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We have carried out molecular dynamics simulations to understand the dynamics of atagged pair of atoms
in a strongly nonideal glass-forming binary Lennard-Jones mixture. Here atomB is smaller than atomA
(sBB50.88sAA , wheresAA is the molecular diameter of theA particles! and theAB interaction is stronger
than that given by Lorentz-Berthelot mixing rule (eAB51.5eAA , whereeAA is the interaction energy strength
between theA particles!. The generalized time-dependent pair distribution function is calculated separately for
the three pairs (AA, BB, and AB). The three pairs are found to behave differently. The relative diffusion
constants are found to vary in the orderDR

BB.DR
AB.DR

AA , with DR
BB.2DR

AA , showing the importance of the
hopping process (B hops much more thanA). We introduce anon-Gaussian parameter@a2

P(t)# to monitor the
relative motion of a pair of atoms and evaluate it for all the three pairs with initial separations chosen to be at
the first peak of the corresponding partial radial distribution functions. At intermediate times, significant
deviation from the Gaussian behavior of the pair distribution functions is observed with different degrees for
the three pairs. A simple mean-field~MF! model, proposed originally by Haan@Phys. Rev. A20, 2516~1979!#
for one-component liquid, is applied to the case of a binary mixture and compared with the simulation results.
While the MF model successfully describes the dynamics of theAA andAB pairs,the agreement for the BB
pair is less satisfactory. This is attributed to the large scale anharmonic motions of theB particles in a weak
effective potential. Dynamics of the next nearest neighbor pairs is also investigated.
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I. INTRODUCTION

In dense fluids, there are many interaction-induced p
nomena that can be interpreted in terms of the dynamic
the pairs of atoms@1–3#. For example, nuclear overheuss
effect studies the relative motion of the atoms. In addition,
understanding of pair dynamics can be of great importanc
the studies of rate of various diffusion controlled chemi
reactions in dense fluids@4,5#. Both the theoretical analysi
@1,6–11# and computer simulation studies@6,8–10,12# have
been carried out extensively to study the dynamics
a pair of atoms in a one-component liquid. Surprising
however, we are not aware of any explicit study on t
dynamics of atomic pairs in binary mixtures, whose dyna
ics generally shows strong nonmonotonic composit
dependence@13,14#.

The study of the electronic spectroscopy of dilute ch
mophores~solutes! in fluids ~solvents! is a useful tool for
obtaining the information about the structure and dynam
of the solvents in the vicinity of the solute. In an attempt
provide a microscopic foundation of the Kubo’s stochas
theory of the line shape, Skinner and co-workers@15# have
recently developed a molecular theory for the absorption
emission line shapes and ultrafast solvation dynamics o
dilute nonpolar solute in nonpolar fluids. Due to the moti
of the solvent molecules relative to the chromophore,
chromophore’s transition frequency generally fluctuates
time. Thus, the nature of the spectral line shape provide
useful information about the details of the dynamics of
solvent relative to the solute. An approximate treatment
the solvent dynamics allowed the theory to express the t
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sition frequency fluctuation time correlation functions~re-
lated to the expressions for the absorption and emission
shapes! solely in terms of the two-body solute-solvent tim
dependent conditional pair distribution function. Many oth
applications of pair dynamics have been discussed by a n
ber of authors@6,8,10,11,16#.

The dynamics of a liquid below its freezing temperatu
i.e., in a supercooled state, is far more complex than w
one would expect from an extrapolation of their hig
temperature behavior. One of the most challenging proble
in the dynamics of a supercooled liquid is to understa
quantitatively the origin of the nonexponential relaxation e
hibited by various dynamical response functions and the
traordinary viscous slow down within a narrow temperatu
range as one approaches the glass transition temper
from above@17,18#. Many experimental studies@19,20# as
well as computer simulations@21–24# have been performed
to shed light on the underlying microscopic mechanism
volved in supercooled liquids. These studies have revea
evidence of the presence of distinct relaxing domains~spatial
heterogeneity!, which is thought to be responsible for th
nonexponential relaxations in deeply supercooled liqui
Molecular motions in strongly supercooled liquid involv
highly collective movement of several molecules@22,25–
28#. Furthermore, the correlated jump motions become
dominant diffusive mode@28,29#. The observed heterogene
ity of the relaxations in a deeply supercooled liquid is fou
to be connected to the collective hopping of groups of p
ticles @30#.

