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THE BIG BANG AND QUANTUM COSMOLOGY
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ABSTRACT

The notion of the origin of the universe in a big bang is based on the mathematical
models constructed from Einstein’s field equations of general relativity. However, these
equations are classical in nature and they break down when the characteristic radius of
curvature of the universe is smaller than ~ 1032 ¢m; the behaviour of the universe can
then be described by quantum physics. The question of the big bang origin of the universe
belongs therefore to quantum gravity. This article describes an approach to quantum
gravity that throws light on this important question.

INTRODUCTION

N 1922 Friedmann' proposed models of the
large scale structure of the universe that were

obtained as solutions of FEinstein’s field
equations:
| 871G
Rik“z‘gikR:: __;E“]}k- (1)

In this equation it is assumed that the space-
time geometry of the universe is of the
Riemannian type and the left hand side describes
a tensor of geometrical significance. This is
equated to the energy momentum tensor T}, of
whatever matter/radiation constitutes the uni-
verse. The constant multiplying T}, is made up of
G, the gravitational constant and c, the speed of
light. Here the signature is (+, —, —, —) with
i = 0 timelike, i = 1, 2, 3 spacelike.

. Friedmann’s solution assumed the universe to
be both homogeneous and isotropic. Its line-
element is given by

2

2t r?(de?

ds? = c2dr* — S2(t){

+sin20d¢2)}, k=0, +1. 2
Here (t, r, 8, ¢) are the space-time coordinates of
typical observers in the universe and ds* denotes
the square of the interval between two neigh-
bouring points with coordinate differences
(dt, dr, d6, d¢). S(z) is the time-dependent scale

factor. The line element (2) contains all the
symmetries implicit in homogeneity and iso-
tropy. Correspondingly the matter and/or radi-
ation in the universe would also exhibit these
properties in Tj.

For each of the three values of k the scale factor
S(t)can be determined from Einstein’s equations.
All solutions exhibit one property in common,
however. At some epoch in the past which we
may arbitrarily fix as ¢t =0 the scale factor
vanished. Since the geometrical parameters like
curvature scalar blow up at t = 0 and physical
expressions like density also diverge, this epoch is
called the big bang epoch. The history of the
universe cannot be continued beyond (=0,
where the spacetime has singularity.

It is debatable whether one should read decp
significance into an event that is theoretically
ascribed to a break-down of the mathematical
and physical frameworks. On one side, one may
argue that the ¢t = 0 epoch is indeed the epoch of
universal creation, an event so fundamental that
it 1s hardly surprising that our frameworks are
inadequate to describe it. This argument may be
countered by saying that elsewhere in physics the
appearance of infinities signals an inadequacy of
the underlying theory and that in cosmology also
one should try to avoid the conclusion of a
singular epoch by searching for a ‘better’ frame-
work than general relativity.

In the 1950s many relativists thought that the
big bang singularity was an artefact of the special




826

Current Science, September 5, 1985, Vol. 54, No. 17

assumptions of homogeneity and isotropy.
However, many general theorems in the sixties®
showed that the singularity was an inevitable
feature of solutions of (1) unless the T;;, admitted
unconventional physics such as fields with nega-
tive energy or negative stresses.

Thus, if one follows the second point of view in
the above debate, the necessity to modify the
equation (1) is inevitable. Before looking for
totally new approaches, however, it is desirable to
explore the consequences of quantum gravity.
For, quantum theory has, in other fields, made
significant alterations to the classical picture. Can
it do so vis-a-vis general relativity?

One example will illustrate the point. Classical
Maxwell equations lead to the conclusion that an
accelerated electric charge radiates energy.
Therefore an electron circling round a proton
cannot maintain a stationary orbit. The distance
R between the electron and the proton will
steadily shrink to zero in a finite time of the order

¢2
T=m—c3z 10—23 S. (3)
This result is evidently in disagreement with the
stable existence of the hydrogen atom.

The conundrum is resolved by appeal to
quantum mechanics. In the simplest picture we
treat R as a quantum variable with a wave
function y(R) whose square of modules denotes
the probability of finding the electron in a unit
volume at a distance R from the proton. i (R)
satisfies the Schrodinger equation

R Ay 2 dy\ e
_Eni(d_lzz'Jr'E&"ﬁ)_Ew:w “

where E is the energy of the quantum state. It is
easy to verify that (4) has a solution

Y(R) = constant x exp (— R/R,) (%)
where
K2 me*
Ry=—,E= ——.
0=, E ©

The probability of finding the electron within a
distance R of the proton is given by

R
P(R)-:J 4nx? |y (x)[* dx. (7)
0

It is clear that P — O as R — O. This vanishingly
small probability rules out the classical even-
tuality R — O. In fact the time-independence of
¥ (R) ensures that the atom has a stationary,
stable structure.

