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Black hole physics in globally hyperbolic space-times
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Abstract. The usual definition of a black hole is modified to make it applicable
in a globally hyperbolic space-time. It is shown that in a closed globally hyperbolic
universe the surface area of a black hole must eventually decrease. The implications
of this breakdown of the black hole area theorem are discussed in the context of
thermodynamics and cosmology. A modified definition of surface gravity is also
given for non-stationary universes. The limitations of these concepts are illustrated
by the explicit example of the Kerr-Vaidya metric.
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1. Introduction

The basic laws of black hole physics are formulated in asymptotically flat space-
times. The cosmological considerations on the other hand lead one to believe that
the universe may not be asymptotically flat. A realistic discussion of black hole
physics must not therefore depend critically on the assumption of an asymptotically
flat space-time. Rather it should take account of the global properties found in most
of the widely discussed cosmological models like the Friedmann models or the more
general Robertson-Walker space times.

Global hyperbolicity is one such important property shared by the above cosmo-
logical models. This property is essentially a precise formulation of classical deter-
minism in a space-time and it removes several physically unreasonable pathological
space-times from a discussion of what the large scale structure of the universe should
be like (Penrose 1972). We therefore propose to reformulate the definition of a black
hole so as to make it work in any globally hyperbolic space-time. ‘

Another strong motivation for considering the globally hyperbolic space-times
comes from Penrose’s strong cosmic censorship hypothesis (Penrose 1974 a, b).
It turns out that if this hypothesis is used to rule out the time-like (naked) singularities,
the resulting space-time structure must be globally hyperbolic. In the absence of ‘
cosmic censorship, signals from space-time singularities would play havoc with the
deterministic structure of physics. Global hyperbolicity therefore provides a natural
background for the discussion of gravitational collapse and the formation of black
holes.

Our approach here will be different from that of Tipler (1977) who also provided
a wider definition of a black hole. Tipler defined a black hole for stably causal space-
times as an object containing all small trapped surfaces and showed that although the
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local behaviour of such black holes remains unaltered their global behaviour is
changed. In particular, the area theorem is no longer obeyed.

In the next section we define a black hole using the notion of trapping of light by
the strong gravitational field of a collapsing object in a globally hyperbolic space-
time. We will then discuss the conditions under which the area theorem continues
to hold. , L

In § 3, however, we will show that in a closed globally hyperbolic universe in which
there is no boundary at infinity and where all future directed curves have finite lengths,
the area theorem must break down. A closed Friedmann universe (the Wheeler
universe) is an example of this kind. ‘ | _

Next in § 4 we attempt a definition of surface gravity « in a universe which is not
stationary. Stationarity and the existence of an axisymmetric killing vector are
needed in the usual definition of «, neither of which may in fact apply to objects in a
real universe. We show, however, that analogy from thermodynamics helps in
defining a quantity which resembles « in local situations but which cannot have a
global existence. ‘ o

The limitations of the laws of black hole physics set up with these modified defini-
tions become apparent in the explicit example discussed in § 5. This is the space-time
described by Vaidya (1977). It has a locally Kerr-type object embedded in an asymp-
totically Friedmann/Robertson-Walker universe. There we see to what extent we can
still give a meaning to the various concepts of black hole physics.

The notation and terminology to be followed here are those of Hawking and Ellis
(1973) referred to in brief as HE. o

2. A black hole redefined

Let & be any space like hypersurface in a globally hyperbolic spacetime M. Define
the set D+(2) as follows: : o

~ all past directed non-spacelike curves
-+ ] i '
" D () 1 {p €M lfrqm p have past end points in &, } M

The set D“(,Sﬁ) is defined siniilarly. Since M is globally .hyperbolic, we cah find
& such that =~ o v |

DHP) U D (P)=M. S

Tn this case & is a Cauchy surface in M.

We evolve this Cauchy surface into the past as well as future. FolloWing Geroch
(1970) we write ,

M=% x R, 3)