The occurrence of increasingly heterogeneous dynam
in supercooled liquids, however, has been investigated so
in terms of single-particle dynamics. The study of the d
namics of pair of atoms that involve higher-order~two-body!
correlations thus can provide much broader insight into
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anomalous dynamics of supercooled liquids. In this work,
have carried out molecular dynamics simulations in
strongly nonideal glass-forming binary mixture~commonly
known as Kob-Andersen model@21#! to study the relaxation
mechanism in terms of pair dynamics. The main purpose
the present study is to explore the dynamics in a more
lective sense by following the relative motion of three diffe
ent types (AA, BB, andAB) of nearest neighbor and nex
nearest neighbor pair of atoms. These three pairs are foun
behave differently. The simulation results show a clear s
nature of hopping motion in all the three pairs. We have a
performed simple mean-field~MF! model ~as introduced by
Haan@6# for one component liquid! calculations to obtain the
time-dependent conditional pair distribution functions.

The organization of the rest of the paper is as follows.
Sec. II, we describe the details of the simulation and
model system used in this study. The simulation results
presented and discussed in Sec. III. In Sec. IV, we have
sented a mean-field model calculations for pair dynamics
binary mixture and the comparison is made with the simu
tion results. Finally, a few concluding remarks are presen
in Sec. V.

II. SYSTEM AND SIMULATION DETAILS

We have performed equilibrium isothermal-isobaric e
semble (N-P-T) molecular dynamics~MD! simulations of a
strongly nonideal well-known glass-forming binary mixtu
in three dimensions. The binary system studied here cont
a total of N51000 particles consisting of two species
particles,A andB with NA5800 andNB5200 number ofA
and B particles, respectively. Thus, the mixture consists
80% of A particles and 20% ofB particles. The interaction
between any two particles is modeled by shifted fo
Lennard-Jones~LJ! pair potential@31#, where the standard L
is given by

ui j
LJ54e i j F S s i j

r i j
D 12

2 S s i j

r i j
D 6G , ~1!

wherei and j denote two different particles (A andB). The
potential parameters are as follows:eAA51.0, sAA51.0,
eBB50.5, sBB50.88, eAB51.5, andsAB50.8. The mass of
the two species is same (mA5mB5m). Note that in this
model system, theAB interaction (eAB) is much stronger
than both of their respective pure counterparts andsAB is
smaller than what is expected from the Lorentz-Berthe
mixing rules. In order to lower the computational burden,
potential has been truncated with a cutoff radius of 2.5sAA .
All the quantities in this study are given in reduced uni
such as length in units ofsAA , temperatureT in units of
eAA /kB , and pressureP in units of eAA /sAA

3 . The corre-
sponding microscopic time scale ist5AmsAA

2 /eAA.
Simulations in theN-P-T ensemble are performed usin

the Nose-Hoover-Andersen method@32#, where the externa
reduced temperature is held fixed atT* 51.0. The external
reduced pressure has been kept fixed atP* 520.0. The re-
duced average densityr̄* (5 r̄sAA

3 ) of the system corre-
sponding to this thermodynamic state point is 1.32. Throu
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out the course of the simulations, the barostat and
system’s degrees of freedom are coupled to an indepen
Nose-Hoover chain~NHC! @33# of thermostats, each o
length five. The extended system equations of motion
integrated using the reversible integrator method@34# with a
time step of 0.002. The higher-order multiple time st
method has been employed in the NHC evolution opera
which leads to stable energy conservation for no
Hamiltonian dynamical systems@35#. The extended system
time scale parameter used in the calculations is taken to
1.15 for both the barostat and thermostats.

The system is equilibrated for 23106 time steps and the
simulation is carried out for another 107 production steps,
during which the quantities of interest are calculated.

III. SIMULATION RESULTS AND DISCUSSION

The three partial radial distribution functionsgAA(r ),
gAB(r ), andgBB(r ) obtained from simulations are plotted i
Fig. 1. Due to the strong mutual interaction, theAB correla-
tion is obviously the strongest among the three pairs. T
splitting of the second peak of bothgAA(r ) andgAB(r ) is a
characteristic signature of dense random packing. The st
ture of gBB(r ) is interestingly different. It has an insignifi
cant first peak that originates from the weak interaction
tween theB-type particles. The second peak ofgBB(r ) is
higher than that of the first peak signifying that the predom
nant BB correlation takes place at the second coordinat
shell. The occurrence of the splitted second peak is cle
observed here also.

