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We have carried out extensive molecular dynamics simulations of a supercooled polydisperse Lennard-Jones
liquid with large variations in temperature at a fixed pressure. The particles in the system are considered to be
polydisperse in both size and mass. The temperature dependence of dynamical properties such as the viscosity
(h) and the self-diffusion coefficients (Di) of different size particles is studied. Both viscosity and diffusion
coefficients show super-Arrhenius temperature dependence and fit well to the well-known Vogel-Fulcher-
Tammann equation. Within the temperature range investigated, the value of Angell’s fragility parameter (D
'1.4) classifies the present system as a very fragile liquid. The critical temperature for diffusion (To

Di)
increases with the size of the particles. The critical temperature for viscosity (To

h) is larger than that for
diffusion, and sizable deviations appear for the smaller size particles, implying a decoupling of translational
diffusion from viscosity in deeply supercooled liquids. Indeed, the diffusion shows markedly non-Stokesian
behavior at low temperatures where a highly nonlinear dependence on size is observed. An inspection of the
trajectories of the particles shows that at low temperatures the motions of both the smallest and largest size
particles are discontinuous~jump type!. However, the crossover from continuous Brownian to large length
hopping motion takes place at shorter time scales for the smaller size particles.
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I. INTRODUCTION

The rapid cooling of a liquid below its freezing temper
ture transforms it into a long-lived metastable amorpho
solid or glass@1#. Understanding the dynamics of the syste
near the glass transition has been an intense field of rese
in the last few decades. There have been many experime
@2–7# as well as simulation studies@8–14# which focus on
the dynamics of dense supercooled liquids well above
glass transition and also near the glass transition tempera
(Tg). The basic aim of all these studies was to characte
quantitatively the observed very complex dynamics of
system as it approaches the glass transition from ab
Close to the glass transition, the shear viscosity (h) and the
microscopic structural relaxation time (t) of the so-called
fragile glass-forming liquids show divergence with
strongly non-Arrhenius temperature dependence@1#. This di-
vergence is often well represented by the Vogel-Fulch
Tammann~VFT! equation:

h~T!5Ah exp@Eh /~T2To
h!# ~1!

whereAh andEh are temperature-independent constants
To

h (,Tg) is the temperature at whichh diverges. Note that
at low temperatures the increasingly slow dynamics of
so-called fragile liquids is simultaneously manifested in
stretched exponential decay of the stress correlation func
~with a strongly temperature-dependent stretching parame!
@15,16#. The VFT dependence@Eq. ~1!# is thus accompanied
by strong nonexponential relaxation observed near the g
transition temperature.

*Author to whom correspondence should be addressed. Electr
address: bbagchi@sscu.iisc.ernet.in
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The dramatic slowdown of the dynamics near the gl
transition is not well understood and still remains the m
challenging problem in the physics of glasses. Several th
ries have been proposed to understand the anomalous r
ation dynamics of deeply supercooled liquids. Although t
ideal version of nonlinear mode coupling theory~MCT! @17#
gives a microscopic picture of this slowing down, it predic
a structural arrest, i.e., a transition from ergodic to non
godic behavior, at a critical temperatureTc , well above the
laboratory glass transition temperatureTg . NearTc , the im-
portance of the influence of the potential energy landsc
on the relaxation processes has now been widely acce
@18,19#, and strongly correlated jump motion is observed
be the dominant mode for mass transport@13,20–22#; this is
not included in ideal MCT.

Another important characteristic feature in the dynam
of deeply supercooled liquids is the decoupling betwe
translational diffusion and the shear viscosity of the medi
@23–25#. At high temperature, over a wide range of liqu
states, the translational diffusion is inversely proportional
viscosity, in accordance with the Stokes-Einstein~SE! rela-
tion given by

DT5
kBT

CphR
, ~2!

whereR is the spherical radius of the diffusing particle andC
is a numerical constant that depends on the hydrodyna
boundary condition. However, several recent experime
@26–28# and simulation studies@15,29–33# on strongly su-
percooled ‘‘fragile’’ glass-forming liquids have shown sig
nificant deviations from the SE relation. As the temperat
is lowered towardTg , it is found that the translational diffu
sion is larger than the value predicted by the SE relation,
in some cases even two to three orders of magnitude la
@23#. The enhanced diffusion at low temperatures is som
ic
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times explained in terms of a power law behaviorDT}h2a

with a,1 @28,30#. Both the experiments and the simul
tion studies have suggested that the enhancement of
translational diffusion coefficient is due to the spatially h
erogeneous dynamics in deeply supercooled liqu
@2,27,28,31,32#.

