Diffusion and viscosity in a supercooled polydisperse system
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We have carried out extensive molecular dynamics simulations of a supercooled polydisperse Lennard-Jones
liquid with large variations in temperature at a fixed pressure. The particles in the system are considered to be
polydisperse in both size and mass. The temperature dependence of dynamical properties such as the viscosity
(n) and the self-diffusion coefficientd{) of different size particles is studied. Both viscosity and diffusion
coefficients show super-Arrhenius temperature dependence and fit well to the well-known Vogel-Fulcher-
Tammann equation. Within the temperature range investigated, the value of Angell’s fragility paraineter (
~1.4) classifies the present system as a very fragile liquid. The critical temperature for diﬁa’ﬁt)n (
increases with the size of the particles. The critical temperature for viscoBlty i6 larger than that for
diffusion, and sizable deviations appear for the smaller size particles, implying a decoupling of translational
diffusion from viscosity in deeply supercooled liquids. Indeed, the diffusion shows markedly non-Stokesian
behavior at low temperatures where a highly nonlinear dependence on size is observed. An inspection of the
trajectories of the particles shows that at low temperatures the motions of both the smallest and largest size
particles are discontinuougump type. However, the crossover from continuous Brownian to large length
hopping motion takes place at shorter time scales for the smaller size particles.

[. INTRODUCTION The dramatic slowdown of the dynamics near the glass
transition is not well understood and still remains the most
The rapid cooling of a liquid below its freezing tempera- challenging problem in the physics of glasses. Several theo-
ture transforms it into a long-lived metastable amorphousies have been proposed to understand the anomalous relax-
solid or glasg1]. Understanding the dynamics of the systemation dynamics of deeply supercooled liquids. Although the
near the glass transition has been an intense field of researtteal version of nonlinear mode coupling thedWCT) [17]
in the last few decades. There have been many experimentgives a microscopic picture of this slowing down, it predicts
[2-7] as well as simulation studig8—14] which focus on a structural arrest, i.e., a transition from ergodic to noner-
the dynamics of dense supercooled liquids well above thgodic behavior, at a critical temperatufe, well above the
glass transition and also near the glass transition temperatul@oratory glass transition temperatdrg. NearT., the im-
(Tg). The basic aim of all these studies was to characterizgortance of the influence of the potential energy landscape
guantitatively the observed very complex dynamics of theon the relaxation processes has now been widely accepted
system as it approaches the glass transition from abov§l8,19, and strongly correlated jump motion is observed to
Close to the glass transition, the shear viscosify &énd the be the dominant mode for mass transgdf,20-232; this is
microscopic structural relaxation timer)( of the so-called not included in ideal MCT.
fragile glass-forming liquids show divergence with a  Another important characteristic feature in the dynamics
strongly non-Arrhenius temperature dependdiddeThis di-  of deeply supercooled liquids is the decoupling between
vergence is often well represented by the Vogel-Fulchertranslational diffusion and the shear viscosity of the medium
Tammann(VFT) equation: [23-25. At high temperature, over a wide range of liquid
states, the translational diffusion is inversely proportional to
viscosity, in accordance with the Stokes-Einstési) rela-

= —T7
n(T)=A,exdE,/(T-Tg)] @ tion given by
whereA, andE, are temperature-independent constants and D.— kgT 5
TJ (<Ty) is the temperature at which diverges. Note that T CmyR’ @

at low temperatures the increasingly slow dynamics of the

so-called fragile liquids is simultaneously manifested in thewhereR is the spherical radius of the diffusing particle and

stretched exponential decay of the stress correlation functiois a numerical constant that depends on the hydrodynamic

(with a strongly temperature-dependent stretching parajneteboundary condition. However, several recent experimental

