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ABSTRACT
This paper examines the gravitational stability against small perturbations of the quasiÈsteady state

cosmological model. This model was Ðrst introduced by Hoyle et al., who in subsequent papers looked
at its various theoretical and observational implications. Here we carry out a perturbation analysis of
the exact solution of the Ðeld equations obtained by Sachs et al. in the noncreative mode which
describes the oscillatory feature of this model. We show that the perturbations grow only to a limited
amount and then fall o†, thus conÐrming the stability of the solution. We discuss the implications of this
result for structure formation in this cosmology.
Subject headings : cosmology : theory

1. INTRODUCTION

The quasiÈsteady state theory was proposed and
explored by Hoyle, Burbidge, & Narlikar in a series of
papers The theory is(1993, 1994a, 1994b, 1995a, 1995b).
based on a Machian approach to gravitation, and it auto-
matically incorporates a negative cosmological constant
and additional terms denoting creation of matter in a set of
Einstein-like equations for general relativity. The rationale
for this approach is given in detail in et al. InHoyle (1995a).
recent years several cosmological solutions were also
obtained Narlikar, & Hoyle which we collec-(Sachs, 1996)
tively call the quasiÈsteady state cosmological models.
Following standard simplifying assumptions used in cos-
mology, these models are based on the usual Robertson-
Walker metric given by

ds2\ c2 dt2[ S2(t)
C dr2
(1 [ kr2) ] r2(dh2] sin2 h d/2)

D
,

(1)

where (r, h, /) are the comoving coordinates of the funda-
mental Weyl observer, t is the cosmic time, and k \ 0, ]1,
and [1 represent the three possible curvature signatures
for the spaces t \ constant. An approximate oscillatory
scale factor describing a quasiÈsteady state cosmology
(QSSC) is then given by

S(t) \ exp
A t
P
BA

1 ] g cos
2nt
Q
B

. (2)

A more exact solution, obtained by et al.Sachs (1996),
will be used later. The exponential expansion represents the
““ steady state ÏÏ solution driven by creation of matter, which
takes place preferentially near collapsed massive objects.
The oscillatory part of the solution represents the ““ on-o† ÏÏ
nature of creation. It is assumed for this solution that cre-
ation takes place when density is maximum and that there is
no creation between two consecutive maxima of density. In
the above expression P is the longer timescale for the steady
state expansion and Q is the period of a typically oscillatory
Ñuctuation from steady-state ; g is a parameter restricted
between the values 0 and 1. P and Q are closely related to
the observed quantities in the universe, which include the
HubbleÏs constant at the present epoch and the counts of
radio sources. The QSSC also enables us to describe the

cosmic microwave background and the observed abun-
dances of the light nuclei. Hence the quasiÈsteady state cos-
mology can be put forward as a viable alternative
cosmology to the standard classical big bang cosmology.

In et al. a homogeneous exact periodic solu-Sachs (1996),
tion is given for the Robertson-Walker metric using the
QSSC in which these authors started with usual Robertson-
Walker metric for c\ 1. The Ðeld equations to be solved
are

Rik[ 12Rgik] jgik\ [8nG[T ik[ f (cick [ 14gikclc
l
)] ,

(3)

where j is the (negative) cosmological constant and c is a
scalar Ðeld representing creation of matter. The expression

denotes Lc/Lxi, xi being the spacetime coordinates. T ik isc
ithe matter tensor. In a dust medium the Ðeld equations for

the Robertson-Walker line element are

2S�
S

]S0 2 ] k
S2 \ 3j ] 2nGfc5 2 . (4)

3(S0 2] k)
S2 \ 3j ] 8nGo [ 6nGfc5 2 . (5)

The conservation equation in the general case is given by

T
‰k
ik\ f (cic

‰k
k ] 12c

‰k
i ck) . (6)

The above equation could be understood as representing
two di†erent modes of evolution : Ðrst, when both sides of
the equation are individually zero which we call the non-
creative mode and second, when they are both equal and
nonzero, which we term as the creative mode. etSachs al.
have studied the noncreative mode as well as the creative
mode. Here we shall concentrate only on the noncreative
mode solution, for which we have