QUANTUM COSMOLOGY

Normally cosmology would hardly expect to
gain anything from quantum theory, since the
former deals with large microscopic structures
while the latter is significant only for microscopic
systems. However, the very early universe would
have been microscopic enough to be affected by
quantum theory. To see this we consider the
general criterion that decides when a system is
subject to quantum laws. The criterion is simply
expressed as an inequality:

|J| S h. (8)

Here J is the classical action describing the
system, which in the case of gravity is the Hilbert
action:

C3
J, = R/ —g d*x, 9
” 161rGL gex ®)

where R is the Ricci scalar curvature and g the
determinant of the metric tensor. ¥ is the charac-
teristic spacetime region.

In the very early universe, R itself is zero; but
we can use a typical component of the curvature
tensor which at time ¢ after the big bang behaves
as 1/c*t*. Taking the typical length scale as ct, we
estimate the 4-volume of ¥ as c*t*. Hence,

’ = 4.4 _f_sii_ (10)

T 167G’

¢
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The inequality (8) therefore tells us that quantum

gravity will be important before the socalled
Planck epoch

t,= (Gh/c) 12, (11
Fort < t,, we cannot take the validity of classical

cosmology for granted. Note that the important
big bang epoch belongs to this interval. “Did the

ad

15K ]



}

&

Current Science, September 5, 1985, Vol. 54 No. 17

827

universe have a big bang origin?” This question
can and should properly be answered only within
the framework of quantum cosmology.

To construct a framework for quantum gravity
and cosmology is, however, not so easy. There are
conceptual as well as operational problems. The
usual concepts of field quantization cannot be
straight away carried over to gravity because field
theorists normally consider quantization in a
background flat spacetime. Even if one assumes,
as in general relativity, that the background
spacetime is curved, the fields themselves in this
case determine spacetime geometry! Thus. the
problem is conceptually more involved than say
quantizing the electromagnetic field in a curved
spacetime background. At technical level, the
classical equations (1) are nonlinear and contain
equations of motion as part of them. Thus there
is no clear separation between the free field term
and the interaction term as in Maxwell-Lorentz
electrodynamics. Further, the weak-field linear-
ized theory of quantum gravity is not renormaliz-
able: that is, its perturbation expansion contains
integrals that keep on diverging more strongly at
each step of the expansion and hence is physically
meaningless.

These difficulties are the reason why no satis-
factory theory of quantum gravity has yet emer-
ged. Some typical approaches are found in
references®~". It is against this formally unsatis-
factory background that the following approach
1s to be assessed.

CONFORMAL QUANTIZATION

Let us adopt a pragmatic approach wherein
our method of quantization is such as to answer
specific physical questions. In particular, we wish
to know if the universe had a singular beginning.
The classical solution leads us to believe that
singularity arose in the spacetime given by (2)
because § — 0. Can a quantum version avoid this
situation?

The analogy with the hydrogen atom is clear.
The R — O collapse of the H-atom was avoided
by quantum theory. We may therefore expect
analogous result by quantizing S. There is, how-
ever, a better way than quantizing S, known as

conformal quantization. Conformal quantization
brings in the notion of scale in a coordinate
invariant way whereas the function S(t) of (2)
depends on the coordinates chosen.

Conformal transformations scale all spacetime
intervals uniformly at any point:

ds —»ds = Qds. (12)

Here Q is a function of space and time. Thus the
scaling of intervals varies from point to point. By
such a scaling we can construct new spacetimes
whose geometries do not necessarily satisfy
Einstein’s equations if the geometry of the origi-
nal spacetime did. This result is often stated by
the remarks: ‘general relativity is not invariant
under local scale transformations’, or ‘general
relativity is not conformally invariant’.

We can thus have the following general situ-
ation. Take a spacetime geometry described by
the metric tensor g and from it construct
another with the metric

gu = (1 +¢)* G- (13)

Suppose the g, satisfies Einstein’s equations. For
an arbitrary spacetime function ¢, the g ob-
viously will not be a solution of those equations.
Refer to g;, as the classical geometry and g;, as a
nonclassical geometry whose fluctuation from
the former is given by ¢. In conformal quantiz-
ation, ¢ is made into a quantum variable. How
should we proceed with its quantization?

An example from classical mechanics will help
understand this situation. Imagine a particle
under no forces moving in one spatial dimension.
Denote by x(t) its displacement from a fixed
origin, at any time t. Suppose it is given that the
particle was at x = x, att =1t, and at x = x, at
t = t, > t;.If mis the mass of the particle then in
Newtonian mechanics its action is given by

121
J =J ~mx*dt,
I

5 (14)

1

where x = dx/dt. The stationary action principle

6J =0 (15)
gives us the equation of motion
mx =0 (16)
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whose solution for the prescribed boundary
conditions is

() = X(0) = x; + 22 (1—1,), (17)
-1

Thus X(t) is the classical solution of the
problem. What is its quantum counterpart? We
define a general nonclassical trajectory by

t) = X(1) + (1), (18)

where ¢ =0 att =t,,1 = t,; but otherwise ¢(t)
is arbitrary. By virtue of (15) we find that

t; ta
sz %m;‘czdz J+J ~mé?de. (19)
t !