[15,16. The VFT dependendeEq. (1)] is thus accompanied [26-2§ and simulation studiefl5,29—-33 on strongly su-

by strong nonexponential relaxation observed near the glagsercooled “fragile” glass-forming liquids have shown sig-

transition temperature. nificant deviations from the SE relation. As the temperature
is lowered towardl', it is found that the translational diffu-
sion is larger than the value predicted by the SE relation, and
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address: bbagchi@sscu.iisc.ernet.in [23]. The enhanced diffusion at low temperatures is some-



times explained in terms of a power law behavibyx ™ “  ingly, with increase in the strength of the short-range attrac-
with <1 [28,30. Both the experiments and the simula- tive interaction, two qualitatively different glassy states are
tion studies have suggested that the enhancement of tfieund with a reentrant glass transition line.

translational diffusion coefficient is due to the spatially het-  The size distribution in real colloids generally leads to a
erogeneous dynamics in deeply supercooled liquidglistribution in mass of the particles. The importance of the
[2,27,28,31,3P mass polydispersity on_the dynamics of a realistic sysftem

Computer simulations have played a key role in augmentP@ving size polydispersity has recently been analyzed in a
ing our understanding of various aspects of the dynamics diolecular dynamics simulation study of a Lennard-Jones
supercooled liquids from a microscopic viewpoint. Unfortu- (LJ) Polydisperse fluid near the triple point of the corre-
nately, simple one-component systems such as soft or hafPonding monodisperse LJ syste@d]. Polydispersity is
spheres or Lennard-Jones systems crystallize rapidly on lowz°mmonly found in many systems of industrial applications,
ering the temperature below the melting poifit.j, and, and to.m|m|c the interparticle interactions t_he Lennard—Jone;
therefore, cannot be utilized as a model for studying thePtential generally serves as a good starting model. Thus, it
complex dynamical behavior near the glass transition tem?ill D€ of general interest to study the impact of polydisper-
perature. A natural way to avoid crystallization is to use bi-Sity on the dynamics of a deeply supercooled polydisperse
nary mixtures of atoms with different diameters. A Iargeﬂ“'d' Where_par_tlcles interact via the LJ potential. More im-
number of molecular dynamicD) simulations have re- portantly, _thls will enqble us to compare the propertle_s of the
cently been carried out in supercooled model binary mixtureSYStem with model binary LJ mixtures whose dynamics near
near the glass transition as well as below the glass transitioﬁjﬁle glass transition has been studied extensively in simula-
temperaturd8—12,16,21,22,34—36 tions. ,

However, one is often interested in the consequences of !N this study, we have performed extensive molecular dy-
the disorder introduced by the dissimilarity of the particles."@Mics simulations of a system of polydisperse LJ spheres
Synthetic colloids, by their very nature, frequently exhibit With @ continuous range of diameters and mass. The tempera-
considerable size polydispersifi37,38. Polydispersity is ture dependence _of dynamlc properties such_ as the viscosity
also common in industrially produced polymers which al-(7) and the self-diffusion coefficientsX;) for different size
ways contain macromolecules with a range of chain lengthParticles is studied by varying the temperatdi over a
Colloidal particles are an excellent model of hard sphered@g€ range at a constant high pressu?g. (Both the viscos-
and perhaps the simplest possible experimental system Y @nd diffusion show super-Arrhenius temperature depen-
interacting particles to study the glass transition. Several exdénce, and the calculated value of the fragility parami@er
perimentg37] and simulation§39,40 have shown that the shows that the present _system is more fraglle.t.han the well-
crystal phase of colloidal systems can exist as a thermody"OWn Kob-Andersen binary mixturgg]. The critical tem-
namically stable phase only for polydispersitisgandard de- Pperature obtained from the VFT fit to the diffusiof ()
viation of the size distribution divided by the mgdess than  shows strong dependency on the radiRg) (of the particles.

a “terminal” value, in the range of 0.05-0.15. In addition, the critical temperature obtained from the VFT