Computer simulations have played a key role in augme
ing our understanding of various aspects of the dynamic
supercooled liquids from a microscopic viewpoint. Unfort
nately, simple one-component systems such as soft or
spheres or Lennard-Jones systems crystallize rapidly on
ering the temperature below the melting point (Tm), and,
therefore, cannot be utilized as a model for studying
complex dynamical behavior near the glass transition te
perature. A natural way to avoid crystallization is to use
nary mixtures of atoms with different diameters. A lar
number of molecular dynamics~MD! simulations have re-
cently been carried out in supercooled model binary mixtu
near the glass transition as well as below the glass trans
temperature@8–12,16,21,22,34–36#.

However, one is often interested in the consequence
the disorder introduced by the dissimilarity of the particle
Synthetic colloids, by their very nature, frequently exhi
considerable size polydispersity@37,38#. Polydispersity is
also common in industrially produced polymers which
ways contain macromolecules with a range of chain leng
Colloidal particles are an excellent model of hard sphe
and perhaps the simplest possible experimental system
interacting particles to study the glass transition. Several
periments@37# and simulations@39,40# have shown that the
crystal phase of colloidal systems can exist as a thermo
namically stable phase only for polydispersities~standard de-
viation of the size distribution divided by the mean! less than
a ‘‘terminal’’ value, in the range of 0.05–0.15.

Interestingly, recent experiments on colloidal supercoo
fluids and colloidal glasses allowed one to obtain inform
tion on the microscopic details of the dynamics of the in
vidual particles@3#. These experiments have shown the pr
ence of dynamic heterogeneity in deeply supercoo
colloidal systems. The motion of the relatively fast-movi
particles is found to be highly correlated and they form co
nected clusters whose size increases as one approache
glass transition. More recently, Sear@41# carried out a MD
simulation of a dense polydisperse hard sphere fluid to st
the effect of polydispersity on the slow dynamics. The sim
lation results also show the clustering of the fast-mov
particles in agreement with the experiments, although
dynamics appears to be less heterogeneous. The hete
neous nature of the dynamics has also been observed
Monte Carlo simulation study of polydisperse hard sphe
close to the glass transition@42#.

It is worth mentioning that, in addition to the short-ran
hard-core interaction, addition of a nonadsorbing solu
polymer in the stable colloidal suspension gives rise to
weak, long-range attraction between the colloidal partic
by means of the depletion interaction@38#. Recently, the con-
sequences of this attractive interaction on the glass trans
have been nicely explained in a combined experimental,
oretical, and simulation study by Phamet al. @43#. Interest-
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ingly, with increase in the strength of the short-range attr
tive interaction, two qualitatively different glassy states a
found with a reentrant glass transition line.

The size distribution in real colloids generally leads to
distribution in mass of the particles. The importance of t
mass polydispersity on the dynamics of a realistic syst
having size polydispersity has recently been analyzed i
molecular dynamics simulation study of a Lennard-Jon
~LJ! polydisperse fluid near the triple point of the corr
sponding monodisperse LJ system@44#. Polydispersity is
commonly found in many systems of industrial application
and to mimic the interparticle interactions the Lennard-Jo
potential generally serves as a good starting model. Thu
will be of general interest to study the impact of polydispe
sity on the dynamics of a deeply supercooled polydispe
fluid, where particles interact via the LJ potential. More im
portantly, this will enable us to compare the properties of
system with model binary LJ mixtures whose dynamics n
the glass transition has been studied extensively in sim
tions.

