Pair dynamics in a glass-forming binary mixture: Simulations and theory
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We have carried out molecular dynamics simulations to understand the dynamitagofed pair of atoms
in a strongly nonideal glass-forming binary Lennard-Jones mixture. Here Btagnsmaller than atonA
(0gg=0.88054, Whereoaa is the molecular diameter of the particles and theAB interaction is stronger
than that given by Lorentz-Berthelot mixing rulesg=1.5e55, Whereeaa is the interaction energy strength
between thé particles. The generalized time-dependent pair distribution function is calculated separately for
the three pairsAA, BB, and AB). The three pairs are found to behave differently. The relative diffusion
constants are found to vary in the ord2g®>DA®>DR”, with DEB=2D4", showing the importance of the
hopping processK hops much more thaf). We introduce anon-Gaussian paramet@ug(t)] to monitor the
relative motion of a pair of atoms and evaluate it for all the three pairs with initial separations chosen to be at
the first peak of the corresponding partial radial distribution functions. At intermediate times, significant
deviation from the Gaussian behavior of the pair distribution functions is observed with different degrees for
the three pairs. A simple mean-figlilIF) model, proposed originally by HadRhys. Rev. A20, 2516(1979]
for one-component liquid, is applied to the case of a binary mixture and compared with the simulation results.
While the MF model successfully describes the dynamics ofAtAeand AB pairs,the agreement for the BB
pair is less satisfactoryThis is attributed to the large scale anharmonic motions oBtlparticles in a weak
effective potential. Dynamics of the next nearest neighbor pairs is also investigated.

I. INTRODUCTION sition frequency fluctuation time correlation functiotre-
lated to the expressions for the absorption and emission line
In dense fluids, there are many interaction-induced pheshapegsolely in terms of the two-body solute-solvent time-
nomena that can be interpreted in terms of the dynamics alependent conditional pair distribution function. Many other
the pairs of atom$1—3]. For example, nuclear overheusser applications of pair dynamics have been discussed by a num-
effect studies the relative motion of the atoms. In addition, arber of author46,8,10,11,1%
understanding of pair dynamics can be of great importance in The dynamics of a liquid below its freezing temperature,
the studies of rate of various diffusion controlled chemicali.e., in a supercooled state, is far more complex than what
reactions in dense fluids},5]. Both the theoretical analysis one would expect from an extrapolation of their high-
[1,6—11 and computer simulation studigs,8—10,12 have  temperature behavior. One of the most challenging problems
been carried out extensively to study the dynamics ofin the dynamics of a supercooled liquid is to understand
a pair of atoms in a one-component liquid. Surprisingly,quantitatively the origin of the nonexponential relaxation ex-
however, we are not aware of any explicit study on thehibited by various dynamical response functions and the ex-
dynamics of atomic pairs in binary mixtures, whose dynam-raordinary viscous slow down within a narrow temperature
ics generally shows strong nonmonotonic compositiorrange as one approaches the glass transition temperature
dependencgl3,14. from above[17,18. Many experimental studig)sl9,20 as
The study of the electronic spectroscopy of dilute chro-well as computer simulation®1-24 have been performed
mophores(solute$ in fluids (solvents is a useful tool for to shed light on the underlying microscopic mechanism in-
obtaining the information about the structure and dynamicwolved in supercooled liquids. These studies have revealed
of the solvents in the vicinity of the solute. In an attempt toevidence of the presence of distinct relaxing doméspstial
provide a microscopic foundation of the Kubo's stochasticheterogeneity which is thought to be responsible for the
theory of the line shape, Skinner and co-workiglS| have  nonexponential relaxations in deeply supercooled liquids.
recently developed a molecular theory for the absorption antlolecular motions in strongly supercooled liquid involve
emission line shapes and ultrafast solvation dynamics of &ighly collective movement of several moleculgz2,25—
dilute nonpolar solute in nonpolar fluids. Due to the motion28]. Furthermore, the correlated jump motions become the
of the solvent molecules relative to the chromophore, thelominant diffusive mod¢28,29. The observed heterogene-
chromophore’s transition frequency generally fluctuates irity of the relaxations in a deeply supercooled liquid is found
time. Thus, the nature of the spectral line shape provides @ be connected to the collective hopping of groups of par-
useful information about the details of the dynamics of theticles[30].
solvent relative to the solute. An approximate treatment of The occurrence of increasingly heterogeneous dynamics
the solvent dynamics allowed the theory to express the trarin supercooled liquids, however, has been investigated solely
in terms of single-particle dynamics. The study of the dy-
namics of pair of atoms that involve higher-ord&vo-body)
*Email address: bbagchi@sscu.iisc.ernet.in correlations thus can provide much broader insight into the



