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Abstract. Using simple path integral, Feynman propagator method and
the relation between conformal time # and scale factor 7, we investigate
the non-conformal quantum fluctuations (of expansion and shear) and
axisymmetric singularity case in radiation dominated anisotropic
cosmology. We show that near the classical singularity the quantum
fluctuations tend to diverge.
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1. Introduction

It has been recently claimed that (Keifer et al. 1998) the epoch of the origin of
the universe can be traced back to unavoidable fluctuations of some scalar field ¢ . As
a consequence, these fluctuations, together with scalar fluctuations in the metric, are
expected to lead to anisotropies in the cosmic background radiation. One would also
expect that there are gravitational waves originating from tensor fluctuations in the
metric. It is also generally assumed (Ellis and Wainwright 1997) that the quantum
gravity epoch, occurred before the Planck epoch. Prior to this epoch the effects of
classical general relativity may not be taken to be valid (Narlikar 1978, 1979, 1981,
1984). In an earlier paper (Naing & Narlikar 1998, hereafter Paper 1) we had studied
the quantum conformal fluctuations of radiation dominated Bianchi Type I models.
This paper extends that work further to non-conformal fluctuations.

The Bianchi Type I models are the simplest anisotropically expanding
cosmological models. As in the isotropic Friedmann models here too the universe
is expected to be radiation dominated in the early epochs (close to ¢ = 0). In this
paper we shall therefore be concerned with the Bianchi Type I radiation dominated
cosmology for our study of non-conformal quantum fluctuations. In section 2 we will
give a brief account of the asymptotic behavior of our result obtained in Paper 1. In
section 3, applying the Feynman path integral method to Gaussian wavepackets
describing non-conformal fluctuations (i.e., including expansion and shear) of these
models we will show that classical singularity is made very unlikely. In section 4 an
axisymmetric singularity case will be considered. The concluding remarks will be
given in section 5.

* Since the December 1998 issue of this journal was delayed, we were able to include this paper in
this issue.
! Permanent address: Physics Department, Yangon University, Myanmar.
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2. Classical asymptotic solution for radiation dominated Bianchi
Type | cosmology

One of the advantages of using the path integral method is that the Lagrangian
density is a scalar quantity (Kashiwa et a/ 1997) that can be handled more simply
than the Hamiltonian behaving as a vector, and that, symmetries in a system are
simply incorporated in terms of the classical Lagrangian. Dealing with dynamical
and curved spacetime is also conceptually easier with this approach. The use of the
path integral method in quantum gravity is now well established and very common in
literature. In our previous paper the notation we used for the probability amplitude or
propagator K was

K[Gy, £y : 91721]=/3XP FS—;@}DQ, (M

where X, and X, are two spacelike hypersurfaces, G, G, three geometries, S(G) the
classical action computed for geometry ¢, Planck’s constant, and ©G the measure
of the integration on the right hand side. This formal expression for K becomes
considerably simplified in the case of homogeneous cosmologies. In our case K can
even be explicitly evaluated. The classical solution for the anisotropic Bianchi Type I
cosmology is given by the line element,

ds = d7? =X (1) ()’ — ¥ (1) (d)*~ Z° (1) (d2)’ 2

where X, Y and Z are functions of time only.
The ‘non-classical’ metric conformal tensor (DeWitt 1976) can be written as,

gi = (1+ 6)ga, 3)

where g is non-classical metric tensor, and g classical metric tensor. The scalar ¢, a
function of the spacetime coordinates denotes the conformal fluctuation of the metric.
The Hilbert Einstein action principle is given as,

3
/ Rv/=3d*x + S, 4)

C

§= 167G

where R is the scalar curvature of the spacetime, ¢ the speed of light, g the
determinant of the metric g; while S,, denotes the action of the matter term. Making
use of equations (4), (3), (2) in (1) gives,

- 3
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In getting the above equation, we assume that, in our case of radiation dominated
cosmology, both the curvature term and the matter action term vanish or are
negligible. It has been shown elsewhere (Saha ez al 1997, also Paper I) that the second
order differential equation for the expansion scale factor 7 = XYZ = \/% can be
given as,
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or,
i 5 8/3
TT—gT +Br* + AR = 0. (6)

where ' denotes the differentiation with respect to #. A, B are constants. We use the
conformal time coordinate,

[ a e e dn 1 .
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Using simple calculus we can show that the general solution of the equation (6) is
given as,

. A
7723 = psinh(an) + g cosh(an) ~ 7’ (8)
where p, g are arbitrary constants. Now look for the limit as # — — o and the
asymptotic solution is given by,
-2/3 P ,—an
T ~=e %,
5 ©)
This is the relation between the scale factor and the conformal time coordinate close

to the spacetime singularity(7 —> 0) of the classical solution. From equation (7),
7 =1/ 7, and we have,

2
7 ~ const. +—In#. (10)
3a

The above relation will be used in our next sections for computing the diffusion of
Gaussian wavepackets.