In this study, we have performed extensive molecular
namics simulations of a system of polydisperse LJ sphe
with a continuous range of diameters and mass. The temp
ture dependence of dynamic properties such as the visco
(h) and the self-diffusion coefficients (Di) for different size
particles is studied by varying the temperature~T! over a
large range at a constant high pressure (P). Both the viscos-
ity and diffusion show super-Arrhenius temperature dep
dence, and the calculated value of the fragility parameter~D!
shows that the present system is more fragile than the w
known Kob-Andersen binary mixture@8#. The critical tem-
perature obtained from the VFT fit to the diffusion (To

Di)
shows strong dependency on the radius (Ri) of the particles.
In addition, the critical temperature obtained from the VF
fit to the viscosity (To

h) is much higher when compared t
those of the diffusion coefficients, where the deviation
largest for the smaller size particles. This clearly reflects
deviation from the Stokesian diffusion in the proximity o
the glass transition temperature. Most interestingly, at low
temperatures the diffusion shows a highly nonlinear size
pendence when plotted against the inverse of the radiusRi)
of the particles. The reason for the breakdown of the Stok
Einstein relation can be analyzed from the trajectories of
particles. We find that, at low temperature, hopping proces
are the primary mode of particle diffusion for both th
smaller and bigger size particles.

The organization of the rest of the paper is as follows.
the next section, we describe in detail the system stud
here and the details of the simulations. The simulation res
are analyzed and discussed in Sec. III. Finally, we end w
some concluding remarks in Sec. IV.

II. SYSTEM AND SIMULATION DETAILS

We have performed a series of equilibrium isotherm
isobaric ensemble (N-P-T) molecular dynamics simulation
in three dimensions of a system ofN5256 particles of mean
radius s̄ and massm̄ with polydispersity in both size and
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mass. The interaction between any two particles is mode
by means of a shifted-force Lennard-Jones pair poten
where the standard LJ potential is given by@45#

ui j
LJ54e i j F S s i j

r i j
D 12

2 S s i j

r i j
D 6G , ~3!

where i and j denote two different particles ands i j 5(s i
1s j )/2 with s i ,s j the diameters of the particlesi and j,
respectively. In the shifted-force potential both the poten
and force are continuous at a cutoff radiusr c , and we choose
a value ofr c52.5s̄.

The polydispersity in size is introduced by random sa
pling from the Gaussian distribution of particle diameterss
@44#:

P~s!5
1

dA2p
expF2

1

2
S s2s̄

d
D 2G , ~4!

whered is the width of the distribution. The standard devi
tion (d) of the distribution divided by its means̄ gives a
dimensionless parameter, the polydispersity indexs5d/s̄.
The simulations are carried out here for a fixed value of
polydispersity indexs50.1. The masses of the particles a
varied accordingly, and we assume that the mass of a par
i is scaled by its diameter asmi5m̄(s i /s̄)3. The LJ energy
parametere i j is assumed to be the same for all particle pa
and is denoted ase. All the quantities in this study are give
in reduced units, that is, length in units ofs̄, temperatureT
in units of e/kB , pressureP in units of e/s̄3, and time in

units of t5Am̄s̄2/e. Note that if one assumes argon un
thent52.2 ps.

All simulations in theN-P-T ensemble are performed u
ing the Nose´-Hoover-Andersen method@46#, where the ex-
ternal temperature~T! is varied over a large range from 1.3
0.67 keeping the external pressure~P! fixed at 10.0.
Throughout the course of the simulations, the barostat
system’s degrees of freedom are coupled to an indepen
Nosé-Hoover chain ~NHC! @47# of thermostats, each o
length 5. The extended system equations of motion are i
grated using the reversible integrator method@48#. The
higher order multiple time step method has been employe
the NHC evolution operator, which leads to stable ene
conservation for non-Hamiltonian dynamical systems@49#.
The extended system time scale parameter used in the c
lations is taken to be 0.93 forT>1.0 and 1.16 forT,1.0 for
both the barostat and thermostats.