anomalous dynamics of supercooled liquids. In this work, we 5

have carried out molecular dynamics simulations in a a5l — 9 ||
strongly nonideal glass-forming binary mixtueommonly ' l"l - - %s
known as Kob-Andersen modg21]) to study the relaxation 4r n

mechanism in terms of pair dynamics. The main purpose of sl I

the present study is to explore the dynamics in a more col- ' I

lective sense by following the relative motion of three differ- 3t h

— Iy

ent types AA, BB, andAB) of nearest neighbor and next =, .|
nearest neighbor pair of atoms. These three pairs are found t "
behave differently. The simulation results show a clear sig- 2r
nature of hopping motion in all the three pairs. We have also
performed simple mean-fieldMF) model (as introduced by
Haan[6] for one component liquidcalculations to obtain the 1r
time-dependent conditional pair distribution functions.

The organization of the rest of the paper is as follows. In
Sec. Il, we describe the details of the simulation and the 0 . . . . . . . .
model system used in this study. The simulation results are 05 1 15 2 25 3 35 4 45
presented and discussed in Sec. lll. In Sec. IV, we have pre- r
sented a mean-field model calculations for pair dynamics ina g, 1. The radial distribution functiog(r) for the AA, AB,
binary mixture and the comparison is made with the simulazng BB correlations is plotted against distance. The solid line is
tion results. Finally, a few concluding remarks are presenteq, ,(r), the dashed line igg(r), and the dot-dashed line is
in Sec. V. ges(r). For details, see the text.
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Il. SYSTEM AND SIMULATION DETAILS out the course of the simulations, the barostat and the
A . . . system’s degrees of freedom are coupled to an independent
We have performed equilibrium isothermal-isobaric en-\jose-Hoover chain(NHC) [33] of thermostats, each of
semble N'P'.T) molecular dynamic¢MD) _3|mu|_at|ons qf a length five. The extended system equations of motion are
strongly nonideal well-known glass-forming binary mixture integrated using the reversible integrator metf@4] with a
in three dimensions. The binary system studied here contaiqﬁne step of 0.002. The higher-order multiple time step

a total of N=1000 particles consisting of two species of method has been em ' -
. . . -~ ployed in the NHC evolution operator
particles,A andB with N»=800 andNg=200 number ofA which leads to stable energy conservation for non-

and B particles, respectively. Thus, the mixture consists of, viloni :

o -~ ; X amiltonian dynamical systeni85]. The extended system
80% of A particles and .20% (.)B particles. The |nt.eract|on time scale parameter used in the calculations is taken to be
between any two particles is modeled by shifted l‘orce1 15 for both the barostat and thermostats

!.enpard-JoneéLJ) pair potentia[31], where the standard LJ The system is equilibrated for>210° time steps and the
is given by simulation is carried out for another A1@roduction steps,
2 ()
ri]- rij

during which the quantities of interest are calculated.
wherei andj denote two different particlesA(andB). The
potential parameters are as followsi,=1.0, oap=1.0,
EBB:O.S, O'BB:O.88, EAB:l.S, andO'AB: 0.8. The mass Of
the two species is samanp=mg=m). Note that in this

model system, théA\B interaction ,g) is much stronger splitting of the second peak of botixa(r) andgag(r) is a

g:ﬁgngftﬂ,;; tvr\]/E;t r?ss%?(Ct:a\gezu;?or%oﬁgéeipo?gitza?égerltshelo characteristic signature of dense random packing. The struc-
P tture of ggg(r) is interestingly different. It has an insignifi-

mixing rules. In order to lower the computational burden, the ) Co, . : )
potential has been truncated with a cutoff radius 0b3,5. cant first peak that originates from the weak interaction be

e . . . .. tween theB-type particles. The second peak @fg(r) is
?lljlc:]hzsq?::tﬁ]eisn'z;ﬂ'ss ;;udy {aer; gel\rlstTJrIQT riidﬂﬁietg gp'ts’higher than that of the first peak signifying that the predomi-

9 TAA P 3 nant BB correlation takes place at the second coordination
EAA/kB_' ant_j pressurd in units o_f €anl0pan. The come- ool The occurrence of the splitted second peak is clearly
sponding microscopic time scale is= \/maAZA/eAA. observed here also.