In the present study, the central quantity of interest is
time-dependent pair distribution function~TDPDF! ~first in-
troduced by Oppenheim and Bloom@1# in the theory of
nuclear spin relaxation in fluids!, g2(ro ,r ;t) which is the
conditional probability that two particles are separated br
at timet if that pair were separated byro at timet50. Thus,

FIG. 1. The radial distribution functiong(r ) for the AA, AB,
and BB correlations is plotted against distance. The solid line
gAA(r ), the dashed line isgAB(r ), and the dot-dashed line i
gBB(r ). For details, see the text.
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the TDPDF measures the relative motion of a pair of ato
For an isotropic fluid, the TDPDF depends only on the m
nitudes ofr , ro , andu, whereu is the angle betweenr and
ro . In computer simulations, one can readily evaluate se
rately the radial and orientational features of the relative m
tion. In the following two sections, we present, respective
the results obtained for the time evolution of the radial p
g2,rad(r o ,r ;t) and the angular partg2,ang(r o ,u;t) of the
TDPDF for the three different pairs (AA, BB, andAB).

A. Radial part of the TDPDF, g2,rad„r o ,r ; t…

In Fig. 2 we plot theg2,rad(r o ,r ;t) for the AA pair with
the initial separationr o corresponding to the first maximum
of the partial radial distribution functiongAA(r ) ~i.e., the pair
which is the nearest neighbor! at four different times. While
at short time @Fig. 2~a!#, the distribution function has a
single-peak structure as expected, it reaches slowly to
asymptotic limit with an increase in time where addition
peaks develop at larger relative separations@see Figs. 2~b!–
2~d!#. The microscopic details of the underlying diffusiv
process~by which it approaches to the asymptotic structu!
can be obtained by following the trajectory of the relati
motions. Figure 3 displays the projections onto thex-y plane
of the trajectory of a typicalAA pair for the nearest neighbo
A atoms over a time interval ofDt5500t. The motion of the
AA pair is shown to be relatively localized for many tim
steps and then the pair move significant distances only
ing quick, rare cage rearrangements. This is a clear evide
that the jump motions are the dominant diffusive mode,
which the separation between pairs of atoms evolves in ti

FIG. 2. The radial part of the time-dependent pair distribut
functiong2,rad(r o ,r ;t) for theAA pair as a function of separationr
at four different times:~a! t520t, ~b! t550t, ~c! t5100t, and~d!
t5300t. The initial separationr o corresponds to the first maximum
of gAA(r ). Note that the time unitt5AmsAA

2 /eAA52.2 ps if argon
units are assumed.
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The behavior of the distribution functiong2,rad(r o ,r ;t)
for theAB pair ~where the interaction being the strongest! is
plotted in Fig. 4 at four different times. The distributio
function shows the same qualitative behavior as we obse
in the case ofAA correlation~Fig. 2!. When compared to the
AA correlation function within the same time scale, the d
cay of the correlation function is found to be faster desp
the much strongAB interaction. This must be attributed t
the difference in size of the two types of particles. As theB
particles are smaller in size than theA particles, they are

FIG. 3. Projections intox-y plane of the trajectory of a typica
nearest neighborAA pair over a time intervalt5500t. Note that
the time unitt52.2 ps for argon units.

FIG. 4. The radial part of the time-dependent pair distributi
functiong2,rad(r o ,r ;t) for theAB pair as a function of separationr
at four different times:~a! t520t, ~b! t550t, ~c! t5100t, and~d!
t5300t. The initial separationr o corresponds to the first maximum
of gAB(r ). The time unitt52.2 ps for the argon units. Note tha
g2,rad(r o ,r ;t) is scaled by 1/sAA

3 . For further details, see the text
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more mobile. In addition, theAB interaction is such thatAB
repulsion is felt at relatively small distances (sAB50.8 in-
stead of 0.94 according to the Lorentz-Berthelot rules!. Con-
sequently, theB particles are more prone to make jumps th
the A particles ~as observed earlier by Kob and Anders
@21#!.

The nature of the relative motion of a typicalAB pair is
illustrated in Fig. 5~a!, which displays the trajectory of a
typical AB pair ~in the x-y plane! that was initially at the
nearest neighbor@first peak ofgAB(r )]. The elapsed time is
Dt5500t. The dynamics of the relative motion is aga
dominated by hopping, theAB pair remains trapped at the
initial separation over hundred time steps, before jumping
neighboring sites where they again become localized. F
ther, the jump motion is more frequent for theAB pair than
that for theAA pair. The individual trajectory of theA andB
particles of the sameAB pair within the same time window
is shown in Figs. 5~b! and 5~c!, respectively. While bothA
andB particles hop,B particles move faster and the effect
caging is weaker~than theA particles! due to its smaller size
In this time window, the net displacement of theAB pair in
the x-y plane is found to be quite large and mainly det
mined by the displacement of theB particle as shown in
Fig. 6.