A time step of 0.001 is employed forT>1.0 and 0.002 for
T,1.0. The number of equilibration and data collecti
steps is also varied accordingly depending upon the temp
ture of the system. ForT>1.0, the number of equilibration
steps is varied from 53105 to 106 and the number of data
collection steps is 106, whereas forT,1.0, the number of
equilibration steps is varied from 5.03105 to 2.03106 and
the number of data collection steps from 106 to 2.53107. At
each temperature, all the dynamic quantities are avera
over five independent runs. Diffusion coefficients (Di) for
d
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the different size particles are calculated from the slope
the corresponding mean square displacements in the d
sive limit, and viscosity is calculated from the autocorre
tion of the off-diagonal components of the microscopic str
tensor, via the standard Green-Kubo formula@50#. As the
system is isotropic, we have taken an average over th
different off-diagonal stress correlations for each of the fi
data sets.

III. RESULTS AND DISCUSSION

In order to make sure that there is no crystallization,
calculated the radial distribution functionsg(r ) which de-
scribes the average structure of the fluid. The radial distri
tion function calculated forT50.67, the lowest temperatur
investigated, is shown in Fig. 1. The decay of correlatio
with increase in distance is consistent with the absence
any long-range order, a characteristic feature of the fluid

The plot of ln@h# as a function of inverse temperatu
(1/T) in Fig. 2~a! clearly shows a super-Arrhenius behavi
of the viscosity. In Fig. 2~b! we show a VFT fit to the vis-
cosity @Eq. ~1!# by plotting ln@h# against 1/(T2To

h), where
To

h is equal to 0.57. As in other fragile liquids, it shows th
the divergence of the viscosity is quite well described by
VFT equation. From the fitting we obtain the values ofAh
andEh as 2.0 and 0.81, respectively. We also calculated
fragility parameter (D5Eh /To

h) as defined by Angell@51#.
Using the values of the fitting parameters (Eh and To

h) ob-
tained within the temperature range investigated, its valu
'1.42. This classifies the present system as a very fra
liquid. Thus, the dense random packing of unequal size p
ticles makes the present system more fragile when comp
with a recent simulation study on a Kob-Andersen bina
mixture (D'2.45) @16#.

The temperature dependence of theaveragediffusion co-
efficient D̄ of the system~averaged over all particles! is
shown in Fig. 3~a! where2 ln@D̄# is plotted as a function of
1/T. Similar to what is observed for viscosity@Fig. 2~a!# the

FIG. 1. The radial distribution functiong(r ) of the system at
T50.67, the lowest temperature investigated.
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diffusion coefficient (D̄) shows a super-Arrhenius temper
ture dependence. In a polydisperse system, all the part
are unequal in size, so their diffusion coefficients also dif
We categorize the particles into different subsets where
ticles of diameters within 0.05s̄ are assumed to be membe
of the same subset. For the polydispersity indexs50.1, we
find that the minimum and maximum diameters of the p
ticles are 0.75s̄ and 1.25s̄, respectively. Thus subsets o
particles with diameters in the ranges 0.75s̄ to 0.8s̄ and
1.2s̄ to 1.25s̄ correspond to the smallest and largest sphe
respectively. The diffusion coefficients for different subs
of particles are calculated at each temperature. It is w
known that in deeply supercooled liquids the non-Arrhen
temperature dependence of the diffusion coefficient can
fitted by a VFT law:

Di~T!5ADi
exp@2EDi

/~T2To
Di !#, ~5!

FIG. 2. Temperature dependence of the shear viscosity (h). ~a!
ln@h# as a function of inverse temperature (1/T). The simulated
values given by the solid circles show super-Arrhenius behav
The dashed line gives a guideline to the Arrhenius behavior.~b!
ln@h# against 1/(T2To

h). The solid circles again represent th
simulation results and the VFT fit is shown by the solid line.To

h is
found to be 0.57. The slopeEh and the intercept ln@Ah# obtained
from the fit are 0.81 and 0.69, respectively. Note that the visco

(h) is scaled byAm̄e/s̄4. For details, see the text.
es
r.
r-
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where the indexi stands for the different subsets of particle
To

Di is the critical temperature for thei th species at which the
diffusion coefficients (Di) vanish. The diffusion coefficients
for each subsets of particles have been fitted to the ab
equation and we show the VFT fit to the diffusion coef
cients for the smallest (D1) and largest spheres (D10) in Fig.
3~b!, whereTo