1 1

In quantum mechanics the deterministic trajec-
tory (17) is replaced by a probabilistic statement
of how the particle moves from x; to x;. In the

quantum version all particle trajectories are

permissible. For each trajectory x(t), we associate
a probability amplitute

P(x) = exp (i J/Hh). (20)

Notice that | P(x)|? = 1 for all paths but the net
probability amplitude for the particle to go from
X; at t, to x, at t, is obtained by summing P(x)
over all trajectories:

K[x2,t2; %, 1] =Jexp(iJ/Ti)Dx(t). (21)

This path integral expression was first proposed
by Feynman® as the starting point for non-
relativistic quantum mechanics. It provides a
natural way of transition from classical to quan-
tum theory. For example for the free-particle (21)
gives the solution

m 3/2
K[x;, t5; x4, n]= {Wﬁ}

im (x;—x,)?
X exp{——————————Zh_(t2 - } (22)

This is the Green’s function for the Schrédinger
equation of a free massive particle. It tells us how
the wave function y/(x, t) evolves with time:

W(xy,15) = J_ K[x,, iz;xl, t ¥ (xy, 1) dx,.
(23)

It is instructive (in view of our later result) to
apply (23) to ¥ in the form of a wavepacket with
dispersion A; att =(;:

Y (xy, 1) = (2nA) " exp (—x1/4A7).  (24)

(22) and (23) together give for (24) a Y (x,, t,)
with dispersion A, increased to

(1, —1,)

A2 — AZ
2= ALt AT

(25)
The growing dispersion reflects the growing
uncertainty in the location of the particle.

These ideas can be readily extended to con-
formal quantization as we will see next.

QUANTUM FLUCTUATIONS OF
HOMOGENEOUS ISOTROPIC MODELS

Let us first consider the quantum cosmological
version of the Friedmann models. Taking (2) as
the classical solution of Einstein’s equations, we
have a definite function S(t) of time that satisfies
the relations

3 S+ ke? 8nGe(t)

¥ e W
S 824 ke? 872Gp(1)
25+ = - czp( .

where £(t) and p(t) are the energy density and
pressure of the cosmic matter. For matter domi-
nated models p =0 while for the radiation
dominated models p = ¢/3.

What is the equivalent action for the problem?
We take the Hilbert action with noninteracting
massive particles a, b, ¢ . . . with masses m,, mj,
m S

cy

J-ij,/ d4 ijds 28

The substitution (13) with g;, given by (2) can
be made to compute J. Since we are dealing with
homogeneous isotropic models ¢ can depend on

Y
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t only. After some manipulation we find®.

3y
j=7X7 J ($2—LR$)Tdr  (29)

8nG J,,
where R is R computed for the line element (2)
with S =S and V is the coordinate 3-volume
of V.
Although (29) looks more complicated than
(14), we can compute the path integral

K[¢z,tz;¢1,t1]=J6XP(U/E)D¢U) (30)

exactly. We can use the resulting propagator K to
compute the dispersion of an initial wavepacket
given by

2
bt = eat) e -2 ) ()
4A1
We find that the dispersion A, at t, is given by
(withe=1,6=1LHr=1)

ZTCT 2 k124 — -
2= — ___AZ 2 2
A3 <3VSlSZ) {H-ZnT ISI(H-TSI)},
(32)

where §; = S(¢;) etc. and T is the integral of
1/8(t) over the range (1, t,).

What does it all mean? To interpret the above
calculations physically let us use the propagation
relation

¥ (2, to) = -(K(d)za Ly @1a bW (1, 1)y
(33)

backwards in time. That is, we ask the following
question: “Given the present state of the universe
as Y (¢,,t,), what was the spread of states at
earlier epoch t, from which it could have evolved
to this state?” Naturally we expect the un-
certainty implicit in the answer to grow as t, goes
further back in time. The interesting result from
(32)is that A, — oo as t, - 0 since S(t;) — 0. The

© quantum uncertainty therefore grows indefi-

 nitely large as we try to use the propagator

arbitrarily close to the classical big bang epoch.
Notice that the wavepacket at ¢, is centred on
¢, = 0, the classical solution, an assumption that

is justified if ¢; > t,. However, even though the
wavepacket at ¢, continues to be centred on
¢, = 0 the implied classical average is no longer
reliable in view of the divergence of A,.