‘With &, a Cauchy surface for eachr € RY, we have a family of spacelike surfaces {#}
spanning M. The parameter # serves as the ¢ cosmic time ’ for M. We will assume
that the futute development of the system corresponds. to increasing values of r.
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In an asymptotically flat spacetime a black hole is the set M — J- (9+) where I+
1s future null infinity, defined by imbedding M into another conformal manifold M
(HE p. 222). However, independent of the existence of infinities one would like to
say that a collapsing object enters the black hole state when its gravitational field
becomes so strong as to start ¢ trapping * even the light trays. This was formalised
by Penrose in the notion of a trapped surface in M (HE p. 262) which is a closed
compact spacelike 2-surface T such that the two families of null geodesics orthogonal
to it are converging at T, i.e. ;X,; g < 0 and 2Xap 8% < 0 where ;X,;, and oXgp e
the two null second fundamental forms of T, In the spherically symmetric case the

event horizon is formed by the marginally trapped surfaces T (i.e. for which
Xap 8° = 0 and ,X,, g < 0) meaning that one family of null geodesics orthogonal

to T has zero convergence whereas the other family converges ¢ inwards’. In more
general cases also one would expect the boundary of the trapped surface region to
be formed by marginally trapped surfaces.

Using the above concepts now, we define a black hole in a globally hyperbolic
spacetime as a future set generated by all possible trapped surfaces of spacetime.
(A set S is called a future set if § = I+ (S). The sets of the form I+ (x)forxe M
are future sets). Thus our definition given below covers ail possible local collapse
situations. :
Definition: Let M be a globally hyperbolic space-time and let {T,} be the family of
all closed compact spacelike 2-surfaces T} at the epoch ¢ which are either trapped or
marginally trapped. Then the black hole in M is the future set

B=1+{ Ui T} @

Further, the boundary of the black hole is identified with the boundary of the above
future set. : :

The above definition, which resembles a similar definition given by Tipler (1977),
does not distinguish between local and cosmological trapped surfaces. For example,
in closed Friedman models the 2-spheres which are the “ equators ” of the 3-Cauchy
spheres of spatial homogeneity, are trapped during the entire collapsing phase of the
universe and the black hole set would consist of the entire universe in the future of
such a 3-sphere of time symmetry, giving an unwanted situation. Tipler et al (1980)
have proposed a detailed method of distinguishing local trapped surfaces from the
cosmological ones. There are certain characteristics which differentiate these classes.
For example, whereas in the Schwarzschild case the family of null geodesics with
aXap 8 << 0 points towards the trapped surfaces, in the Friedman case this family
points away from them. Here we shall take for granted that such distinctions between
the local and the global case can be made. We are dealing only with the local
trapped surfaces arising out of local collapse situations, and not with the global

ones which essentially arise from the overall cosmological nature of space-time.

It can be seen that a black hole defined above is a black hole in the usual sense
when the spacetime is asymptotically flat. For, a black hole by the above definition
implies that M contains a Cauchy surface &, with trapped or marginally trapped
surfaces 7;. This implies the existence of an event horizon 9 J~ (9+, M) containing
T,; provided the null convergence condition R,, K K® < 0 is satisfied for all nul
vectors K° (HE, p. 320). This ensures a usual black hole in M. '
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Conversely, let M which is asymptotically flat, contain a non-empty black hole
B = M—J-(9+). Now consider I+ (B) and suppose there is DE M such that p €
I*(B) but p ¢ B. So there is some g € B such that there is a timelike a}rve.from
g to p. Then since p € J- (9+), there is a timelike curve from g to I+ which is not
possible. Hence B = J+(B) is a future set. However, as demonstrated by the sphe'rl-
cally symmetric case, B %, need not necessarily contain a trapped surface dur{ng
the time dependent evolving stage when the event horizon is continuously moving
outwards, increasing in area. It may be that in the final time independent limit every
point of B is in the future of a trapped or marginally trapped surface as happens
in the Schwarzchild picture, in which case both the definitions would become
equivalent.

It is necessary here to make a distinction between the apparent horizon and the
black hole boundary defined above. The apparent horizon is the outer boundary of
a connected component of a trapped region on a partial Cauchy surface. The
example of the spherically symmetric collapse to a Schwarzschild black hole followed
by the spherically symmetric collapse of a shell of small mass shows that the apparent
horizon moves discontinuously. By contrast, the black hole boundary considered
here is a future set which not only varies continuously but also has a differentiable
structure. In fact it is an achronal 3-manifold (HE p. 187). ‘

Next, B being a future set, 9B will be generated by null geodesics which are either
past endless or have past end points on one of the trapped surfaces (Penrose 1972).
In our case M being globally hyperbolic the generators will have past end points on a
trapped or a marginally trapped surface T € T, for some epoch 7. Now the weak
- energy condition T,K°K® > 0 for all null vectors K@ and Einstein’s equations
imply R;K°K® < 0 and then the Raychaudhuri equation

%.6= RpK°Kb — 262 — .;. 62, ©)
1/

(where v is the affine parameter along the null geodesic generators) gives the result that
the expansion 8 of these generators will be non-positive all along since it is non-
positive at T.