D1 andTo
D10 are 0.46 and 0.5. We also show th

VFT fit to the average diffusion coefficient (D̄) in Fig. 3~b!,

for comparison, whereTo
D̄ is 0.478 ~compared to 0.57 for

To
h). Thus the critical temperatures for both the smallest a

the largest spheres bracket the critical temperature obta
for the average diffusion coefficient.To

Di depends on the size

of the particles and it increases with size of the particlesR̄i

r.

ty

FIG. 3. ~a! Temperature dependence of the average diffus

coefficient (D̄): 2 ln@D̄# against 1/T. The simulated values given
by the solid circles show super-Arrhenius behavior. The dashed
gives a guideline to the Arrhenius behavior.~b! Arrhenius plot of
diffusion coefficients and the corresponding VFT fits for the sma
est (D1) and largest (D10) size particles. For comparison, th

Arrhenius plot of average diffusion coefficient (D̄) with the VFT fit
is also shown. Solid triangles and solid squares are the simula
results for the smallest (D1) and largest (D10) size particles, respec
tively. Solid circles are the simulation results for the average dif

sion coefficient (D̄). The VFT fits in all three cases are represent

by the solid lines. The critical temperaturesTo
D1 , To

D̄ , and To
D10

obtained from the VFT fits are 0.46, 0.478, and 0.50, respectiv

Note that the diffusion coefficients are scaled byAes̄2/m̄.
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(R̄i is the mean radius of thei th subset!. This is shown in

Fig. 4. For the largest spheres, the critical temperature (To
D10)

is smaller than the corresponding critical temperature
tained from a VFT fit to the viscosity (To

h). This clearly
signifies that near the glass transition the diffusion is pa

FIG. 4. The critical temperature (To
Di) obtained from the VFT fit

to the different subsets of particles as a function of the mean ra

(R̄i) of the subsets~in units of s̄) for two different types of poly-
dispersity~polydispersity of both size and mass and polydispers

of size alone!. Note thatTo
Di increases withR̄i in both cases. For

details, see the text.

FIG. 5. The diffusion coefficient (Di) as a function of 1/R̄i at
T50.67. The dashed line represents the Stokes-Einstein rela
@Eq. ~2!# with the stick boundary conditionC56. The viscosity (h)
value is taken from the present simulations. Solid circles
the simulated values and the solid line is the cubic polynom

fit in 1/R̄i . The fit parameters are as follows:Di50.0011

20.00132(1/R̄i)10.000442(1/R̄i)
2. It clearly shows a highly non-

linear size dependence and a marked deviation from Stokesian
havior of the diffusion. Note that the diffusion coefficient (Di) is

scaled byAes̄2/m̄.
-

y

decoupled from the viscosity, and for smaller particles
degree of decoupling is more. The smaller particles rem
mobile even when bigger particles are almost frozen.

However, it is interesting to know the influence of pure
mass polydispersity, if it is there, as compared to purely s
polydispersity, on the observed variation of critical tempe
ture (To

Di) with size. In order to quantify this, we carried ou
separate simulations for a system with the same size poly
persity as was considered in our previous case withs50.1,
but the mass of all the particles is now considered to be
same and set equal tom̄. The critical temperature (To

Di) ob-
tained from the VFT fit to the diffusion coefficient (Di) dis-
plays similar behavior, as observed in the cases of both
and mass polydispersity~Fig. 4!, when plotted as a function
of size of the particles (R̄i)—it increases withR̄i ~Fig. 4!.
Compared to the earlier case~of simultaneous size and mas
polydispersity!, however, the values of the critical temper
ture for all the particle sizes are higher. These simulatio
thus suggest that the increase of critical temperature w
size is a general observation~i.e., not an effect of mass poly-
dispersity! and may be related to the dynamical heteroge
ity induced by geometrical frustration.