Simulations in theN-P-T ensemble are performed using | the present study, the central quantity of interest is the
the Nose-Hoover-Andersen methf2], where the external  time-dependent pair distribution functigd@DPDP) (first in-
reduced temperature is held fixed ®t=1.0. The external t/oduced by Oppenheim and Bloofd] in the theory of
reduced pressure has been kept fixedat=20.0. The re-  nyclear spin relaxation in fluidlsg,(r,,r;t) which is the
duced average densitp*(zpaiA) of the system corre- conditional probability that two particles are separated by
sponding to this thermodynamic state point is 1.32. Throughat timet if that pair were separated by at timet=0. Thus,

: D

LI_
Uij —46”

IIl. SIMULATION RESULTS AND DISCUSSION

The three partial radial distribution functiorga(r),
gag(r), andggg(r) obtained from simulations are plotted in
Fig. 1. Due to the strong mutual interaction, th8 correla-
tion is obviously the strongest among the three pairs. The
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r The behavior of the distribution functiog,,4(r,.r;t)

FIG. 2. The radial part of the time-dependent pair distributionfor the AB pair (where the interaction being the strongést
functiongs,,aq(ro,r;t) for the AA pair as a function of separation ~ plotted in Fig. 4 at four different times. The distribution
at four different times(a) t=20r, (b) t=50r, (c) t=100r, and(d) function shows the same qualitative behavior as we observed
t=300r. The initial separatiom, corresponds to the first maximum in the case oA A correlation(Fig. 2). When compared to the
of gaa(r). Note that the time unit=\mo3,/ ean=2.2 ps if argon ~ AA correlation function within the same time scale, the de-
units are assumed. cay of the correlation function is found to be faster despite

the much stron@AB interaction. This must be attributed to

the TDPDF measures the relative motion of a pair of atomsthe difference in size of the two types of particles. As Be
For an isotropic fluid, the TDPDF depends only on the mag-particles are smaller in size than tieparticles, they are
nitudes ofr, r,, andé, whered is the angle betweenand

r,. In computer simulations, one can readily evaluate sepa: 6 . . . :
rately the radial and orientational features of the relative mo- at (a) t=107
tion. In the following two sections, we present, respectively, ol
the results obtained for the time evolution of the radial part T
O2rad(Fo.r;t) and the angular parg,ng(ro.6;t) of the % 1 2 3 4 5 6 7
TDPDF for the three different pairA@, BB, andAB). 4 . - - - - -
(b) t =501
A. Radial part of the TDPDF, g;54(fo,r;t) f:: 2r

In Fig. 2 we plot theg,,4(r,,r;t) for the AA pair with :0 00 I ” > 3 . e p 7
the initial separatiom, corresponding to the first maximum ~ : : : : :
of the partial radial distribution functiogaa(r) (i_.e., the pa_ir g_ 2r (c) t=100t |
which is the nearest neighbaat four different times. While 1l }
at short time[Fig. 2@)], the distribution function has a o 'I_l_‘¥
single-peak structure as expected, it reaches slowly to its % ] > 3 7 5 o 2
asymptotic limit with an increase in time where additional : . : :
peaks develop at larger relative separatisee Figs. &)— 0.6r (d) t = 3001 |
2(d)]. The microscopic details of the underlying diffusive 0.4¢ 1
processby which it approaches to the asymptotic structure 02y r .L__r,__.,L
can be obtained by following the trajectory of the relative % ] 5 3 p 5 6 7
motions. Figure 3 displays the projections onto xhg plane
of the trajectory of a typical A pair for the nearest neighbor r
A atoms over a time interval aft=500r. The motion of the FIG. 4. The radial part of the time-dependent pair distribution

AA pair is shown to be relatively localized for many time functiong,,,4(r,.r;t) for the AB pair as a function of separation
steps and then the pair move significant distances only dukt four different times(a) t=20r, (b) t=50r, (c) t=100r, and(d)
ing quick, rare cage rearrangements. This is a clear evidenge-300r. The initial separation, corresponds to the first maximum
that the jump motions are the dominant diffusive mode, byof g,g(r). The time unit7=2.2 ps for the argon units. Note that
which the separation between pairs of atoms evolves in timey,.q(r,,r;t) is scaled by I3 ,. For further details, see the text.



more mobile. In addition, th&B interaction is such thaaB 2
repulsion is felt at relatively small distances zg=0.8 in-

stead of 0.94 according to the Lorentz-Berthelot rul€on- 1
sequently, thé particles are more prone to make jumps than 1r
the A particles(as observed earlier by Kob and Andersen

[21]) 051

The nature of the relative motion of a typicaB pair is > of
illustrated in Fig. %a), which displays the trajectory of a
typical AB pair (in the x-y plang that was initially at the -0.5¢
nearest neighbdfirst peak ofgag(r)]. The elapsed time is
At=500r. The dynamics of the relative motion is again

dominated by hopping, th&B pair remains trapped at their -15¢

initial separation over hundred time steps, before jumping to

neighboring sites where they again become localized. Fur =2, _, o ] 5 3 7
ther, the jump motion is more frequent for tAd pair than X

that for theAA pair. The individual trajectory of th& andB

particles of the samAB pair within the same time window 15 .

is shown in Figs. B) and 5c), respectively. While bot (b)

andB particles hopB particles move faster and the effect of 1t

caging is weake(than theA particles due to its smaller size.

