i.e., in order to explain how Λ managesto hange from its GUT magnitude to ≈ 10−126 of its initial value, someextreme �ne tuning would be required [15℄). On the other hand, a omparisonof Ωm + ΩΛ = 1 model with the new model using angular size-redshift datagives a value for the Bayes fator B21 = 15, whih shows that this data isdi�ult to aount with the �at in�ationary models than with the new one.The results we obtained, while using the information I, are summarized inTable I.When ompared to the frequentist goodness of �t test of models, whihjudges the relative merits of the models using the lowest value of χ2 (evenwhen it is obtained by some �ne tuning or by having more parameters), thepresent approah has the advantage that it evaluates the overall performaneof the models under onsideration. The Bayesian method is thus a verypowerful tool of model omparison and it is high time that the method isused to evaluate the plausibility of osmologial models ropping up in theliterature. It is true that sine we have only one universe, one an only resortto model making and then to omparing their preditions with observations.Again, sine we annot experiment with the universe, it is not meaningful touse the frequentist approah. We believe that the only meaningful way is touse the Bayesian approah in suh ases. Here we have made a omparisonbetween the model in [4, 5℄ with the new model in [1℄. It deserves to bestressed that the reent apparent magnitude-redshift observations on TypeIa supernovas do not pose a "serious problem" to the new model, as had beenlaimed in [1℄. The angular size-redshift data, on the other hand, do notdisriminate between the general ΩΛ 6= 0 model and the new model and theyprovide de�nite but not strong evidene against standard �at (Ωm +ΩΛ = 1)



REFERENCES 13model when ompared to the new one.Here it is essential to point out that Bayesian inferene summaries theweight of evidene by the full posterior odds and not just by the Bayes fa-tor. Throughout our analysis above, we have assumed that the only priorinformation with us is either I (stated in the beginning of Se. III) or I ′(stated in the beginning of Se. V), whih helps to make the posterior oddsequal to the Bayes fator. However, when the Bayes fator is near unity, theprior odds p(Mi | I)/p(Mj | I) in Eq. (1) beome very important. The stan-dard ΩΛ 6= 0 model and the standard �at (in�ationary) models are plaguedby the large number of osmologial problems (as mentioned in Se. I) andthe new model has the heuristi nature of its derivation and the problemwith nuleosynthesis, setting (subjetive) prior odds against eah of them.In the ontext of having obtained omparable values for the Bayes fator, theBayesian model omparison fores us to onlude, in a similar tone as in [14℄,that the existing apparent magnitude or angular size-redshift data alone arenot very disriminating about these osmologial models. It is also worth re-marking here that the Bayesian theory tells us how to adjust our plausibilityassessments when our state of knowledge regarding an hypothesis hangesthrough the aquisition of new data [11℄. Conerning future observations,one would have to say that if the supernova test is extended to higher red-shifts and if the astronomers are sure about the standard andle hypothesis,then the theories an be tested for suh new data using Bayesian model om-parison, using what we have now obtained as the prior odds. In this ontext,it also deserves serious onsideration to extend the analysis made here toother osmologial data, like that of osmi mirowave bakground radia-tion and primordial nuleosynthesis. Hopefully, further analysis and futureobservations may help to give more deisive answers on these questions.AknowledgementsWe are thankful to Professor K. Babu Joseph, Ninan Sajith Philip andDr. R. G. Vishwakarma for valuable disussions. Also the help in performingthe omputations rendered by Ninan Sajith Philip and Mathew V. Samuelare aknowledged with thanks.Referenes[1℄ M. V. John and K. Babu Joseph, Phys. Rev. D 61, 87304 (2000).
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REFERENCES 15Table I.Data Model M1 Model M2 Bayes fator Interpretation
m − z Standard New model B12 = 3.1 Slightly de�nite but

ΩΛ 6= 0 model not strong evideneagainst the new model
m − z Standard �at New model B12 = 5 De�nite but

ΩΛ 6= 0 model not strong evideneagainst the new model
θ − z Standard New model B12 = 1 Both models are

ΩΛ 6= 0 model equally favored
θ − z Standard �at New model B21 = 15 De�nite but

ΩΛ 6= 0 model not strong evideneagainst the �at model
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Figure 1: L′ vs Ωm for both models, using the apparent magnitude-redshiftdata for Type Ia supernova. The urves M1 and M2 orrespond to themarginal likelihoods for Ωm for the standard ΩΛ 6= 0 model and the newmodel, respetively (apart from some multipliative onstants, whih anelon taking ratios).
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Figure 2: Marginal likelihood vs Ωm for both models, using the angular size-redshift data. The urves M1 and M2 orrespond to the marginal likelihoodsfor Ωm for the standard ΩΛ 6= 0 model and the new model, respetively.