Interestingly, recent experiments on colloidal supercooledit to the viscosity T7) is much higher when compared to
fluids and colloidal glasses allowed one to obtain informathose of the diffusion coefficients, where the deviation is
tion on the microscopic details of the dynamics of the indi-largest for the smaller size particles. This clearly reflects the
vidual particled3]. These experiments have shown the presdeviation from the Stokesian diffusion in the proximity of
ence of dynamic heterogeneity in deeply supercooledhe glass transition temperature. Most interestingly, at lower
colloidal systems. The motion of the relatively fast-movingtemperatures the diffusion shows a highly nonlinear size de-
particles is found to be highly correlated and they form con{pendence when plotted against the inverse of the radRys (
nected clusters whose size increases as one approaches ttieghe particles. The reason for the breakdown of the Stokes-
glass transition. More recently, Sela¥1] carried out a MD  Einstein relation can be analyzed from the trajectories of the
simulation of a dense polydisperse hard sphere fluid to studygarticles. We find that, at low temperature, hopping processes
the effect of polydispersity on the slow dynamics. The simu-are the primary mode of particle diffusion for both the
lation results also show the clustering of the fast-movingsmaller and bigger size particles.
particles in agreement with the experiments, although the The organization of the rest of the paper is as follows. In
dynamics appears to be less heterogeneous. The heterogke next section, we describe in detail the system studied
neous nature of the dynamics has also been observed inh&re and the details of the simulations. The simulation results
Monte Carlo simulation study of polydisperse hard sphereare analyzed and discussed in Sec. Ill. Finally, we end with
close to the glass transitidd2]. some concluding remarks in Sec. IV.

It is worth mentioning that, in addition to the short-range
hard-core interaction, addition of a nonadsorbing soluble

polymer in the stable colloidal suspension gives rise to a Il. SYSTEM AND SIMULATION DETAILS
weak, long-range attraction between the colloidal particles ) o )
by means of the depletion interactif8g]. Recently, the con- We have performed a series of equilibrium isothermal-

sequences of this attractive interaction on the glass transitigi§obaric ensembleN-P-T) molecular dynamics simulations
have been nicely explained in a combined experimental, the three dimensions of a system Wf=256 particles of mean
oretical, and simulation study by Phashal. [43]. Interest- radius o and masam with polydispersity in both size and



mass. The interaction between any two particles is modelec 3
by means of a shifted-force Lennard-Jones pair potential,

where the standard LJ potential is given [dp] 25l
12 6
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wherei andj denote two different particles and;;=(o; D 15F
+0j)/2 with o;,0; the diameters of the particlésand j,
respectively. In the shifted-force potential both the potential 1t

and force are continuous at a cutoff radiys and we choose

a value ofr ,=2.50.
The polydispersity in size is introduced by random sam-
pling from the Gaussian distribution of particle diameters

; 0 : : - : :
[44]: 0 0.5 1 15 2 25 3

0.5

1 l/o—0 2 '
P(o)= —ex[{ — E(TA) , 4) FIG. 1. The radial distribution functiog(r) of the system at
ov2m T=0.67, the lowest temperature investigated.

where§ is the width of the distribution. The standard devia- the different size particles are calculated from the slope of

tion (8) of the distribution divided by its meaor gives a  the corresponding mean square displacements in the diffu-
dimensionless parameter, the polydispersity indexd/o. sive limit, and viscosity is calculated from the autocorrela-
The simulations are carried out here for a fixed value of thdion of the off-diagonal components of the microscopic stress
polydispersity indexs=0.1. The masses of the particles aretensor, via the standard Green-Kubo form{#]. As the
varied accordingly, and we assume that the mass of a partickystem is isotropic, we have taken an average over three
i is scaled by its diameter as, = m(o; /o)3. The L energy different off-diagonal stress correlations for each of the five

parametel; is assumed to be the same for all particle pairsdata sets.
and is denoted as. All the quantities in this study are given

in reduced units, that is, length in units ef temperaturel I1l. RESULTS AND DISCUSSION