In Fig. 7 we showg2,rad(r o ,r ;t) for theBB pair @initially
separated at the first peak ofgBB(r )] at four different times.
Due to a weak interaction amongB particles, one expect
that theB atoms in theBB pair will fast lose the memory o
their initial separation. This is indeed the case for theBB
pair shown in Fig. 7. Once again the jump dynamics
clearly seen in the trajectory of a typicalBB pair projected in
the x-y plane~Fig. 8!.

We now consider the case where the initial separation
the pairs corresponds to the second peak of their respe
partial radial distribution functions in Fig. 1~i.e., pairs which
are next nearest neighbors!. The distribution function for the
AA pair is plotted in Fig. 9. It shows a qualitatively differe
behavior because the peak at the nearest neighbor sepa
develops in a relatively short time. Here also the motions
the pairs are found to be mostly discontinuous in natu
Thus, the motion from second to first nearest neighbor
curs mostly by hopping. In Fig. 10 we plot the similar di
tribution function for theAB pair. Since theAB interaction is
the strongest, the height of the first peak grows faster t
that for theAA pair @compare Figs. 9~b! and 10~b!#. Next, in
Fig. 11 we plot the distribution function for theBB pair.
Contrary to theAA andAB pairs, theBB pair tends to retain
its initial separation for a relatively long time compared
the nearest neighbor pair. This can be understood from
predominantBB correlations at the second coordinatio
shell.

B. Angular part of the TDPDF, g2,ang„r o ,u; t…

In this section, we present theangular distribution func-
tion g2,ang(r o ,u;t) for the three different pairs (AA, BB,
andAB). The initial separationr o for the three pairs corre
sponds to the first peak of the respective partial radial dis
bution functions~Fig. 1!.
o
r-

-

s

f
ive

tion
f
.

c-

n

he

i-

In Fig. 12~a! we show the angular distribution
g2,ang(r o ,u;t) for theAA pair. We calculate the angular dis
tribution with respect to the initial separation vectorro and
irrespective of the value of the separation at timet. The

FIG. 5. ~a! Projections intox-y plane of the trajectory of a
typical nearest neighborAB pair over a time intervalt5500t. ~b!
Trajectory of theA particle of the sameAB pair as in~a!, within the
same time window.~c! Trajectory of theB particle of the sameAB
pair. The time unitt52.2 ps for argon units.



d
tri
u

e
th

b

hat

the

on,

re-
s to

t

ion

f

l

n

distribution which is ad function att50 spreads more an
more with time and eventually it reaches to a uniform dis
bution with zero slope. When we compare it to the distrib
tion corresponding to theAB pair as shown in Fig. 12~b!, we
find that the approach to the uniform value is faster in cas
the AB pair. This can be understood again in terms of
mobility of theB particles, which is more compared to theA
particles. In Fig. 12~c! we show how the distribution for the
BB pair changes with time. The relaxation is seen to
relatively slower at short times as compared to theAB pair.

FIG. 6. The net displacement of anAB pair into x-y plane
(DLxy) as shown in Fig. 5~a!, in the same time interval. Note tha
the displacement is quite large.

FIG. 7. The radial part of the time-dependent pair distribut
functiong2,rad(r o ,r ;t) for theBB pair as a function of separationr
at four different times:~a! t520t, ~b! t550t, ~c! t5100t, and~d!
t5300t. The initial separationr o corresponds to the first peak o
gBB(r ). Note thatg2,rad(r o ,r ;t) is scaled by 1/sAA
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This can be understood in terms of the effective potential t
is discussed later.

C. Relative diffusion: Mean-square relative displacement
„MSRD…

In this section, we investigate the time dependence of
mean-square relative displacement^ur i j (t)2r i j (0)u2& r o

, the
simplest physical quantity associated with the pair moti
where the indexi and j denoteA and/orB particles and the
subscript r o indicates that the ensemble averaging is
stricted to the pairs whose initial separation correspond

FIG. 8. Projections intox-y plane of the trajectory of a typica
nearest neighborBB pair over a time intervalt5500t.

FIG. 9. The radial part of the pair distribution functio
g2,rad(r o ,r ;t) for theAA pair at four different times:~a! t54t, ~b!
t520t, ~c! t5100t, and~d! t5300t. Here the initial separationr o

is chosen at the second peak ofgAA(r ). The distribution function
g2,rad(r o ,r ;t) is scaled by 1/sAA

3 .
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r o @9#. First, we consider the case where the initial sepa
tions for the three pairs correspond to the first peak of
respective partial radial distribution functions~see Fig. 1!. In
other words, we consider first those pairs that were initia
nearest neighbor pairs.