Again, a generator with a past end point on some T'€ T, cannot have negative
expansion at T because then one would be able to deform T outwards in $, to obtain
another trapped surface, giving points of B outside 3B which is not possible. This
shows that the generators of the black hole boundary begin with zero expansion.

However, if they encounter some matter or radiation in future, the expansion would
become negative and they will have future end points in B. Then these generators
enter-the black hole and the black hole boundary will move outside. But in the final
time independent stationary state of the collapse one would rule out such possibilities
and the generators should continue to move in future with constant zero expansion
without future end points in 3B provided they do not encounter singularities in
future, in which case expansion can again go negative.

If one rules out this also by a suitable form of cosmic censorship, ensuring future
completeness of the generators then the well-known area theorem will hold good for

general globally hyperbolic space-time also in the sense that the black hole boundary
does not decrease in area.

s
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Of course the above argument also indicates that if we were in a closed universe
where all the material and light signals had finite lengths in future, then there is a

possibility of the violation of the area principle. We will consider this possibility
next.

3. Violation of the area theorem

We shall now consider black holes in the cosmological context of a closed universe
i.e. of a space-time wherein there are no points at infinity and in which all non-space-
like curves have finite proper lengths in future (Penrose 1974a). Tipler (1977) consi-
dered a similar situation in a Wheeler Universe where all the non-spacelike curves fall
into a universal curvature singularity in future and he showed that the area of spheri-
cally symmetric black holes must ultimately decrease in such space-times.

We would now appeal to the strong cosmic censor to bring in global hyperbolicity
into our picture and use the prescription given by Geroch et a/ (1972) to classify the
space-time boundary. Since there are no points at infinity in our case, all boundary
points are space-time singularities which are the singular end points of otherwise
endless future or past directed timelike curves. The timelike boundary points (i.e.
naked singularities) are classified as follows (cf. Penrose 1974a): Consider a past
endless timelike curve y with a past singular end point g. Then ¢ can be said to be
lying in the future of some event p if I+ (p) o I+ (y). Then any r ¢ y lies in I+ (»)
and there are timelike curves from p to r. An observer following one of these curves
will have g to his future when he is at p and to his past when he is at r. Such a situation
has been termed as a naked singularity which is not admitted by the normal cosmo-
logical models and which is ruled out by the strong cosmic censorship, which in turn
is equivalent to the global hyperbolicity of the space-time.

In physically meaningful situations one would be interested in an initial non-singu-
lar state from which a black hole develops as a result of gravitational collapse. To
consider such a case, let S be a compact collapsing object in M and let

St=Sne9’t, (6)

describe the evolution of the object in time. Let .S, be an initial non-singular state.
All the trapped and marginally trapped surfaces which are going to be formed in
the future stages of collapse are to be contained in I+ (S:). We shall consider here
the smallest set B’ which contains all the trapped surfaces to be formed and which
can be obtained by intersecting all the future sets I+ (S,) which contain all the trapped
surfaces. Then it is easy to see that B’ is also a future set and the black hole B c B

Though we provided argument in §2 for the area theorem to hold in general
globally hyperbolic spacetimes, there is an important difference in the situation
being considered here. Whereas the boundary generators were assumed to be
future-complete earlier, now they all have finite lengths in future after which they
end in future singularities. We shall consider here 9B’ and it will be shown that its
cross-sectional area will decrease for all times after a certain finite epoch 7 in future.

For that we first note that by a result of Clarke (1975), except for certain very
specialised situations all the finite boundary points of a globally hyperbolic space-
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time must be curvature singularities, and so in our case all the generators of 9B’
end up in future curvature singularities. Now one would like to believe that for a
curvature singularity the objects falling into it are crushed to zero proper volume.
Following Tipler (1977) we shall assume that along all future directed paths A the
volume or area elements defined by linearly independent spacelike Jacobi fields along
A vanish as A approaches the future curvature singularity.
Now we prove the following:

Theorem: Let M be a closed globally hyperbolic space-time foliated by Cauchy
surfaces &, satisfying the following conditions:

(a) the volume or area elements along all future directed paths A vanish as A
approaches the corresponding future curvature singularity.

(b) the weak energy condition, viz T, ¥* ¥® > 0 for all timelike vectors V¢
and Einstein’s equations hold in M.

Then there exists an epoch ¢ on which the area of OB’ decreases everywhere.