o o 3 o
n _unlts of e/kB_,zpressureP n u_mts of e/ o, and time m_ In order to make sure that there is no crystallization, we
units of 7= ymo“/e. Note that if one assumes argon units cajcylated the radial distribution functiomgr) which de-
thent=22ps. scribes the average structure of the fluid. The radial distribu-
_ All simulations in theN-P-T ensemble are performed us- tjon function calculated folf =0.67, the lowest temperature
ing the NoseHoover-Andersen methof6], where the ex- investigated, is shown in Fig. 1. The decay of correlations
ternal temperatur€T) is varied over a large range from 1.3t0 yith increase in distance is consistent with the absence of
0.67 keeping the external pressuf®) fixed at 10.0. any Jong-range order, a characteristic feature of the fluid.
Throughout the course of the simulations, the barostat and Tpe plot of If ] as a function of inverse temperature

syst}em’s degrees.of freedom are coupled to an independemn) in Fig. 2(a) clearly shows a super-Arrhenius behavior
NoseHoover chain (NHC) [47] of thermostats, each of of the viscosity. In Fig. &) we show a VFT fit to the vis-

length 5. The extended system equations of motion are intgs, it ; ; _T7
: y ; y[Eq. (1)] by plotting I{ ] against 1/T—T/), where
grated using the reversible integrator methpts]. The .T7is equal to 0.57. As in other fragile liquids, it shows that

higher order mul_t|ple time step me_:thod has been employed 'the divergence of the viscosity is quite well described by the
the NHC evolution operator, which leads to stable energy -+ equation. From the fitting we obtain the values

conservation for non-Hamiltonian dynamical systej49]. andE, as 2.0 and 0.81, respectively. We also calculated the
The extended system time scale parameter used in the calc#égi"t’;/ parémeter D=E IT7) as de.fined by Angell51]
n o :

lations is taken to be 0.93 far=1.0 and 1.16 foil <1.0 for : - 7,
both the barostat and thermostats. Using the values of the fitting parameteis,(and T;) ob-

Atime step of 0.001 is employed fdr=1.0 and 0.002 for tained within the temperature range investigated, its value is
T<1.0. The number of equilibration and data collection = 1-42. This classifies the present system as a very fragile

steps is also varied accordingly depending upon the temperdduid- Thus, the dense random packing of unequal size par-
ture of the system. FOoF=1.0, the number of equilibration

ticles makes the present system more fragile when compared
steps is varied from 810° to 1¢° and the number of data

with a recent simulation study on a Kob-Andersen binary
collection steps is 1) whereas forT<1.0, the number of m|>_<lflﬁre (D~2.45) [18]' g ¢ sheragediffus
equilibration steps is varied from 5QL0° to 2.0x 10° and o e temperature dependence o ragedi uspn C_o'
the number of data collection steps fronf16 2.5x 107. At efficient D of the system(averaged over all particlgss
each temperature, all the dynamic quantities are averageshown in Fig. 8a) where—In[D] is plotted as a function of

over five independent runs. Diffusion coefficient®;) for 1/T. Similar to what is observed for viscositiFig. 2(a)] the
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FIG. 2. Temperature dependence of the shear viscosity (@) FIG. 3. (_a) Tempgature dependence of the average diffusion
In[ #] as a function of inverse temperature T/ The simulated  coefficient ©): —In[D] against IT. The simulated values given
values given by the solid circles show super-Arrhenius behaviorby the solid circles show super-Arrhenius behavior. The dashed line
The dashed line gives a guideline to the Arrhenius behayimr. gives a guideline to the Arrhenius behavis) Arrhenius plot of
In[ ] against 1/T—TZ). The solid circles again represent the diffusion coefficients and the corresponding VFT fits for the small-
simulation results and the VFT fit is shown by the solid lii@.is ~ est 1) and largest D,g) size particles. For comparison, the
found to be 0.57. The slopg, and the intercept [A,] obtained  Arrhenius plot of average diffusion coefficier} with the VFT fit
from the fit are 0.81 and 0.69, respectively. Note that the viscositys also shown. Solid triangles and solid squares are the simulation
(7) is scaled byyme/o*. For detalils, see the text. results for the smallest);) and largestD,) size particles, respec-

tively. Solid circles are the simulation results for the average diffu-

. . o — ) sion coefficient 5). The VFT fits in all three cases are represented
diffusion coefficient D) shows a super-Arrhenius tempera- the solid lines. The critical temperaturé*gl, 70, and Tflf’