3. Nonconformal fluctuations in radiation dominated anisotropic cosmology

The Bianchi Type I cosmology is characterized by two properties, namely, shear and
expansion. In Paper I, quantum fluctuations in the expansion (scale factor) 7 (¢) or
(n) were dealt with using the conformal techniques. To deal with the shear
fluctuations we have to use a different technique. We will follow the transformations
used by Misner (1972). One defines

X =3y o e§+c—\/§,\;
Z=¢e"%; 7=XVZ =g =¢%, (11)

where &, {and A are functions of time. In our Paper I, we took into consideration the
fluctuation of & that is, only the expansion part. We will now consider the
fluctuations in ¢ and A while & is kept at its classical value. Ignoring the surface term,
the action functional integral over a 3-volume V now takes the form,

h F . .
S~ —3’2/ HE - 2 — Rar
t
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~ 2y (-8 - ), (12)

8w Jy,

where the ¢ term does not produce any variable quantity and has been ignored. But,
and A are functions of time (conformal time), hence

—(&+ X)dr = —(¢* + X*)ndy

and # = 1/t. Here ' denotes the differentiation with respect to x and, we have
from (12)

3 /)
S“V

~% ), (¢ +X*)dn. (13)

The propagator (for details see Feynman and Hibbs 1965) for action (13) is,

WV [m
K[y A, 23 C1y A1, 7] =f/ exp [%/n (& +)\’2)dn} DLDA. (14)

The solution of the above integral is,

2 2
= (@=4) +<A2—A1))_ .
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We now apply the above propagator to study the evolution of the wavefunction of the
universe. We have,

\Il(gszﬂﬂ :/K[@Jh;¢1:771}‘I’(¢1,771)d<1517 (16)

which connects the wavefunction at epoch m;to the wavefunction at epoch n,.
Normally this technique is used to compute the probability amplitude for evolution
of a wavefunction forward in time. Thus we normally have #, > ¢#,. Here, however,
we use the Feynman propagator backward in time to compute the probability
amplitude for the wavefunction to have evolved from a state ¢ to a state ¢ i.e.
t, < t;. This technique was used by Narlikar (1981) for estimating the probable range
of states at an earlier epoch £, from which the universe could have evolved to its
present state ¢ at time #, . Since the present state is very nearly classical, an
appropriate expression for W(¢,, #n,) is a Gaussian wavepacket (expressed in the #-
time coordinate),
2y~1/4 ¢
U(p1,m) = 27A)”"exp ~2a7)" (17)

The wavepacket moves in the ({, A) plane with the constant velocity '(;\ ,C) and at
the same time diffuses so that its dispersion at # = 7, is A,, where,

4n*(my — m)”

AP =A2+——2 18
e A Y ING (18)
In our case of the radiation dominated cosmology with the conformal time # given by
equation (10) and, since A< 1, we get,
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2
A, ~M(ﬂz - M)
A (2
—QQVAI 6 ' (19)

Thus, as in our previous case, A, diverges logarithmically as #, —0. In the case of
the dust driven universe (Narlikar 1979) the dispersion A,is found to be,

N 47
TAIMEVA,

where M, X are constants > 0 and A, will diverge as t, — 0.

Ay |Inz], (20)

4. Axisymmetric singularity case

It is also interesting to examine whether a similar divergence of quantum uncertainty
occurs in the axisymmetric case of radiation dominated cosmology. One of the
possible methods to deal with the axisymmetric case with X(f) = Y(¢) is as follows.
Define,

a(f) =IVX(X+2), B)=1vX(X~2). 1)

where, o and £ are functions of time.
The action functional for the radiation dominated universe becomes,

S~ ——6% / (&2 — )r(r) dr. (22)

Since both a and f are functions of time #, we have
(62 ~ )t = (o ~ F* )i d,
and, the propagator K for the equation (22) is,
‘ iy m 12 72
Kla, oo s, Buym] = [ [ exp| 5= [ (% = 9%)an| DaDB. 23
) ™

The solution of the equation (23) is,

(052—041)2"(,32")81)2) (24

67
Klon, B2, m; 01, Prym|= =5 - =iy
[a2, B2, o a1, By, mi] v (m—m) exp —i ( 67(m — m1)

In our present case, the dispersion in probability grows as,

Ag® =A%+ (2 —m)>. (25)

97?
412N,
The classical singularity here is identified with t, —>0. Using the equation (9), and
since A < 1, we get
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37
Ay = M (772 - 771)
- aVA, 4 ’ (26)

Here again, A, diverges logarithmically as time ¢ —0, i.e. as ¢ approaches its
classical singularity. This scenario is exactly the same when one of us (J.V.N.)
investigated the case of axisymmetric singularity for a dust driven universe.

5. Concluding remarks

In this paper we have investigated the non-conformal fluctuations in radiation domi-
nated cosmology using the simple path integral method and Gaussian wavepackets.
Here we considered the quantum fluctuations in the shear part (' and A), while the
volume expansion ¢ is kept at its classical value. We also carried out our investigation
of the axisymmetric singularity case. In both cases, it has been found that the quantum
fluctuations around the classical singularity, are divergent and as a consequence, non-
singular and finite solutions can exist near the classical spacetime singularity (see
also Narlikar & Padmanabhan 1986). These investigations show that in the early
universe (radiation and dust driven epochs etc.) the quantum effects are much more
pronounced and classical relativity cannot be taken to be valid.
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