Proof: The area a of 9B’ at an epoch ¢ is measured by summing up the two-
dimensional cross-sectional areas of the infinitesimal generator bundles in gB,
= 0B’ N & Suppose t, is an epoch when the black hole area theorem is obeyed
and for all generator bundles we have

da

5 >0atr=1 o Q)

Let A be a typical generator 9B’ with a past end-point on ¥, and let B be the
corresponding bundle with area a a Since for all null generators a 4 >0 at the

corresponding future singularity, there will be a finite parameter value #, such that
da A |

T <0 fort =1, ‘ | )

In view of (7) of course, 1, > !, We, therefore, have a real valued function t; defined
on 9B, =08 n &, as follows. From the weak energy condition and Einstein’s

equations it follows that for any null vector K4 Ry K K? <0. The focussing theorem
(Misner et al 1973 p. 932)

— = Rp KK — &, ©9)

5 <0 (10)

Therefore, from (8) we get

dva

e < Ofort > ¢, an
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Then one can deﬁne'z\ for ‘th‘e bundle by

t,\=inf§tA “&?‘\<O fort=tl\}. ' (12)

Clearly Z\ occurs well before the final singularity for A,

Again the area a » 18 defined by the Jacobi fields V'{ which are solutions of the Jacobj
equation

D*V§{=R T ViTy, J ‘ ‘_ (14)

where T} is the tangent to the geodesic A and the fields V4§ measure the geodesic devia-
tion. The ¥§ are continuous functions of their intial values on 9B; and hence 7, is.
continuous on it. Now aB;o is closed being the intersection of two closed sets and again
if S; is some earlier non-singular state as mentioned before then al?;0 CIHS) N J‘(&”:n)

which is compact (prop. 6.6.6 HE, 1973). Thus §B, is compact, being a closed subset
of a compact set. Then 7, will attairi its maximum on 98, sayf,. Then for all
Cauchy surfaces &, with ¢ > 7, .

da,/dt < 0, . - as)

for all generator bundles on pB’ which implies the decrease of its cross-sectional areas
at these epochs, proving the result. . -

In fact one would like to identify 9B’ with the black hole boundary §B. Since B’
is the smallest future set containing all trapped surfaces one expects 28’ to ¢contain’
marginally trapped surfaces. The above result then shows the violation of the area
theorem in closed globally hyperbolic universes. (Note that there is no assumption
in our proof that the generators of 9B’ remain forever in OB'. Indeed generators of
OB’ can surely fall into the black hole ; however as soon as they leave 9B’ they no
longer contribute to the area of the boundary.) , v

In any case since the set B is contained in the set B, it i easy to see that the area of
OB must decrease at some stage in the future. For, if it did not, it would remain non-
zero and hence exceed the area of 9B’ (which tends to zero) at some future epoch,
thus contradicting our earlier conclusion B < B'.

The existence of an epoch 7, proved above raises an Interesting issue which goes
beyond the physics of black holes. In the conventional treatment of black holes in
asymptotically flat space-times considerable emphasis is laid on the analogy between
black hole physics and thermodynamics. In particular the second law of black hole
physics implies a behaviour of the surface area which is similar to that of entropy
in thermodynamics. What happens to this similarity in the type of -universes
discussed above ?

It is true that for # > £, the area of a black hole decreases with time and so the
similarity with entropy appears to be lost. However, it is interesting to speculate
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what happens to entropy in such a universe. Clearly the Olbers paradox will be
important in a contracting universe and if the thermodynamics went in the usual way,
we would be faced with inordinately high background radiation. This suggests that
in a contracting universe thermodynamics may also go in the reverse direction making

_entropy a non-increasing quantity. Arguments of this kind relating cosmology to
thermodynamics have been discussed elsewhere in detail (Gold 1967). In the present
context we can appeal to such arguments to re-establish the analogy between thermo-
dynamics and black hole physics.

In particular, if we speculate that thermodynamics goes the * wrong ’ way in the
contracting phase of the universe we might also have biological time arrows reversed,
although so far this has not been explicitly demonstrated. In that event a living
observer would in fact see such a universe expand and the contraction to a singularity
as an emergence from a singularity. The surface area of our black hole would there-
fore appear to increase. In other words, the cosmological arrow of time (in the
sense of the expanding universe) will be aligned with the thermodynamic arrow of
time (in the sense of increasing entropy) and the arrow of time of black hole physics
(in the sense of increasing area). Under these circumstances the second law of
black hole physics may be reinstated. ‘