: ~. b
ture dependence. In a polydisperse system, all the part'd%%tained from the VFT fits are 0.46, 0.478, and 0.50, respectively.

are unequal in size, so their diffusion coefficients also differ. e . oy
We categorize the particles into different subsets where pall\-lOte that the diffusion coeflicients are scaled yor/m.

ticles of diameters within 0.Gbare assumed to be members where the index stands for the different subsets of particles.

of the same subset. For the polydispersity index0.1, we D : . . . .
find that the minimum and maximum diameters of the par-To is the critical temperature for thiéh species at which the

; — = . diffusion coefficients D;) vanish. The diffusion coefficients
thle_S are (.)'75 .and 1'2?’ respectively. Ihus suEsets of for each subsets of particles have been fitted to the above
particles with diameters in the ranges Q7% 0.8 and  gquation and we show the VFT fit to the diffusion coeffi-
1.20 to 1.25r correspond to the smallest and largest spheressients for the smallest;) and largest sphere®() in Fig.
respectively. The diffusion coefficients for different subset33(b), whereTP! and TP are 0.46 and 0.5. We also show the
of particles are calculated at each temperature. It is WeQIFT p h © ° diffusi HicienDd in Fi b
known that in deeply supercooled liquids the non-Arrhenius it to the average diffusion coefficienD{ in Fig. 3(b),
temperature dependence of the diffusion coefficient can bfor comparison, wherdg is 0.478(compared to 0.57 for
fitted by a VFT law: TZ). Thus the critical temperatures for both the smallest and

the largest spheres bracket the critical temperature obtained
for the average diffusion coefficienTEi depends on the size

_ _ _71DPi —
Di(T)_ADi ex Ep, [(T=T,H1, (5) of the particles and it increases with size of the partiétes
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FIG. 4. The critical temperatureTE‘) obtained from the VFT fit
to the different subsets of particles as a function of the mean radius

(R)) of the subsetsin units of o) for two different types of poly- 3 35 4
dispersity(polydispersity of both size and mass and polydispersity r
of size along Note thatTEi increases withR; in both cases. For

. FIG. 6. The van Hove self-correlation functidBg(r,t) as a
details, see the text.

function of the particle displacementin units of;) atT=0.67 for

— . . . L ) different values of time (in units of 7= Vmo?/e=2.2 ps for argon

(R; is the mean radius of thith subset This is shown inhitg (a) For the smallest size particlésubset 1 The occurrence
Fig. 4. For the largest spheres, the critical temperamfé"l of the second peak at~1.0s indicates single particle hoppintp)

is smaller than the corresponding critical temperature obFor the largest size particlésubset 10 Here also a second peak
tained from a VFT fit to the viscosityT{7). This clearly corresponding to single particle hopping develops, but at relatively
signifies that near the glass transition the diffusion is partlylonger times.

7 y decoupled from the viscosity, and for smaller particles the
T=0.67 PY degree of decoupling is more. The smaller particles remain
6} 1 mobile even when bigger particles are almost frozen.
However, it is interesting to know the influence of purely
5t 1 mass polydispersity, if it is there, as compared to purely size
(] polydispersity, on the observed variation of critical tempera-
a4t . ture (Tgi) with size. In order to quantify this, we carried out
< separate simulations for a system with the same size polydis-
o . . : . ;
v~ 3f ] persity as was considered in our previous case @4tld.1,
o but the mass of all the particles is now considered to be the
2r ° 1 same and set equal to. The critical temperatureT(f;i) ob-
tained from the VFT fit to the diffusion coefficienD() dis-
1r 1 plays similar behavior, as observed in the cases of both size
_____________ and mass polydispersiiyFig. 4), when plotted as a function
9% 18 > _ 22 >a 2e  Of size of the particlesR;)—it increases withR; (Fig. 4).
1/R Compared to the earlier cagef simultaneous size and mass

