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Abstract. Using simple path integral, Feynman propagator method and 
the relation between conformal time η and scale factor Ƭ, we investigate 
the non-conformal quantum fluctuations (of expansion and shear) and 
axisymmetric singularity case in radiation dominated anisotropic 
cosmology. We show that near the classical singularity the quantum 
fluctuations tend to diverge.
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1. Introduction 
 
It has been recently claimed that (Keifer et al. 1998) the epoch of the origin of
the universe can be traced back to unavoidable fluctuations of some scalar field φ . As 
a consequence, these fluctuations, together with scalar fluctuations in the metric, are 
expected to lead to anisotropies in the cosmic background radiation. One would also 
expect that there are gravitational waves originating from tensor fluctuations in the 
metric. It is also generally assumed (Ellis and Wainwright 1997) that the quantum 
gravity epoch, occurred before the Planck epoch. Prior to this epoch the effects of 
classical general relativity may not be taken to be valid (Narlikar 1978, 1979, 1981, 
1984). In an earlier paper (Naing & Narlikar 1998, hereafter Paper I) we had studied 
the quantum conformal fluctuations of radiation dominated Bianchi Type I models. 
This paper extends that work further to non-conformal fluctuations.

The Bianchi Type I models are the simplest anisotropically expanding 
cosmological models. As in the isotropic Friedmann models here too the universe 
is expected to be radiation dominated in the early epochs (close to t = 0). In this 
paper we shall therefore be concerned with the Bianchi Type I radiation dominated 
cosmology for our study of non-conformal quantum fluctuations. In section 2 we will 
give a brief account of the asymptotic behavior of our result obtained in Paper I. In 
section 3, applying the Feynman path integral method to Gaussian wavepackets 
describing non-conformal fluctuations (i.e., including expansion and shear) of these 
models we will show that classical singularity is made very unlikely. In section 4 an 
axisymmetric singularity case will be considered. The concluding remarks will be 
given in section 5. 
 
* Since the December 1998 issue of this journal was delayed, we were able to include this paper in 
this issue. 
1 Permanent address: Physics Department, Yangon University, Myanmar. 
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2. Classical asymptotic solution for radiation dominated Bianchi 
Type I cosmology 

 
One of the advantages of using the path integral method is that the Lagrangian 
density is a scalar quantity (Kashiwa et al 1997) that can be handled more simply 
than the Hamiltonian behaving as a vector, and that, symmetries in a system are 
simply incorporated in terms of the classical Lagrangian. Dealing with dynamical 
and curved spacetime is also conceptually easier with this approach. The use of the 
path integral method in quantum gravity is now well established and very common in 
literature. In our previous paper the notation we used for the probability amplitude or 
propagator Κ was 
 

(1) 
 
 

where Σ1 and Σ2 are two spacelike hypersurfaces, G1, G2 three geometries, S(G) the 
classical action computed for geometry G, Planck’s constant, and DG the measure 
of the integration on the right hand side. This formal expression for Κ becomes 
considerably simplified in the case of homogeneous cosmologies. In our case Κ can 
even be explicitly evaluated. The classical solution for the anisotropic Bianchi Type I 
cosmology is given by the line element, 
 

ds = dt2 – X2 (t) (dx)2 – Y2 (t) (dy)2 – Z2 (t) (dz)2 (2)
 
where X , Υ and Ζ are functions of time only. 
The ‘non-classical’ metric conformal tensor (DeWitt 1976) can be written as, 
 

(3)
 

where gik is non-classical metric tensor, and gik classical metric tensor. The scalar φ, a 
function of the spacetime coordinates denotes the conformal fluctuation of the metric. 
The Hilbert Einstein action principle is given as, 
 

(4) 
 
 
where R is the scalar curvature of the spacetime, c the speed of light, g the 
determinant of the metric gik while Sm denotes the action of the matter term. Making 
use of equations (4), (3), (2) in (1) gives, 
 

(5) 
 
 
In getting the above equation, we assume that, in our case of radiation dominated 
cosmology, both the curvature term and the matter action term vanish or are 
negligible. It has been shown elsewhere (Saha et al 1997, also Paper I) that the second 
order differential equation for the expansion scale factor Ƭ = XYZ = √–g can be 
given as, 
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or, 
 

(6) 
 
where ′ denotes the differentiation with respect to η. Α, Β are constants. We use the 
conformal time coordinate, 
 

(7) 
 
Using simple calculus we can show that the general solution of the equation (6) is 
given as, 

 
(8) 

 
where p, q are arbitrary constants. Now look for the limit as η → – ∞ and the 
asymptotic solution is given by, 
 

(9) 
 
This is the relation between the scale factor and the conformal time coordinate close 
 

to the spacetime singularity(Ƭ → 0) of the classical solution. From equation (7), 
 

ή = 1/ Ƭ, and we have, 
 

(10) 
 
The above relation will be used in our next sections for computing the diffusion of 
Gaussian wavepackets. 
 