FIG. 10. The radial part of the pair distribution functio
g2,rad(r o ,r ;t) for theAB pair at four different times:~a! t54t, ~b!
t520t, ~c! t5100t, and~d! t5300t. Here the initial separationr o

corresponds to the second peak ofgAB(r ). The distribution function
g2,rad(r o ,r ;t) is scaled by 1/sAA

3 .

FIG. 11. The radial part of the pair distribution functio
g2,rad(r o ,r ;t) for theBB pair at four different times:~a! t54t, ~b!
t520t, ~c! t5100t, and~d! t5300t. Here, the initial separationr o

is chosen at the second peak ofgBB(r ). The distribution function
g2,rad(r o ,r ;t) is scaled by 1/sAA

3 .
-
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FIG. 12. ~a! The angular part of the time-dependent pair dist
bution function g2,ang(r o ,u;t) for the AA pair at four different
times.~b! g2,ang(r o ,u;t) for the AB pair. ~c! g2,ang(r o ,u;t) for the
BB pair. In all the three cases, we consider only those pairs wh
were initially separated at the nearest neighbor distance. For fur
details, see the text.
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Figure 13 shows the result for the time dependence of
mean-square relative displacement~MSRD! of the three
pairs. At long times the MSRD varies linearly with tim
However, the evolution of MSRD with time differs for dif
ferent pairs. As expected, the smaller size of theB particles
and the weakBB interaction lead to a faster approach of t
diffusive limit of BB pair separation. The time scale need
to reach the diffusive limit is shorter for theAB pair than that
for the AA pair.

From the slope of the curves in the linear region, one
obtain the values of the relative diffusion constantsDR of the
different pairs. The values thus obtained are the following~in
reduced units!: DR

AA.0.0032, DR
AB.0.0048, and DR

BB

.0.0064. One should note that even though the differenc
size of theA andB particles is small,DR

BB is almost twice of
DR

AA . At sufficiently long time, one would certainly expe
the diffusion constant for the relative motion of a pair shou
be the sum of the individual diffusion constants of the tw
atoms obtained from the slope of the corresponding me
square displacements at long time. Indeed, we find there
good agreement.

An investigation of the behavior of MSRD is also pe
formed for atomic pairs which were initially next neare
neighbors. When compared to the nearest neighbor p
~Fig. 13!, we find that the slope of the corresponding straig
lines are almost identical, although in the case ofAA andAB
pairs, the diffusive limits are reached at shorter times. T
has been shown in Fig. 14. One should remember that
AA andAB correlations are highest at the first coordinati
shell, whereas the highestBB correlations occur at the sec
ond coordination shell~see Fig. 1!. Thus, at short time the
increase in slope for theAA andAB pairs can be explained

FIG. 13. Time dependence of the MSRD for theAA, AB, and
BB pairs. The initial separationr o of the three pairs corresponds
the first peak of the respective partial radial distribution functio
The solid line represents the result for theAA pair, the dashed line
AB pair, and the dotted line for theBB pair. Note that MSRD is
scaled bysAA

2 . For the detailed discussion, see the text.
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FIG. 14. ~a! Comparison of the MSRD for theAA pair with
different initial separations. The solid line represents the nea
neighborAA pair and the dashed line represents the next nea
neighborAA pair. ~b! Same as in~a!, but for theAB pair. ~c! For the
BB pair. In all the three cases MSRD is scaled bysAA

2 .
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in terms of the decrease in correlations at the second coo
nation shell.

D. The non-Gaussian parameter for the relative motion

In a highly supercooled liquid, the single-particle di
placement distribution functionGs(r ,t) ~known as the self-
part of the van Hove correlation function! has an extended
tail and is, in general, non-Gaussian. The deviation from
Gaussian behavior is often thought to reflect the presenc
the transient inhomogeneities and can be characterize
the non-Gaussian parametera2(t) @22#

a2~ t !5
3^Dr 4~ t !&
5^Dr 2~ t !&2 21, ~2!

where^Dr 2(t)& and^Dr 4(t)& are the second and fourth mo
ments ofGs(r ,t), respectively. At intermediate time scal
a2(t) increases with time and the maximum ofa2(t) occurs
around the end of theb relaxation region. Only on the time
scale of diffusion or thea relaxation,a2(t) starts to decreas
and finally at a very long time limit, it reaches to zero.a2(t)
calculated for theA andB particles are shown in Fig. 15. Th
maximum ina2(t) is seen to shift slightly towards left an
also the height of the maximum is higher for theB particles.
This is a clear evidence that theB particles probe a much
more heterogeneous environment than theA particles. This
difference can be explained in terms of the smaller conc
tration of B particles, different sizes of theA andB particles
and also from the fact that the interaction between theB
particles is much weaker than that between theA particles
@21,22#.