polydispersity, however, the values of the critical tempera-

FIG. 5. The diffusion coefficient;) as a function of R, at  ture for all the particle sizes are higher. These simulations
T=0.67. The dashed line represents the Stokes-Einstein relatiofius suggest that the increase of critical temperature with
[Eq. (2)] with the stick boundary conditioB = 6. The viscosity {) size is a general observatigire., not an effect of mass poly-
value is taken from the present simulations. Solid circles aredispersity and may be related to the dynamical heterogene-
the simulated values and the solid line is the cubic polynomiality induced by geometrical frustration.
fit in 1/R;. The fit parameters are as follow®;=0.0011 It is to be noted that the results that will be presented in
—0.00132(1R) +0.000442(1R,)2. It clearly shows a highly non-  the rest of the paper are again for the system of particles with
linear size dependence and a marked deviation from Stokesian bgolydispersity of both mass and size. In Fig. 5 we plot the
havior of the diffusion. Note that the diffusion coefficierd;] is diffusion constants®;) against ﬁ at the lowest tempera-
scaled byyea?/m. ture of T=0.67 and compared with the well-known hydro-
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FIG. 7. The self-intermediate scattering functibg(k,t) at T (b)
=0.67 is shown with a shift in the time origin tg,=1.0, and
normalized to the value dg, for a fixed value oko~ 27 for the
smallest(subset 1 and largestsubset 1Dsize particles. This trans-
formation is a convenient way to eliminate the Gaussian depen-
dence at short timef®]. Open circles represent the simulation re-
sults for the smallest size particles and open squares represent th
simulation results for the largest size particles. The solid lines are
the stretched exponential fiEq. (6)] to these simulation results.
The time constants#{ and 7,¢) and the exponentsg; and 3;o) =2 L
obtained from the fits are,~242, 8,=0.49, 7,;~717, andB, -2 -1 0 1
=0.64. X

dynamic Stokes-Einstein relatiofiEq. (2) with C=6, the FIG. 8. (a) Projections onto the-y plane of the trajectory of a
stick boundary conditioh It clearly shows markedly non- typical smallest size particle over a time interval500r. (b) Pro-
Stokesian behavior of the diffusion at low temperatures. Injections onto thex-y plane of the trajectory of a typical largest size
terestingly, the fitting to the simulated data points show gparticle over a time interval=2000r. Note that the time(t) is
highly nonlinear size dependence of the diffusion. This isscaled byr=\ma?/e; it is 2.2 ps if argon units are assumed. For a
clear evidence that the breakdown of the SE law is moregjetailed discussion, see the text.

severe for the smaller size particles. In order to get an esti-

mate of the degree of decouplingetween diffusion and correlation functionG(r,t). This gives the distribution of
viscosity for the smallest size particles, we fitted the inversethe displacementgr) of a particle in a time interval. We

diffusion coefficient (1D,) versusy/T. While at highT it 50 156G (1 t) for the smallest ¢=0.75 to 0.8s) and
asymptotically satisfies the SE relati¢the slope is }, the fit largest =1 5 1o 1 257) particles for different time inter-

to the low temperature data gives the slape 0.5 (that is, ) . .
diffusion shows the power law behavidd, 7 °9). It vals atT=0.67, the lowest temperature investigated. Figures
should be noted that the dynamics of a polydisperse liquid ig(a) and @b) show th? correlations for the small.est and larg-
more heterogeneous than that of a monodisperse or bidiESt spheres, respectively. For the smallest particles, a gradual
perse system due to the different time scales involved foflevelopment of a well-defined second peakratl.0o is
different sizes and masses of the partic[éd,44. The clearly visible with increase in tim=ig. 6(a)]. However, for
smaller particles are on average faster than others over dffe largest particles, the distribution becomes bimodal at
time scales. This becomes more prominent at lower temperd€latively longer time scalefFig. 6(b)]. The occurrence of
tures where the relaxation time of the system is very high. Athe secondary peak, observed also in other model binary
low temperature, the observed nonlinear dependence of difnixtures at low temperaturdd8,34,33, is evidence of the
fusion on size may be related to the increase in dynamitUmp motion in the dynamics of the particles.
heterogeneity in a polydisperse system. While the hydrody- TO characterize the single particle dynamics further, we
namics cannot explain the nonlinear size dependence even @yaluated the self-intermediate scattering functiauk,t),
a dynamically heterogeneous environment, a semiquantitdhe spatial Fourier transform @(r,t), for different subsets
tive explanation can be obtained from self-consistent modé@f the particles for a fixed value of the reduced wave number
coupling theorny52)]. ko~2m at T=0.67. The long time decay &4(k,t) is well