T
‰k
ik\ 0 , (7)

and

cic
‰k
k ] 12c

‰k
k ck\ 0 . (8)

The above equations, together with the Ðeld equations (4)
and lead to(5),

S0 2] k
S2 \ j ] A

S3 [ B
S4 . (9)
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For k \ 0 and suitably chosen A and B an exact solution for
the above equation is given by

S \ S1 [1] g cos h(t)] , (10)

where is a constant, g is a parameter, and the function h(t)S1
has the following implicit form

h5 2 \ [j(1 ] g cos h)~2[6] 4g cos h ] g2(1] cos2 h)] ,

(11)

with

A\ [4jS1 3(1 ] g2) , (12)

B\ [jS1 4(1 [ g2)(3] g2) . (13)

This model oscillates between the Ðnite scale limits

S& 4 S1 (1[ g) ¹ S ¹ S1 (1 ] g) 4 S' . (14)

The matter density (o6 ) and the c-Ðeld energy density at( fc5 2)
then take the formsS \S1

o6 \ [ 3j
2nG

(1 ] g2) , (15)

fc5 2 \ [ j
2nG

(1[ g2)(3] g2) . (16)

The period of oscillation is given by

Q\ 1
([j)1@2

P
0

2n (1 ] g cos h)dh
6 ] 4g cos h ] g2(1 ] cos2 h)

. (17)

In the present paper we shall consider a small pertur-
bation of this solution. Thus the metric is geometrically
perturbed, while the matter density and the c-Ðeld energy
density are also supposed to have small Ñuctuations. We
shall explore the dynamical behavior of the perturbed
system to see if it is stable or otherwise. In particular, we
will be interested in seeing how the density Ñuctuations
evolve.

2. FIELD EQUATIONS

We begin by imposing a small perturbation on the
Robertson-Walker line element, for k \ 0, for which we
redeÐne the metric tensor as

gkl\ [S2(gkl] hkl) ; g0k \ h0k ; g00 \ 1 ] h00 , (18)

where k \ l, and k, l\ 1, 2, 3, andgkl\ 1, gkl\ 0, k D l ;
also S 4 S(t) and xk). We have considered a co-h

ij
\ h

ij
(t,

moving preferred observer for which all of the o†-diagonal
components of the metric tensor are assumed to be zero. In
the present coordinate system the matter Ñow vector need
not be comoving. We deÐne the Ðrst-order perturbation of
Ñow vector as the zeroth-order being 0, 0, 0).u1i , u0i 4 (1,
Thus,

T ik\ o0 u0i u0k ] o1 u0i u0k ] o0(u0i u1k ] u1i u0k ) , (19)

where

o 4 o0 ] o1 ; o0\ o6 S1 3
S3 , (20)

being the density perturbation given as Theo1 o1\ o0 f.
perturbation vector need not be along the four-vectoru1ibut will have small departures from the normalu0i \ d0i

direction. A perturbation is similarly assumed for the c-Ðeld
as

c
i
4 c0i ] m

i
; c04 c0(t) ; m

i
4 m

i
(t, xk) . (21)

f, and are quantities of the Ðrst order of smallness.h
ij
, m

i
, u1iIn the noncreative mode the Ðeld equations for the

Robertson-Walker metric (k \ 0, c\ 1) are then given by
the following three groups of equations :

1.ÈConservation equations for the matter Ðeld :

f5 ] 12(h
5
11] h5 22] h5 33) ] u1,kk \ 0 , (22)
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2
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2
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2.ÈConservation equations for the creation Ðeld :
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where and D\ [B/(2nGf )]1@2.+2m 4 m11] m22] m333.ÈEinsteinÏs gravitational Ðeld equations :
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h00,12 ] h33,12 \ 0 , (37)

h00,13 ] h22,13 \ 0 , (38)

h00,23 ] h11,23 \ 0 . (39)