In this time window, the net displacement of tAd pair in 05l

the x-y plane is found to be quite large and mainly deter-

mined by the displacement of th@ particle as shown in
Fig. 6. > o
In Fig. 7 we showg,,4q4(r, ,r;t) for the BB pair [initially
-05

separated at the first peak @§g(r)] at four different times.
Due to a weak interaction amorig particles, one expects
that theB atoms in theBB pair will fast lose the memory of -7
their initial separation. This is indeed the case for Big

pair shown in Fig. 7. Once again the jump dynamics is -15 : . : - : . :
clearly seen in the trajectory of a typidaB pair projected in -1 05 0 05 )1( 15 2 25 8
the x-y plane(Fig. 8.

We now consider the case where the initial separation of ¢
the pairs corresponds to the second peak of their respectiv
partial radial distribution functions in Fig. d.e., pairs which 1l
are next nearest neighbor3he distribution function for the
AA pair is plotted in Fig. 9. It shows a qualitatively different 05}
behavior because the peak at the nearest neighbor separati
develops in a relatively short time. Here also the motions of or
the pairs are found to be mostly discontinuous in nature.>
Thus, the motion from second to first nearest neighbor oc- ~0-51
curs mostly by hopping. In Fig. 10 we plot the similar dis-
tribution function for theAB pair. Since theAB interaction is
the strongest, the height of the first peak grows faster thar
that for theAA pair[compare Figs. @) and 1Qb)]. Next, in
Fig. 11 we plot the distribution function for thBB pair.
Contrary to theAA andAB pairs, theBB pair tends to retain -3
its initial separation for a relatively long time compared to
the nearest neighbor pair. This can be understood _frorr_1 the o5 5 (a) Projections intox-y plane of the trajectory of a
predominantBB correlations at the second coordination typical nearest neighbokB pair over a time interval=500r. (b)
shell. Trajectory of theA particle of the sam@AB pair as in(a), within the

same time window(c) Trajectory of theB particle of the samé&B
B. Angular part of the TDPDF, g;ang(fo,80;t) pair. The time unitr=2.2 ps for argon units.

In this section, we present tlengular distribution func-
tion goang(ro,0:t) for the three different pairsAA, BB, In Fig. 12a we show the angular distribution
andAB). The initial separatiom, for the three pairs corre- g, an¢(ro,6:t) for the AA pair. We calculate the angular dis-
sponds to the first peak of the respective partial radial distritribution with respect to the initial separation vectgrand
bution functions(Fig. 1). irrespective of the value of the separation at timerhe
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FIG. 6. The net displacement of akB pair into x-y plane
(ALY) as shown in Fig. &), in the same time interval. Note that
the displacement is quite large.

FIG. 8. Projections intx-y plane of the trajectory of a typical
nearest neighbdBB pair over a time interval =500r.

This can be understood in terms of the effective potential that

distribution which is as function att=0 spreads more and Is discussed later.

more with time and eventually it reaches to a uniform distri- ) o ) )

bution with zero slope. When we compare it to the distribu- C. Relative diffusion: Mean-square relative displacement

tion corresponding to thAB pair as shown in Fig. 1B), we (MSRD)

find that the approach to the uniform value is faster in case of In this section, we investigate the time dependence of the
the AB pair. This can be understood again in terms of themean-square relative displaceméhti,—(t)—rij(0)|2>ro, the
mobility of the B particles, which is more compared to tRe  simpjest physical quantity associated with the pair motion,
particles. In Fig. 1&£) we show how the distribution for the \yhere the index andj denoteA and/orB particles and the
BB pair changes with time. The relaxation is seen to besypscriptr, indicates that the ensemble averaging is re-
relatively slower at short times as compared to A& pair.  stricted to the pairs whose initial separation corresponds to
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FIG. 7. The radial part of the time-dependent pair distribution FIG. 9. The radial part of the pair distribution function
functiongs,q4(r, ,r;t) for the BB pair as a function of separation  g,,,4(r, . r;t) for the AA pair at four different times(a) t=4r, (b)
at four different times(a) t=20r, (b) t=50r, (c) t=100r, and(d) t=20r, (c) t=100r, and(d) t=300r. Here the initial separation,
t=300r. The initial separatiom, corresponds to the first peak of is chosen at the second peak@f(r). The distribution function
gge(r). Note thatg,,.q(ro,r;t) is scaled by W3,. Ozrad(lo.;t) is scaled by 13 .
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FIG. 10. The radial part of the pair distribution function
O2rad(ro.r;t) for the AB pair at four different times(a) t=4r, (b)
t=20r, (c) t=100r, and(d) t=300r. Here the initial separation,
corresponds to the second pealggk(r). The distribution function
O2rad(ro.r;t) is scaled by 13, .