It is to be noted that the results that will be presented
the rest of the paper are again for the system of particles w
polydispersity of both mass and size. In Fig. 5 we plot t
diffusion constants (Di) against 1/R̄i at the lowest tempera
ture of T50.67 and compared with the well-known hydro
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FIG. 6. The van Hove self-correlation functionGs(r ,t) as a

function of the particle displacementr ~in units ofs̄) at T50.67 for

different values of timet ~in units oft5Am̄s̄2/e52.2 ps for argon
units!. ~a! For the smallest size particles~subset 1!. The occurrence

of the second peak atr'1.0s̄ indicates single particle hopping.~b!
For the largest size particles~subset 10!. Here also a second pea
corresponding to single particle hopping develops, but at relativ
longer times.



-
In

i
or
s

s

d
id
fo

r
er
. A
d

m
d
en
tit
od

e
ve

res
g-
dual

l at

ary

we

ber

-
e
e-
t
a
.

e

a

dynamic Stokes-Einstein relation@Eq. ~2! with C56, the
stick boundary condition#. It clearly shows markedly non
Stokesian behavior of the diffusion at low temperatures.
terestingly, the fitting to the simulated data points show
highly nonlinear size dependence of the diffusion. This
clear evidence that the breakdown of the SE law is m
severe for the smaller size particles. In order to get an e
mate of the degree of decoupling~between diffusion and
viscosity! for the smallest size particles, we fitted the inver
diffusion coefficient (1/D1) versush/T. While at highT it
asymptotically satisfies the SE relation~the slope is 1!, the fit
to the low temperature data gives the slopea'0.5 ~that is,
diffusion shows the power law behaviorD1}h20.5). It
should be noted that the dynamics of a polydisperse liqui
more heterogeneous than that of a monodisperse or b
perse system due to the different time scales involved
different sizes and masses of the particles@41,44#. The
smaller particles are on average faster than others ove
time scales. This becomes more prominent at lower temp
tures where the relaxation time of the system is very high
low temperature, the observed nonlinear dependence of
fusion on size may be related to the increase in dyna
heterogeneity in a polydisperse system. While the hydro
namics cannot explain the nonlinear size dependence ev
a dynamically heterogeneous environment, a semiquan
tive explanation can be obtained from self-consistent m
coupling theory@52#.

A more detailed analysis of the diffusion can be obtain
from a closer examination of the self-part of the van Ho

FIG. 7. The self-intermediate scattering functionFs(k,t) at T
50.67 is shown with a shift in the time origin toto51.0, and

normalized to the value atto , for a fixed value ofks̄;2p for the
smallest~subset 1! and largest~subset 10! size particles. This trans
formation is a convenient way to eliminate the Gaussian dep
dence at short times@9#. Open circles represent the simulation r
sults for the smallest size particles and open squares represen
simulation results for the largest size particles. The solid lines
the stretched exponential fit@Eq. ~6!# to these simulation results
The time constants (t1 and t10) and the exponents (b1 and b10)
obtained from the fits aret1.242, b1.0.49, t10.717, andb10

.0.64.
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correlation functionGs(r ,t). This gives the distribution of
the displacements~r! of a particle in a time intervalt. We
calculateGs(r ,t) for the smallest (s50.75s̄ to 0.8s̄) and
largest (s51.2s̄ to 1.25s̄) particles for different time inter-
vals atT50.67, the lowest temperature investigated. Figu
6~a! and 6~b! show the correlations for the smallest and lar
est spheres, respectively. For the smallest particles, a gra
development of a well-defined second peak atr;1.0s̄ is
clearly visible with increase in time@Fig. 6~a!#. However, for
the largest particles, the distribution becomes bimoda
relatively longer time scales@Fig. 6~b!#. The occurrence of
the secondary peak, observed also in other model bin
mixtures at low temperatures@18,34,35#, is evidence of the
jump motion in the dynamics of the particles.