 

3. Nonconformal fluctuations in radiation dominated anisotropic cosmology 
 

The Bianchi Type I cosmology is characterized by two properties, namely, shear and 
 

expansion. In Paper I, quantum fluctuations in the expansion (scale factor) Ƭ (t) or 
 

(η) were dealt with using the conformal techniques. To deal with the shear 
fluctuations we have to use a different technique. We will follow the transformations
used by Misner (1972). One defines 
 

 

(11) 
 
where ξ, ζ and λ are functions of time. In our Paper I, we took into consideration the 
fluctuation of ξ, that is, only the expansion part. We will now consider the 
fluctuations in ζ and λ while ξ is kept at its classical value. Ignoring the surface term, 
the action functional integral over a 3-volume  now takes the form, 
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(12) 
 

where the ξ term does not produce any variable quantity and has been ignored. But, ζ 
and λ are functions of time (conformal time), hence
 
 
 
and ή = 1/τ. Here ′ denotes the differentiation with respect to η and, we have 
from (12) 
 

(13) 
 

The propagator (for details see Feynman and Hibbs 1965) for action (13) is, 
 

 
(14) 

 
 

The solution of the above integral is, 
 

(15) 
 

We now apply the above propagator to study the evolution of the wavefunction of the 
universe. We have, 
 

(16) 
 
which connects the wavefunction at epoch η 1 to the wavefunction at epoch η2. 

Normally this technique is used to compute the probability amplitude for evolution 
of a wavefunction forward in time. Thus we normally have  t2 > t1. Here, however, 
we use the Feynman propagator backward in time to compute the probability 
amplitude for the wavefunction to have evolved from a state φ2 to a state φ1 i.e. 
t2 < t1. This technique was used by Narlikar (1981) for estimating the probable range 
of states at an earlier epoch t2 from which the universe could have evolved to its 
present state φ1 at time t1 . Since the present state is very nearly classical, an 
appropriate expression for Ψ(φ1, η1) is a Gaussian wavepacket (expressed in the η- 
time coordinate), 
 

(17) 
 

The wavepacket moves in the (ζ, λ) plane with the constant velocity (λ  , ζ ) and at 
the same time diffuses so that its dispersion at η = η2 is ∆2, where, 
 

(18) 
 
In our case of the radiation dominated cosmology with the conformal time η given by 
 

equation (10) and, since ∆1≪ 1, we get,
 

-' -'
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(19) 
 

Thus, as in our previous case, ∆2 diverges logarithmically as t2 →0. In the case of 
the dust driven universe (Narlikar 1979) the dispersion ∆ 2 is found to be, 
 

(20) 
 

where Μ, Σ are constants > 0 and ∆2 will diverge as t2  0. 
 
 

4. Axisymmetric singularity case 
 
It is also interesting to examine whether a similar divergence of quantum uncertainty 
occurs in the axisymmetric case of radiation dominated cosmology. One of the 
possible methods to deal with the axisymmetric case with X(t) = Y(t) is as follows. 
Define, 
 

(21) 
 
where, α and β are functions of time. 

The action functional for the radiation dominated universe becomes, 
 

(22) 
 

Since both α and β are functions of time η, we have 
 

 
 
and, the propagator Κ for the equation (22) is, 
 

(23) 
 

The solution of the equation (23) is, 
 

(24) 
 
 
In our present case, the dispersion in probability grows as,
 

(25) 
 

The classical singularity here is identified with t2 →0. Using the equation (9), and 
since ∆1 ≪ 1, we get 
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(26) 
 
Here again, ∆2 diverges logarithmically as time t →0, i.e. as t approaches its 
classical singularity. This scenario is exactly the same when one of us (J.V.N.) 
investigated the case of axisymmetric singularity for a dust driven universe.
 
 

5. Concluding remarks 
 
In this paper we have investigated the non-conformal fluctuations in radiation domi- 
nated cosmology using the simple path integral method and Gaussian wavepackets. 
Here we considered the quantum fluctuations in the shear part (ζ and λ), while the 
volume expansion ξ is kept at its classical value. We also carried out our investigation 
of the axisymmetric singularity case. In both cases, it has been found that the quantum 
fluctuations around the classical singularity, are divergent and as a consequence, non- 
singular and finite solutions can exist near the classical spacetime singularity (see 
also Narlikar & Padmanabhan 1986). These investigations show that in the early 
universe (radiation and dust driven epochs etc.) the quantum effects are much more 
pronounced and classical relativity cannot be taken to be valid.
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