ro [9]. First, we consider the case where the initial separa-
tions for the three pairs correspond to the first peak of the ©)

respective partial radial distribution functiofsee Fig. 1 In

other words, we consider first those pairs that were initially

nearest neighbor pairs.
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FIG. 11. The radial part of the pair distribution function
O2rad(ro.1;t) for the BB pair at four different times(a) t=4r, (b)
t=20r, (c) t=100r, and(d) t=300r. Here, the initial separation,
is chosen at the second peakgyg(r). The distribution function
O2sad(ro.T;t) is scaled by 13 4.
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FIG. 12. (a) The angular part of the time-dependent pair distri-
bution functiongyang(re,0;t) for the AA pair at four different
times.(b) gpang(ro.6;t) for the AB pair. (C) gpang(ro.6;t) for the
BB pair. In all the three cases, we consider only those pairs which
were initially separated at the nearest neighbor distance. For further
details, see the text.
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FIG. 13. Time dependence of the MSRD for tAd, AB, and 10 AB a;r (bl)
BB pairs. The initial separation, of the three pairs corresponds to , P
the first peak of the respective partial radial distribution functions. 107 ¢
The solid line represents the result for thé pair, the dashed line
AB pair, and the dotted line for thBB pair. Note that MSRD is 10' b
scaled byo2,. For the detailed discussion, see the text.
Q10° ¢
Figure 13 shows the result for the time dependence of then:
mean-square relative displacemeMSRD) of the three =107
pairs. At long times the MSRD varies linearly with time.
However, the evolution of MSRD with time differs for dif- 10°F
ferent pairs. As expected, the smaller size of Bhparticles
and the wealB B interaction lead to a faster approach of the 10},
diffusive limit of BB pair separation. The time scale needed
to reach the diffusive limit is shorter for theB pair than that 107" .
for the AA pair. 10 10
From the slope of the curves in the linear region, one can
obtain the values of the relative diffusion constabtsof the 10°
different pairs. The values thus obtained are the following
reduced units DR"=0.0032, DR?=0.0048, and DE® 10° |
=0.0064. One should note that even though the difference in
size of theA andB particles is smallDE® is almost twice of 10'
DR™. At sufficiently long time, one would certainly expect
the diffusion constant for the relative motion of a pair should Q10
be the sum of the individual diffusion constants of the two ¢ _
atoms obtained from the slope of the corresponding mean-=1°"f
square displacements at long time. Indeed, we find there is a Y
good agreement. 10°¢
An investigation of the behavior of MSRD is also per- .
formed for atomic pairs which were initially next nearest 10 p
neighbors. When compared to the nearest neighbor pairs .
(Fig. 13, we find that the slope of the corresponding straight 1010_2 1(;_1 e o 162 163 ot

lines are almost identical, although in the casé&éfandAB
pairs, the diffusive limits are reached at shorter times. This

t

has been shown in Fig. 14. One should remember that the FIG. 14. (a) Comparison of the MSRD for th&A pair with
AA andAB correlations are highest at the first coordinationdifferent initial separations. The solid line represents the nearest
shell, whereas the higheBtB correlations occur at the sec- neighborAA pair and the dashed line represents the next nearest
ond coordination shellsee Fig. 1 Thus, at short time the neighborAA pair.(b) Same as irta), but for theAB pair. (c) For the

increase in slope for thaA and AB pairs can be explained BB pair

. In all the three cases MSRD is scaleddgy, .
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FIG. 15. The behavior of the non-Gaussian paramejér) as a FIG. 16. The behavior of the non-Gaussian parameﬁe{t) as
function of time for theA andB particles. The solid line is for tha a function of time for theAA, AB, andBB pairs, initially separated
particles and the dashed line for the B particles. The unit of time isat the nearest neighbor distance. The solid line represents the result
T= \/ma'AZA/eAAZZ.Z ps if argon units are assumed. for the AA pair, the dashed line for th&B pair, and the dot-dashed

line for the BB pair. Here, time is scaled by=2.2 ps for argon

in terms of the decrease in correlations at the second coordinits-

nation shell.
behavior of the pair distribution functiog,(r,,r;t). It can
D. The non-Gaussian parameter for the relative motion be defined as
In a highly supercooled liquid, the single-particle dis- 3(|rii (1) —ri(0)]%)
placement distribution functio®(r,t) (known as the self- Pij ) — Y . Y (i,j=A and/orB)
part of the van Hove correlation functiphas an extended 2 5(Irij(1)—r;;(0)|?)? ’ ’
tail and is, in general, non-Gaussian. The deviation from the ° (3)