4. Surface gravity

The concept of surface gravity was introduced by Bardeen ef al (1973) as an entity
- playing a role in black hole physics analogous to that of temperature in thermo-
dynamics. Surface gravity can be defined for stationary axisymmetric black holes in
asymptotically flat space-times. In this section we will examine the extent to which
these restrictions can be relaxed. ‘

In a stationary axisymmetric spacetime there are two killing vectors K@ and K*
representing stationarity and axisymmetry, The null vector tangent to the generators
of the horizon is then expressed as :

IP=K 4 QK (16)

where , the angular velocity of the black hole is constant over the horizon. A space-
like hypersurface tangent to K@ intersects the event horizon in a 2-surface 9B. To
define surface gravity K we need a null vector ng, orthogonal to 9B and satisfying the
condition /%n, = 1 (We are using the space-time signature as (—, —, — , + ). We
then have ‘

k=l ,n b, : a7
Bardeen et al (1973) have then derived two important results, The first is
k = constant, . | (18)

over the horizon, while the second is the differential mass formula

m=_"8a + Q 8J, (19)
8 _ '

4
2}’%
i
&
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where m = mass of the black hole, a = surface area of the black hole and J = total
angular momentum of the black hole.

Clearly, in a general globally hyperbolic spacetime there can be no a priori timelike
killing vectors like K2 It is therefore impossible to apply the above definition of
surface gravity as it stands. Nevertheless we can attempt a modified but approxi-
mate prescription along the following lines:

Let M be a globally hyperbolic spacetime containing a sequence of Cauchy surfaces
&:. Suppose further that M contains a black hole as mentioned earlier such that the
space-time is axisymmetric. Let g, denote the space-time metric on M. Then to
calculate the surface gravity K(r) of the black hole for any = > t, construct another
space-time metric §; on M with the following property:

g =gfort <,
g =g fort>n - (20)

Then « (7) is equal to the surface gravity of the black hole as computed with the
metric g,.

The above prescription is based on intuitive analogy with thermodynamics. If a
system is in thermal equillibrium we can properly assign a temperature to it. In prac-
tice, however, the system is never in perfect equilibrium; it is always subject to heat
loss or heat gain from the surroundings. Nevertheless we can still define a temperature
for the system provided the departure from equilibrium is not too great. Thus a cool-
ing system passes through successive states of quasi equilibrium with lower and lower
temperatures. In the case of black holes, we may argue that it is still possible to ascribe
a surface gravity to the system provided the cosmological changes in the space-time
are slow. For example, the cosmological time scale at the present epoch is of the
order of 10" years. The astrophysical time scales associated with stellar or super-
massive black holes are considerably shorter than this value. Therefore, one can
meaningfully apply the above definition to rotating black holes at the present epoch.
We will refer to this approximation as the quasistationary approximation.

Of course we presuppose here that the metric g, will give a reasonable space-time,
i.e. one in which the energy condition is satisfied. Keeping in mind our intuitive
criterion mentioned above that the changes in space-time are slow, we expect that the
freezing of the metric to its value at ¢ = r will still keep the space-time reasonable
in the above sense. Since the definition of « is a local one, i.e. it involves quantities
evaluated at, we expect the above prescription to work except in pathological cases.

In the most general case the surface gravity evaluated as above will depend upon the
slicing chosen, and this might lead to ambiguity in the definition of x. However in
the axisymmetric case considered here we can fix up the slicing as tangential to the
rotational Killing field K* following Bardeen er al (1973), thereby making our pre-
cription unique.  Of course in special cosmological spaces like the Robertson-Walker
spaces, one already has a prefered slicing like the constant cosmic time hypersurfaces;
thereby providing a canonical framework for the evaluation of by the above pre-
scription. |

Though the above prescription can be used for general globally hyperbolic
spacetimes, it is in the case of closed universes that we notice the limitations of this
definition in a striking way,
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'For example, as 7 - ¢,, where ¢, is the epoch of the universal curvature singularity,
the cosmological time scale shortens dramatically and it becomes meaningless to talk
of surface gravity—just as it is not possible to ascribe a temperature to a rapidly
changing thermal system.

Secondly, (19) makes use of asymptotic flatness and it cannot be derived within
our framework. In particular, the meaning attached to m, as the mass measured
from infinity becomes ambiguous, since in a non-asymptotically flat universe matter
is not localized in a bounded region.

These general points are brought out clearly in an explicit example to be considered
below.