Motivated by these findings for the single-particle d
placement distribution function, we introduce a new no
Gaussian parameter for the pair dynamics, denoted bya2

P(t).
a2

P(t) can be a measure of the deviation from the Gauss

FIG. 15. The behavior of the non-Gaussian parametera2(t) as a
function of time for theA andB particles. The solid line is for theA
particles and the dashed line for the B particles. The unit of tim
t5AmsAA

2 /eAA52.2 ps if argon units are assumed.
di-

e
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behavior of the pair distribution functiong2(ro ,r ;t). It can
be defined as

a2
Pi j ~ t !5

3^ur i j ~ t !2r i j ~0!u4& r o

5^ur i j ~ t !2r i j ~0!u2& r o

2
21 ~ i , j 5A and/orB!,

~3!

where ^ur i j (t)2r i j (0)u2& r o
and ^ur i j (t)2r i j (0)u4& r o

are the
mean square relative displacement and mean quartic rela
displacement of thei j pair. One should note thata2

P(t) is
identical to zero for a Gaussian pair distribution function.

In Fig. 16 we show the behavior of thea2
Pi j as a function

of time for the three different pairs. We again consider on
those pairs that were initially nearest neighbors. The beh
ior observed for the three pairs is markedly different. T
dynamics explored by theBB pair is seen to be less hetero
geneous than theAA andAB pairs. Due to the smaller siz
of the B particles and the insignificant correlations amo
them, theB particles reach the average distribution fast
although it explores larger heterogeneity. TheAA pair
reaches the diffusive limit at a longer time scale than that
the AB pair, theAB pair explores more heterogeneous d
namics as is clearly evident from the difference in the ma
mum value ofa2

P(t).

IV. THEORETICAL ANALYSIS

For the motion of an atomic pair in a pure fluid, Haan@6#
introduced a simple mean-field level equation of motion
the time-dependent pair distribution functiong2. This equa-
tion was shown to give a quantitatively correct descripti
both at short and long times@15#. This treatment is mean
field in the sense that the two atoms were assumed to dif

is

FIG. 16. The behavior of the non-Gaussian parametera2
P(t) as

a function of time for theAA, AB, andBB pairs, initially separated
at the nearest neighbor distance. The solid line represents the r
for theAA pair, the dashed line for theAB pair, and the dot-dashed
line for the BB pair. Here, time is scaled byt52.2 ps for argon
units.
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in an effective-force field of the surrounding particles giv
by the gradient of the potential of the mean force. The eq
tion for g2 was represented by a Smoluchowski equation
the correct short time description ofg2 was obtained only by
introducing anonlinear time that is related to the mean
squared distance~MSD! moved by asingle atom. In other
words, anad hocintroduction of a time-dependent diffusio
constantD(t) in the equation of motion gives the corre
description at short times.

In the view of its success for one-component liquid, w
have performed similar mean-field model calculations for
binary mixture considered here. The generalization to bin
mixture gives the following Smoluchowski equation for th
different pairs:

]g2
i j ~ro ,r ;t !

]t i j
5“•@“g2

i j ~ro ,r ;t !1bg2
i j ~ro ,r ;t !“Wi j ~r !#,

~4!

where indicesi and j denoteA and/orB particles.b is the
inverse of Boltzmann’s constantkB times the absolute tem
peratureT. Wi j (r ) is the potential of mean force~effective
potential! betweeni and j particles given by

Wi j ~r !52kBTln gi j ~r !, ~5!

wheregi j (r ) is the partial radial distribution function. In Eq
~4!, the ‘‘time’’ t i j is defined by

t i j 5
1

6
^ur i j ~ t !2r i j ~0!u2& r o

'
1

6
@^ur i~ t !2r i~0!u2&1^ur j~ t !2r j~0!u2&#, ~6!

where^ur i j (t)2r i j (0)u2& r o
is the MSRD of ‘‘i j ’ ’ pair. Note

that an approximation is made in the above equation by
glecting the cross correlation between the two particlesi
and j ) and the MSRD is replaced by the sum of individu
particle’s MSD.

Now the integration of theg2
i j (ro ,r ;t) over the solid

anglesV̂o andV̂ corresponding to the initial and final pos
tions, respectively, gives the radial part of the full distrib
tion function @the zeroth-angular moment ofg2

i j (ro ,r ;t)]

g2,rad
i j ~r o ,r ;t !5

1

4pE dV̂odV̂g2
i j ~ro ,r ;t !. ~7!