Gaussian behavior is often thought to reflect the presence of
the transient inhomogeneities and can be characterized kwyhere(|rij(t)—rij(o)|2>ro and<|rij(t)_rij(0)|4>ro are the
the non-Gaussian parametej(t) [22] mean square relative displacement and mean quartic relative

3(Ar4(1)) displacement of thej pair. One should note thatg’(t) is
= 5y b 2 |dent|cgl to zero for a Gaussian pair dlstrFl)l_J_utlon funct|.on.

In Fig. 16 we show the behavior of the," as a function

) 4 of time for the three different pairs. We again consider only
where(Ar=(t)) and(Ar*(t)) are the second and fourth mo- those pairs that were initially nearest neighbors. The behav-
ments of G(r,t), respectively. At intermediate time scale, jor observed for the three pairs is markedly different. The
ay(t) increases with time and the maximumaj(t) occurs  dynamics explored by thBB pair is seen to be less hetero-
around the end of th@ relaxation region. Only on the time geneous than th&A and AB pairs. Due to the smaller size
scale of diffusion or ther relaxation,a(t) starts to decrease of the B particles and the insignificant correlations among
and finally at a very long time limit, it reaches to zeta(t)  them, theB particles reach the average distribution faster,
calculated for thed andB partiC|eS are shown in F|g 15. The although it exp'ores |arger heterogeneity_ TheA pair
maximum ina,(t) is seen to shift slightly towards left and reaches the diffusive limit at a longer time scale than that for
also the he|ght of the maximum is hlghel’ for th)artiCleS. the AB pair’ the AB pair exp|ores more heterogeneous dy_

This is a clear evidence that ti particles probe a much npamics as is clearly evident from the difference in the maxi-
more heterogeneous environment than Ahparticles. This  myum value ofab(t).

difference can be explained in terms of the smaller concen-
tration of B particles, different sizes of th& andB particles
and also from the fact that the interaction between Bhe
particles is much weaker than that between Ahparticles For the motion of an atomic pair in a pure fluid, Hd#&h
[21,22. introduced a simple mean-field level equation of motion for
Motivated by these findings for the single-particle dis-the time-dependent pair distribution functign. This equa-
placement distribution function, we introduce a new non-tion was shown to give a quantitatively correct description
Gaussian parameter for the pair dynamics, denotedflfy).  both at short and long time5]. This treatment is mean
ag(t) can be a measure of the deviation from the Gaussiafield in the sense that the two atoms were assumed to diffuse

azt

IV. THEORETICAL ANALYSIS



in an effective-force field of the surrounding particles given
by the gradient of the potential of the mean force. The equa- 4 (@) t=101 |
tion for g, was represented by a Smoluchowski equation and ol
the correct short time description g§ was obtained only by

introducing anonlinear time that is related to the mean- 0

squared distancéMSD) moved by asingle atom In other 0 1 2 3 A,' >
words, anad hocintroduction of a time-dependent diffusion = 3 (b) t=5071 |
constantD(t) in the equation of motion gives the correct L“o 2t 1
description at short times. =
In the view of its success for one-component liquid, we & . . .
have performed similar mean-field model calculations for the o O 1 2 3 4 5
binary mixture considered here. The generalization to binary © ' ' ' '
mixture gives the following Smoluchowski equation for the 2r (c) t = 1007]
different pairs: i
gy (ry,r;t N N 0 : ; -
%ﬂ-[VQ'2'<ro,r;t>+ﬂgg<ro,r;t>vwij<r>], 0 1 P 4 5

4

@ FIG. 17. The simulated distributiog,,q(r,,r;t) for the AA
where indices andj denoteA and/orB particles.8 is the  pair is compared with the mean-field model calculations at three
inverse of Boltzmann’s constakg times the absolute tem- different times:(a) t=10r, (b) t=507, and(c) t=100r. The initial
peratureT. Wj;(r) is the potential of mean forcgeffective ~ separationr, corresponds to the first maximum gfa(r). The

potentia) betweeni andj particles given by histogram represents the simulation results and the dashed line rep-
resents the results of the model calculations. Note that
Wi;(r)=—kgTIng;;(r), (5) O2rad(Fo.r;t) is scaled by 13, and the time unitr=2.2 ps if

argon units are assumed.