A more detailed analysis of the diffusion can be obtaineditted by the Kohlrausch-Williams-WatteKWW) stretched
from a closer examination of the self-part of the van Hoveexponential form:



, t\Bi disperse system with large variations in temperature at a
s(k,t) ex;{ ) ) (6)  fixed high pressure. Characteristic of a fragile glass former, a
' super-Arrhenius temperature dependence is observed for the
where 7, and B3; are the relaxation time and the stretching viscosity and self-diffusion coefficients of different size par-
exponent of thath subset. We find that both and g; in- ticles. Interestingly, we find that the critical glass transition
crease with an increase in the size of the particles, as wasmperaturgfrom the VFT relation for diffusion (T " in-
observed earlier by other authors in binary mixturescreases with the size of the particles and the critical tempera-
[14]. The F¢(k,t) calculated for the smallegsubset 1and  ture for viscosity T7) is larger than that for diffusion. Fur-
largest (subset 1P particles along with the KWW fits is thermore, a marked deviation from the Stokesian diffusion is
shown in Fig. 7. Note that we fit the functiof$¢(k,t  observed where the dependence on the size of the particles is
—t)/IFykty)] (t>t,) to the KWW form to quantify their highly nonlinear. At low temperatures, we find that hopping
long-time behaviof9]. For the smallest particles, the values is the dominant mode for mass transport for both the smallest
of the fitting parameters are found to bg=242 andB,  and largest size particles. However, the crossover from con-
=0.49, whereas for the largest particles they ajg=717  tinuous Brownian to hopping motion takes place at shorter
and 8,0=0.64. The enhanced stretching,(< 810 at long time scales for the smaller size particles.
times is due to the greater heterogeneity probed by the In the present system the sizes of all the particles are
smaller size particles than that by the larger size particledifferent. It would be interesting to see whether the jump
during the time scale of decay of theig(k,t) [53]. motion executed by the individual particles occurs over a
In order to determine the extent of the jump-type motionsingle energy barrier or takes place via a number of “inter-
more clearly we follow the trajectory of the individual par- mediate” inherent structures in the potential energy land-
ticles. A close inspection of the simulated trajectory of thescape. A recent molecular dynamics simulations on a LJ bi-
smallest and largest particles reveals several interesting feaary mixture[18] showed that such a transition does not
tures. Figure @) displays the projections onto any plane  correspond to transitions of the system over single energy
of the trajectory of a typical smallest size particle over a timebarriers. In addition, in a deeply supercooled liquid the jump
interval At=500r, and Fig. 8b) shows the paths followed motions are associated with strong nearest-neighbor correla-
by a largest size particle over a time intervsd=2000r, tions, in which several neighboring atoms jump at successive
both atT=0.67. At this temperature the dynamics is domi- close timeq20,21,33. It is to be noted that similar correla-
nated by “hopping;” particles remain trapped in transienttions have been observed here also. Recently, a computer
cages created by the surrounding particles for quite somgéimulation study of a deeply supercooled binary mix{22]
time and then move significant distandepproximately one showed that the local anisotropy in the stress is responsible
interparticle distangeby making a jump to a new cage. For (at least partly for the particle hopping. However, the mo-
the larger size particles, the jump motion begins to take plackecular origin of the jump motions observed heeehighly
at relatively longer time scaldsompare also Figs.(6) and  disordered systehis not clear and we are presently pursuing
6(b)]. Thus, this clearly shows that in a system with particlesthis problem.
of all different sizes and masses, the hopping is the dominant
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