S. The Kerr-Vaidya metric

Consider the metric given by Vaidya (1977)

ds* =exp [2 F (1)] [2 (du +asin? a d B) dt — (142 m wexp (—2F)

da?
1 a? sin? o

R2

X (du 4+ asin® a d )2 — M2 { +sin? a d 192} }, 21

whereu =t — r, (r, a, B) being the rotating ellipsoidal coordinates and

p‘= R sin (%) cos (1—;) M-2, (22)
M= (R? — 0?) sin? G{) + a? cog? a. | (23)

The constant R in (21)-(22) represents the input from cosmology: it is the
characteristic coordinate radius of the closed universe. Thus the r-coordinate is
limited by

r<IR (24)

o1y

for r € R, the metric (21) reduces to the Kerr metric with mass m and angular
momentum ma. The function F(¢) is also of cosmological nature; exp (F) denotes the
scale factor in the expanding universe. In a closed universe obeying Einstein’s
equations, exp (F) vanishes at 7= 0 (the origin of the universe) and at ¢ = ¢, (the end
of the universe), both instants representing universal curvature singularities.

The event horizon is given by the larger root of the equation |

'R? tan? (%) — 2m R tan (%) Xp (=2 F) + g2 = 0, (25)

e gy
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As pointed out by Vaidya, (25) does not have roots if exp.(—2F) is .suﬁiciently large,
a circumstance inevitable in an open Friedmann universe. In a closed universe,
however exp (F) is bounded above and the reality condition

exp 2F) < %1 , - ' (26)

could be satisfied for black holes with sufficiently small rotation. We will assume
this to be the case, so that the event horizon will be presumed to exist always.
The surface area of the horizon is given by

a=4wexp (2F) (;’S) sinh*1 ari___ {Rﬁ sin? (%) -+ a? cos? (;—{)E » 27)

2 e az)l/ 2

where r is given by (25) as mentioned before. It is clear from (27) that as the singu-
larity is approached in the future, exp (F) — 0, the solution of (25) gives r > #R/2. In
other words, the cosmological boundary conditions increasingly dominate the local
behaviour of the black hole.

To obtain the surface gravity of the black hole at any epoch we use our prescription

and ‘freeze’ the function F (¢) to its value F () at 7. The corresponding space-time -

is then stationary and axisymmetric and (17) can be applied to calculate x. A straight-
forward but tedious calculation gives

- {(R2—-a2) e2f) + (2m2 +2m (mE—a? etF)112) g=F). (2 g~2F_ g2 eF)Lr
| R [2m*+4-2m (m2—a? efF)Lr2]

. (28)

As discussed in § 4, this value of « is to be treated with caution. It is expected to give
reasonable behaviour at epochs away from 7, As t—>1t5 exp (F)—>0and x> o0;
but the quasistationary approximation breaks down in this limit.

Also note that the third law of black hole physics is violated, and « - 0 if (26) is
violated. ‘ ‘ _

Finally the differential relation (19) does not hold, as can be seen from (27) and
(28). Keeping J = ma = constant, a variation of m in (27) gives a variation of a.
Howeyver, the ratio

UL | o 29)
da ‘

"é';,

where « is given by (28). The reason for the discrepancy lies in the fact that the
universe outside the black hole is not empty and the mass ‘seen from infinity * is
greater than m. ‘

6. Conclusion

We have attempted to generalize the basic concepts of black hole physics to non-
asymptotically flat universes. It is possible to give a local meaning to what is meant

B
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by a black hole in a globally hyperbolic universe. However, if such a space-time
has a universal curvature singularity in the future, the second law of black hole
physics is shown to break down eventually but well before the singular epoch. J

Under a somewhat limited set of assumptions it is possible to give a meaning, to :
the surface gravity of a black hole. The quasi-stationary approximation under which
the surface gravity can be defined, however breaks down if the changes in the large

scale structure of the universe occur sufficiently rapidly. In particular, near the
; singularity rapid changes are expected and hence x cannot be defined. o

In spite of these difficulties one can still see the analogy between black hole physics
and thermodynamics holding up: In particular, one can see the area decrease result
as analogous to a reversal of the thermodynamic arrow of time and the role of surface
gravity as that of temperature in a slowly evolving thermal system. -

Our discussion throughout has been at the classical level. The injection of quantum
mechanics via the Hawking process (Hawking 1975) makes the surface gravity as
equivalent (rather than analogous) to temperature. However, the Hawking process : by
also has been studied under the assumptions of stationarity and asymptotic flatness.
It would be interesting to investigate how far the relationship between thermodyna- l
mics and black hole physics holds up when these assumptions are dropped.
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