whereg;;(r) is the partial radial distribution function. In Eq.
(4), the “time” 7;; is defined by square displacement of th& and B particles (required as
input) are obtained from the present simulation.
1 ) Figures 17 and 18 compare model calculations with the
Tij :g<|rij(t)_rii(0)| I simulated distribution functions for th&A and AB nearest
neighbor pair. The time evolution of the distributions is de-
scribed well by the simple mean-field model. The under-

1
%g[<|fi(t)—ri(0)|2>+<|rj(t)—rj(0)|2>]. (6)

8 T T
Where(|rij(t)—ri]-(0)|2>ro is the MSRD of “ij”’ pair. Note 6f (a t=1071 1
that an approximation is made in the above equation by ne- 4r ]
glecting the cross correlation between the two particies ( 2f
andj) and the MSRD is replaced by the sum of individual 0 L .
OO 0 1 2 3 4 5
particle’s MSD. 4 ,

Now the integration of thegizj(ro,r;t) over the solid <+ ' ' (b) ' t = 501

anglesﬁ0 and() corresponding to the initial and final posi- L“o 2r
tions, respectively, gives the radial part of the full distribu- t:o
tion function[the zeroth-angular moment gf (r,,r;t)] ) ;
o O 1 2 3 4 5
1 o ' ' ' '
gg,rad(ro,r;t)=ﬂf dQ,dQgs(ry,r;t). (7) 2r (©) t=1001]
1l |
Note that the normalization of this function is 0 ! ,
0 1 2 3 4 5

r

FIG. 18. The simulated distributiog,,q(r,.r;t) for the AB
. . i _ . pair is compared with the mean-field model calculations at three
The equation of motion fogy,,4(r,,r;t) [derived from Eq.  gifferent times:(a) t=10r, (b) t="50r, and(c) t=100r. The initial
(4)] is solved numericallyby Crank-Nicolson methgdfor  separationr,, corresponds to the first maximum dfyg(r). The
the different pairs and the results obtained from this modehistogram represents the simulation results and the dashed line rep-
calculations are compared with the simulation results. Theesents the results of the model calculations. The distribution func-
partial radial distribution functiong);;(r) and the mean- tion gy.q(r,.r;t) is scaled by ki, .

fo drr?gy aq(ro,rit)=1. (8
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FIG. 19. The potential of mean ford#(r) for the AA, AB, and
BB pairs in the Kob-Andersen model at the reduced presBdre
=20 and the reduced temperatuFé=1.0. The solid line repre-
sents for theAA pair, the dashed line for th&B pair, and the
dot-dashed line for th8B pair. Note thatW(r) is scaled byepp -

lying effective-potential energy surfaces are plotted in Fig.

t=101

FIG. 21. The simulated distributiog, ,4(r,.r;t) for the BB
pair is compared with the mean-field model calculations at two
different times:(a) t=107 and(b) t=1007. Here the initial sepa-
rationr, corresponds to the second peakggg(r). The histogram
again represents the simulation results and the dashed line repre-
sents the results of the model calculations. Note ¢hagq(r, .r;t)
is scaled by 1#3,. For further details, see the text.

19. Thus, relative diffusion in these cases can be consideratbmber of B particles present in the system is much less
as overdamped motion in an effective potential, which take$20%) and the interparticle interaction is weak, the effective
place mainly via hoppingas shown in Figs. 3 and) Shat
governs the time evolution of the distributions for tA&

andAB pairs.

potential for aB atom interacting with a nearest neighbor
atom is unfavorablésee Fig. 19 Consequently, the nearest
neighborBB pair executes highly anharmonic motion. Thus,

Unfortunately, the good agreement observed above behe fluctuations about the mean-force field experienced by
tween simulation and theory for theA and AB pairs does

not extend to theBB pair. This is shown in Fig. 20. As the

1.5

t=1071 |

FIG. 20. The simulated distributiog,,q4(r,,r;t) for the BB - ] '
pair is compared with the mean-field model calculations at thredOW is to see whether the frequent jump motions of Ehe
different times:(a) t=10r, (b) t=507r, and(c) t=100r. The initial
separatiom, corresponds to the first peak @g(r). The histogram
represents the simulation results and the dashed line represents theWe have performed an approximate calculation to get an
results of the model calculations. The distribution function estimate of the transition rate between the first two adjacent
Ozrad(ro.T;t) is scaled by 13-