These equations represent the evolution of an interrelated
set of perturbations in the metric tensor, the density of
matter, and the intensity of the c-Ðeld. Here we are pri-
marily interested in the physical problem of how the pertur-
bations in the matter energy tensor and the c-Ðeld tensor
grow and drive the solution of these equations. No extra
constraining condition has been used in this calculation. Alge-
braic simpliÐcations and necessary eliminations of terms
between the equations and retaining only those relating to
the density perturbation could produce a second-order
linear di†erential equation for f as a function of the time-
dependent scale factor S :

d2f
dS2 ]

A 1
2F

dF
dS

] 4
S
B df

dS
] 4nGo6 S1 3

S3F f\ [2q

S3JF
. (40)

Here q is a function of space variables xk(k \ 1, 2, 3) and is a
quantity of Ðrst order of smallness. It arises as a constant of
integration from the combination of equations and(23)È(25)

The function F(S) is given by(37)È(39).

F(S) \ jS2]A
S

[ B
S2 . (41)

The above equation could be solved numerically in the
framework of the present solution, i.e.,

P\ 20Q , Q\ 4 ] 1010 yr ,

j \ [0.4] 10~56 cm~2 , g \ 0.75 . (42)

For the right-hand side of we have takenequation (40)
q \ 10~4. The value chosen for q is arbitrary but small in
magnitude. In a generic solution f is plotted against t for a

FIG. 1.ÈPlot of the scale factor and density Ñuctuations over 1 cycle.
The density Ñuctuations are too small to be adequately represented on the
vertical scale of this graph. They have been magniÐed by a factor D100 for
easy comparison.

complete cycle (0¹ h ¹ 2n) along with S The start-(Fig. 1).
ing value of f has been taken as 0.0004, at h \ 0. In this
Ðgure the values of f have been magniÐed by a factor D100
for a clear representation. In the Ðrst half-cycle the scale
factor (S) continuously decreases with time starting from its
maximum value S \ 1.75 and at the same time the density
(f) goes up from its minimum point. One can therefore
easily see in that as the universe goes on contract-Figure 1
ing with time the perturbation in the density of the universe
increases within a Ðnite level and reaches its maximum limit
at 0.01 when S \ 0.25. Again for the next half-cycle the
Ðgure shows that the scale factor starts increasing from its
minimum position and goes up to the maximum where the
density Ñuctuation has the minimum value : i.e., as universe
expands with time, the density Ñuctuation of the universe
goes down. Although shows a speciÐc case, it isFigure 1
typical of the general solution, with other initial conditions.

The other equations of the set follow a similar periodic
pattern with the perturbed quantities etc., alwayshkl, mk,staying small. This analysis demonstrates that the basic
cycle of QSSC is stable as a cosmological solution and may
be used as a robust model for testing cosmological predic-
tions.

3. STRUCTURE FORMATION

This example shows that typically density perturbations
grow by a modest factor during the contracting([102)
phase whereas they decline during the expanding phase of
the universe. This result is not unexpected since, in a purely
gravitational scenario, expansion is expected to smoothen
out inhomogeneities while contraction would make them
more signiÐcant.

However, the relatively modest growth of do/o suggests
that other nongravitational forces must play a role in the
creation of large-scale structure. The clue to these lies in the
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creation events which operate near The creativeS \S&.
mode which leads to the exp t/P factor in the expansion of
the universe has not been included in our analysis here.

The reason for this is, as pointed out by et al.Hoyle
the creation of matter takes place in strong(1993, 1994a),

gravitational Ðelds near collapsed massive objects. In such
situations the smoothed-out solution used here and its per-
turbation would not apply. An altogether di†erent
approach will be needed to understand how creation of new
units of matter take place and how they are ejected as
coherent objects as these authors have claimed. Preliminary
work along these lines using computer simulations shows
that a Ðlamentary structure interspersed with voids may

emerge through successive minicreation events. This
approach will be described in a future paper.

4. CONCLUSION

The exact solution given by et al. is found toSachs (1996)
be stable against small gravitational perturbations. The
physical behavior of the models for k \ ^1, although not
explicitly demonstrated here, will remain the same as for
k \ 0. This stability ensures that the model is robust as a
viable theoretical model. It also shows that for inhomoge-
neous structures to emerge, the model must look to its
creative mode, not discussed here.
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