Note that the normalization of this function is

E
0

`

drr 2g2,rad
i j ~r o ,r ;t !51. ~8!

The equation of motion forg2,rad
i j (r o ,r ;t) @derived from Eq.

~4!# is solved numerically~by Crank-Nicolson method! for
the different pairs and the results obtained from this mo
calculations are compared with the simulation results. T
partial radial distribution functionsgi j (r ) and the mean-
a-
d

e
ry

e-
(
l

l
e

square displacement of theA and B particles ~required as
input! are obtained from the present simulation.

Figures 17 and 18 compare model calculations with
simulated distribution functions for theAA and AB nearest
neighbor pair. The time evolution of the distributions is d
scribed well by the simple mean-field model. The und

FIG. 17. The simulated distributiong2,rad(r o ,r ;t) for the AA
pair is compared with the mean-field model calculations at th
different times:~a! t510t, ~b! t550t, and~c! t5100t. The initial
separationr o corresponds to the first maximum ofgAA(r ). The
histogram represents the simulation results and the dashed line
resents the results of the model calculations. Note t
g2,rad(r o ,r ;t) is scaled by 1/sAA

3 and the time unitt52.2 ps if
argon units are assumed.

FIG. 18. The simulated distributiong2,rad(r o ,r ;t) for the AB
pair is compared with the mean-field model calculations at th
different times:~a! t510t, ~b! t550t, and~c! t5100t. The initial
separationr o corresponds to the first maximum ofgAB(r ). The
histogram represents the simulation results and the dashed line
resents the results of the model calculations. The distribution fu
tion g2,rad(r o ,r ;t) is scaled by 1/sAA

3 .
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lying effective-potential energy surfaces are plotted in F
19. Thus, relative diffusion in these cases can be consid
as overdamped motion in an effective potential, which ta
place mainly via hopping~as shown in Figs. 3 and 5! that
governs the time evolution of the distributions for theAA
andAB pairs.

Unfortunately, the good agreement observed above
tween simulation and theory for theAA andAB pairs does
not extend to theBB pair. This is shown in Fig. 20. As the

FIG. 19. The potential of mean forceW(r ) for theAA, AB, and
BB pairs in the Kob-Andersen model at the reduced pressureP*
520 and the reduced temperatureT* 51.0. The solid line repre-
sents for theAA pair, the dashed line for theAB pair, and the
dot-dashed line for theBB pair. Note thatW(r ) is scaled byeAA .

FIG. 20. The simulated distributiong2,rad(r o ,r ;t) for the BB
pair is compared with the mean-field model calculations at th
different times:~a! t510t, ~b! t550t, and~c! t5100t. The initial
separationr o corresponds to the first peak ofgBB(r ). The histogram
represents the simulation results and the dashed line represen
results of the model calculations. The distribution functi
g2,rad(r o ,r ;t) is scaled by 1/sAA

3 .
.
ed
s

e-

number ofB particles present in the system is much le
~20%! and the interparticle interaction is weak, the effecti
potential for aB atom interacting with a nearest neighb
atom is unfavorable~see Fig. 19!. Consequently, the neare
neighborBB pair executes highly anharmonic motion. Thu
the fluctuations about the mean-force field experienced
the BB pair are large and important. These fluctuations
neglected here, as in other mean-field level description.

The extension of the calculations to the case of next ne
est neighbor pairs has also been carried out and comp
with the simulated distributions. It should be noted that
compared to the nearest neighbor pairs, theAA andAB pairs
now execute motions in a relatively weak, shallow potent
whereas the motions of theBB pair takes place in a rela
tively strong, bound potential well~see Fig. 19!. Thus, for
the BB pair, one expects a better agreement with the sim
lated distributions as compared to the earlier case~nearest
neighborBB pairs!. Indeed, the agreement is better for t
BB pair as shown in Fig. 21~compare with Fig. 20!. We
have found that the MF model provides a good description
the dynamics of theAA and AB pairs, although the agree
ment is not as satisfactory as for the nearest neighbor p

Thus, it is evident that the MF description for the tim
dependent pair distribution functions is reasonably good
theAA andAB pairs. Simulation results have shown that t
relative diffusion of anAB pair is higher than that for anAA
pair. We noted that this is due to the more frequent hopp
of the B particles than theA particles. Our main objective
now is to see whether the frequent jump motions of theB
particles, as predicted by the simulations, can be explaine
terms of the MF model described above.