the BB pair are large and important. These fluctuations are
neglected here, as in other mean-field level description.
The extension of the calculations to the case of next near-
est neighbor pairs has also been carried out and compared
with the simulated distributions. It should be noted that as
compared to the nearest neighbor pairs,AlfeandAB pairs
now execute motions in a relatively weak, shallow potential,
whereas the motions of thBB pair takes place in a rela-
tively strong, bound potential wellsee Fig. 19 Thus, for
the BB pair, one expects a better agreement with the simu-
lated distributions as compared to the earlier cassarest
neighborBB pairg. Indeed, the agreement is better for the
BB pair as shown in Fig. 21compare with Fig. 20 We
have found that the MF model provides a good description of
the dynamics of thedA and AB pairs, although the agree-
ment is not as satisfactory as for the nearest neighbor pairs.
Thus, it is evident that the MF description for the time-
dependent pair distribution functions is reasonably good for
the AA andAB pairs. Simulation results have shown that the
relative diffusion of anAB pair is higher than that for aAA
pair. We noted that this is due to the more frequent hopping
of the B particles than the\ particles. Our main objective

particles, as predicted by the simulations, can be explained in

terms of the MF model described above.

minima in the effective potential energy surface of thA



andAB pairs(see Fig. 18 In other words, the rate of cross- pairs (AA, BB, andAB) behave differently. The analysis of
ing from the deep minima located at the nearest neighbothe trajectory shows a clear evidence of the jump motions for
pairs to the adjacent minim@orresponds to the next nearest all the three pairs.

neighborg is calculated. As the motion of a pair in the effec-  The relative diffusion constant of thB pair (D) is

tive potential is treated by a Smoluchowski equation, we us@lmost twice the value for thAA pair (DQA)_ This clearly

the corresponding rate expression in the overdamped limit tguggests the importance of the jump dynamics forBpar-
calculate the escape rate. Thus, we have an expression for theles and indeed, we find that the motion of Biearticles is

escape rate given Hy6] mostly discontinuous in nature, while the particles show
_ AW occasional hopping. The dynamic inhomogeneity present in a
ke= M‘exp{ _ _) (9) supercooled liquid is generally characterized by the well-

2m{ kgT)’ known non-Gaussian parametes(t), which describe the

deviations from the Gaussian behavior in the motion of a
single atom. In this paper, we have generalized this concept
and introduced a non-Gaussian parameter for the pair dy-
namics| ag(t)] to measure the deviations from the Gaussian
behavior in the relative motion of the atoms. At intermediate
times, all the three pair distribution functions for the three
Ppairs show significant deviations from the Gaussian behavior
with different degrees.

where AW=W(T 1,20 — W(r min) is the Arrhenius activation
energy andonin, @mayare the frequency at the mininng;;,,
and maximar .4 in the effective potentiaW(r), respec-
tively. The diffusion coefficienD is related to the frictiory
by D=kgT/{.

Thus, to calculate the transition rate we need to know th
values of the frequencymin, ®max, and the barrier height
AW, which are different for théAA and AB pairs. For the It is found that for the nearest neighbdA andAB pairs,

AA pair, these parameters are found to dif;,(= @min7)  \hich are confined to a strong effective potential and merely
=16.5, w};5=6.5, andAWaa=2.25%gT, whereas for the makes anharmonic motions in it, the dynamics can be treated
AB pair they are wp,=17.8, wp,=7.4, and AW,g  at the mean-field level. However, as the motion of a nearest
=2.4%gT. The relative diffusion of the two pairs i@ re-  neighborBB pair is highly anharmonic, one must include the
duced units D4*=0.0032 and>4P=0.0048. Using all these effects of the fluctuations about the mean-force field in order
parameters, the escape rate calculated forAeand AB  to get a correct description of the dynamics.

pairs is (in reduced units k§"=5.9x10"% and k5®=8.8 While the mean-field treatment provides reasonably accu-
X103, respectively(in terms of timer, which is equal to  rate description of pair dynamidat least forAA and AB
2.2 ps for argon unijs pair9, it must be supplemented with the time-dependent dif-

Even though the barrier heightW,z>AW,,, the tran-  fusion coefficienD(t). This is a limitation of the mean-field
sition rate for theAB pair is larger than that for thA@A pair.  approach because at present we do not have any theoretical
Thus, the jump motions are much more frequent forAlllz ~ means to calculatB (t) from first principles. The mode cou-
pair due to the large diffusion of tH& particles in the poten- pling theory does not work because it neglects hopping

tial energy surfacéwhich mainly occurs via hopping which is the dominant mode of mass transport in deeply
supercooled liquids, even when the system is quite far from
V. CONCLUSIONS the glass transition. As we discussed recently, hopping can be

coupled to anisotropy in the local stress tenf®6]. The

Let us first summarize the main results of this study. Wegalculation of the latter is also nontrivial. Work in this direc-
have presented the molecular dynamics simulation results fQfon is under progress.

the time-dependent pair distribution functions in a strongly
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