If the classical solution is not reliable, can we
attach a probability measure to the solutions
that, though nonclassical, are singular at ¢, — 0?
Such solutions are given by those functions
¢, (t,) for which

S(t){1+¢2(t3)} =0 as 1, 0. (34)

A probability measure can indeed be attached to
such models and it can be shown® that it tends to
zero as t, — 0. Thus it is extremely unlikely that
the universe had a singular beginning. Models
that do not have the property (34) have prob-
ability approaching unity. Such models are
nonsingular.

This result has further implications in relation
to the socalled horizon problem. The particle
horizon of an observer P at any time ! is the
region H of space from where light signals have
had time to reach P. If there is a spacetime
singularity at ¢t = 0 the signals from H cannot
have originated priortot = 0. Clearlyast - 0, H
itself shrinks to zero volume at P.

In the classical big bang model the horizon
places a limit on communication. If such severe
limits existed in the past, how did the different
parts of the universe achieve large scale homo-
geneity? In particular, the radiation background
in the microwaves today shows remarkable iso-
tropy on large angular scales. If the background
were of primordial origin then this isotropy
implies a uniformity on a linear scale far exceed-
ing the size of the particle horizon.

If the singularity is avoided, however, the
particle horizon need not exist. The past light
cone of P could very well extend to t < 0, out to
large physical distances from P.

GENERALIZATIONS

The above work for homogeneous isotropic
models has been generalized to other cosmolo-
gical models in the following way'® 1,

Take any solution of classical Einstein equa-
tions (1) for T}, a system of massive noninteract-
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ing particles. Suppose that the metric tensor is
given by gy. Then consider arbitrary conformal
fluctuations of this geometry:

gie = (1 +¢)* e (35)

where ¢ can now be any function of space and
time.

Using ;. as the background metric for raising
or lowering tensor indices we find that cor-
responding to (19) and (29)

o] s

Note that instead ¢> we now have ¢;¢'—a
covariant expression. However, the ¢, ¢; de-
pendent integrand is still only quadratic. This
means that the path integral

Jexp (J/RD¢ 37)

can be evaluated exactly. It is therefore possible
to evaluate the bifunctional propagator K.

The conclusion of §4 with regard to singular
solutions being exceptions rather than the rule
can also be established in this general case'!
Thus it is clear that within the framework of
conformal fluctuations quantum cosmology
eliminates the classical problem of singularity.

To what extent can we take this result as
general? Obviously the conformal fluctuations
are only one amongst the many types of fluctu-
ations of the metric tensor. So to get the complete
answer one must tackle the as yet unsolved
problem of quantizing non-conformal fluctu-
ations. There are, however, two conceptual ad-
vantages of conformal fluctuations.

First, the question of singularity is linked with
the overall volume of the universe which is
affected directly by conformal transformations.
It is therefore indisputable that of all the metric
fluctuations the conformal ones are the most
relevant to the singularity problem. In the exam-
ple of the H-atom we quantized only the radial
motion, and still caught the essence of the
problem viz the stationarity of electron state.
Although the angular motions wereignored in (4)
the simplification did not alter the correct conclu-

sion. In fact (5) is a solution that corresponds to
the S-state of the H-atom. Likewise, although we
have simplified the problem by considering con-
formal fluctuations only, the conclusion of avoi-
dance of singularity may very well be a valid one.

The second property of conformal fluctuations
is that they are necessary and sufficient to pre-
serve the causal structure of spacetime!?. Thus
even while the spacetime geometry is fluctuating,
the causal relationships between any two space-
time points are unaltered. The essential physics
(represented by 7;; in Einstein’s equations) is
therefore unambiguously described. Noncon-
formal fluctuations do not preserve causality and
thus their physical meaning is not clear.

Conformal fluctuations have proved useful in
other branches of physics also. For example
Padmanabhan'® has shown that when all
geometries conformal to flat Minkowski space-
time are considered together, the self energy
problem of quantum electrodynamics is resolved.
The various probability integrals of QED have a
natural cut off at the Planck energy

E =H/t,, (38)

and thus the need to renormalize is gone.

CONCLUSION

If we take the results of quantum conformal
cosmology seriously we find that it is extremely
unlikely that the universe ‘started’ with a big
bang. A more likely picture is of a universe
without a beginning and without an end. In such
a universe there may be phases when it was (or
will be) highly compressed with radius of curva-
ture comparable to Planck length

L,=ct,=(hG/c*)'? ~ 10" ¥ cm. (39)

At such stages its dynamics was governed by
quantum considerations. Such a picture helps
resolve some of the outstanding problems of the
big bang cosmology without losing its essential
advantages. It also illustrates how much richer
and more powerful quantum cosmology is com-
pared to classical cosmology.
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