To characterize the single particle dynamics further,
evaluated the self-intermediate scattering functionFs(k,t),
the spatial Fourier transform ofGs(r ,t), for different subsets
of the particles for a fixed value of the reduced wave num
ks̄;2p at T50.67. The long time decay ofFs(k,t) is well
fitted by the Kohlrausch-Williams-Watts~KWW! stretched
exponential form:

n-

the
re

FIG. 8. ~a! Projections onto thex-y plane of the trajectory of a
typical smallest size particle over a time intervalt5500t. ~b! Pro-
jections onto thex-y plane of the trajectory of a typical largest siz
particle over a time intervalt52000t. Note that the time~t! is

scaled byt5Am̄s̄2/e; it is 2.2 ps if argon units are assumed. For
detailed discussion, see the text.
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Fs
i ~k,t !5expS 2

t

t i
D b i

, ~6!

where t i and b i are the relaxation time and the stretchi
exponent of thei th subset. We find that botht i and b i in-
crease with an increase in the size of the particles, as
observed earlier by other authors in binary mixtur
@14#. The Fs(k,t) calculated for the smallest~subset 1! and
largest ~subset 10! particles along with the KWW fits is
shown in Fig. 7. Note that we fit the functions@Fs

i (k,t
2to)/Fs

i (k,to)# (t.to) to the KWW form to quantify their
long-time behavior@9#. For the smallest particles, the valu
of the fitting parameters are found to bet1.242 andb1
.0.49, whereas for the largest particles they aret10.717
and b10.0.64. The enhanced stretching (b1,b10) at long
times is due to the greater heterogeneity probed by
smaller size particles than that by the larger size partic
during the time scale of decay of theirFs(k,t) @53#.

In order to determine the extent of the jump-type moti
more clearly we follow the trajectory of the individual pa
ticles. A close inspection of the simulated trajectory of t
smallest and largest particles reveals several interesting
tures. Figure 8~a! displays the projections onto anx-y plane
of the trajectory of a typical smallest size particle over a ti
interval Dt5500t, and Fig. 8~b! shows the paths followed
by a largest size particle over a time intervalDt52000t,
both atT50.67. At this temperature the dynamics is dom
nated by ‘‘hopping;’’ particles remain trapped in transie
cages created by the surrounding particles for quite so
time and then move significant distances~approximately one
interparticle distance! by making a jump to a new cage. Fo
the larger size particles, the jump motion begins to take pl
at relatively longer time scales@compare also Figs. 6~a! and
6~b!#. Thus, this clearly shows that in a system with partic
of all different sizes and masses, the hopping is the domin
diffusive mode for both the smaller and bigger size particl
It is the frequent hopping in the case of smaller size partic
that leads to the severe breakdown of the SE relation.

IV. CONCLUSIONS

In summary, we have presented the results of large s
computer simulations for a supercooled Lennard-Jones p
m

D

as
s

e
s

a-

e

t
e

e

s
nt
.
s

le
y-

disperse system with large variations in temperature a
fixed high pressure. Characteristic of a fragile glass forme
super-Arrhenius temperature dependence is observed fo
viscosity and self-diffusion coefficients of different size pa
ticles. Interestingly, we find that the critical glass transiti
temperature~from the VFT relation! for diffusion (To

Di) in-
creases with the size of the particles and the critical temp
ture for viscosity (To

h) is larger than that for diffusion. Fur
thermore, a marked deviation from the Stokesian diffusion
observed where the dependence on the size of the particl
highly nonlinear. At low temperatures, we find that hoppi
is the dominant mode for mass transport for both the sma
and largest size particles. However, the crossover from c
tinuous Brownian to hopping motion takes place at sho
time scales for the smaller size particles.

In the present system the sizes of all the particles
different. It would be interesting to see whether the jum
motion executed by the individual particles occurs ove
single energy barrier or takes place via a number of ‘‘int
mediate’’ inherent structures in the potential energy lan
scape. A recent molecular dynamics simulations on a LJ
nary mixture @18# showed that such a transition does n
correspond to transitions of the system over single ene
barriers. In addition, in a deeply supercooled liquid the jum
motions are associated with strong nearest-neighbor cor
tions, in which several neighboring atoms jump at success
close times@20,21,35#. It is to be noted that similar correla
tions have been observed here also. Recently, a comp
simulation study of a deeply supercooled binary mixture@22#
showed that the local anisotropy in the stress is respons
~at least partly! for the particle hopping. However, the mo
lecular origin of the jump motions observed here~a highly
disordered system! is not clear and we are presently pursui
this problem.
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