We have performed an approximate calculation to get
estimate of the transition rate between the first two adjac
minima in the effective potential energy surface of theAA

e

the

FIG. 21. The simulated distributiong2,rad(r o ,r ;t) for the BB
pair is compared with the mean-field model calculations at t
different times:~a! t510t and ~b! t5100t. Here the initial sepa-
ration r o corresponds to the second peak ofgBB(r ). The histogram
again represents the simulation results and the dashed line r
sents the results of the model calculations. Note thatg2,rad(r o ,r ;t)
is scaled by 1/sAA

3 . For further details, see the text.
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andAB pairs~see Fig. 19!. In other words, the rate of cross
ing from the deep minima located at the nearest neigh
pairs to the adjacent minima~corresponds to the next neare
neighbors! is calculated. As the motion of a pair in the effe
tive potential is treated by a Smoluchowski equation, we
the corresponding rate expression in the overdamped lim
calculate the escape rate. Thus, we have an expression fo
escape rate given by@36#

kS>
vminvmax

2pz
expS 2

DW

kBTD , ~9!

whereDW5W(r max)2W(r min) is the Arrhenius activation
energy andvmin , vmax are the frequency at the minimar min
and maximar max in the effective potentialW(r ), respec-
tively. The diffusion coefficientD is related to the frictionz
by D5kBT/z.

Thus, to calculate the transition rate we need to know
values of the frequencyvmin , vmax, and the barrier heigh
DW, which are different for theAA and AB pairs. For the
AA pair, these parameters are found to bevmin* (5vmint)
.16.5, vmax* .6.5, andDWAA.2.25kBT, whereas for the
AB pair they are vmin* .17.8, vmax* .7.4, and DWAB

.2.45kBT. The relative diffusion of the two pairs is~in re-
duced units! DR

AA.0.0032 andDR
AB.0.0048. Using all these

parameters, the escape rate calculated for theAA and AB
pairs is ~in reduced units! kS

AA.5.931023 and kS
AB.8.8

31023, respectively~in terms of timet, which is equal to
2.2 ps for argon units!.

Even though the barrier heightDWAB.DWAA , the tran-
sition rate for theAB pair is larger than that for theAA pair.
Thus, the jump motions are much more frequent for theAB
pair due to the large diffusion of theB particles in the poten-
tial energy surface~which mainly occurs via hopping!.

V. CONCLUSIONS

Let us first summarize the main results of this study.
have presented the molecular dynamics simulation results
the time-dependent pair distribution functions in a stron
nonideal glass-forming binary Lennard-Jones mixture. In
dition, a mean-field description of the pair dynamics is co
sidered and the comparison is made with the simulated
tributions. The main goal of this investigation was to explo
the dynamics of the supercooled liquids in a more collect
way by following the relative motion of the atoms rathe
than absolutemotion of the atoms. We find that the thre
.

J.
or

e
to
the

e

e
or
y
-
-
s-

e

pairs (AA, BB, andAB) behave differently. The analysis o
the trajectory shows a clear evidence of the jump motions
all the three pairs.

The relative diffusion constant of theBB pair (DR
BB) is

almost twice the value for theAA pair (DR
AA). This clearly

suggests the importance of the jump dynamics for theB par-
ticles and indeed, we find that the motion of theB particles is
mostly discontinuous in nature, while theA particles show
occasional hopping. The dynamic inhomogeneity present
supercooled liquid is generally characterized by the w
known non-Gaussian parametera2(t), which describe the
deviations from the Gaussian behavior in the motion o
single atom. In this paper, we have generalized this conc
and introduced a non-Gaussian parameter for the pair
namics@a2

P(t)# to measure the deviations from the Gauss
behavior in the relative motion of the atoms. At intermedia
times, all the three pair distribution functions for the thr
pairs show significant deviations from the Gaussian beha
with different degrees.

It is found that for the nearest neighborAA andAB pairs,
which are confined to a strong effective potential and mer
makes anharmonic motions in it, the dynamics can be trea
at the mean-field level. However, as the motion of a nea
neighborBB pair is highly anharmonic, one must include th
effects of the fluctuations about the mean-force field in or
to get a correct description of the dynamics.

While the mean-field treatment provides reasonably ac
rate description of pair dynamics~at least forAA and AB
pairs!, it must be supplemented with the time-dependent d
fusion coefficientD(t). This is a limitation of the mean-field
approach because at present we do not have any theore
means to calculateD(t) from first principles. The mode cou
pling theory does not work because it neglects hopp
which is the dominant mode of mass transport in dee
supercooled liquids, even when the system is quite far fr
the glass transition. As we discussed recently, hopping ca
coupled to anisotropy in the local stress tensor@26#. The
calculation of the latter is also nontrivial. Work in this dire
tion is under progress.
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