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Abstract. A general analysis of the renormalisation corrections to the unification
results for the coupling constants of strong and electroweak interactions is attempted.
In particular, the effects of introducing an energy scale intermediate between the uni-
fication energy and the low-energy regions are studied and found to be important.
This analysis is applied to unification schemes of both kinds, namely, unification at
superhigh energies, and unification at accessible energies.
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1. Introduction

Unification fixes the ratios of the coupling constants of the strong and electroweak
interactions. However, these algebraic results of unification are valid only at the
unification energies, i.e., energies which are large as compared to the masses involved
in the breaking of the unification group G to the level of the observed group G,. To
obtain results valid at lower energies, from these unification results, one uses renor-
malisation group equations, which govern the behaviour of the effective coupling
constants with respect to the energy scale, p (Georgi ef al 1974).

The renormalisation effects depend on the unification energy M. It is useful to
distinguish two approaches to unification which differ vastly in the value of M. In
the first approach, which seems to be the more popular one (Georgi and Glashow
1973 ; Georgi et al 1974), proton decay occurs in the first order of four-fermion coupl-
ing and to keep the decay at a tolerably low level, the mediating bosons have to be
made s'upérhea.vy. This forces the unification energy to be of the order °f, 101 G:?V.
According to this scheme, therefore, unification occurs only at fantastically high
energies. ' .

In the second approach to unification, in addition to the unified gauge
group G, there are unbroken global symmetries and hence there are addl_nonal
quantum numbers which are exactly conserved. In such models. (Pati .a.nd
Salam 1973; Fritzsch and Minkowski 1975), the proton decay can be exther. stmgtly
forbidden, or pushed to higher orders in the four-fermion couplu}g ar.xd 50 umﬁcatlop.
can be allowed to set in at energies as low as 10° GeV. Unification in this ’sfc_hven}e‘ is
already at hand.
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In this paper, we analyse the renormalisation effects for both the above approaches
to unification, namely unification at superhigh energies and unification at accessible
energies. Renormalisation effects are usually calculated by assuming the existence
of two distinct regions in the energy scale, one below M and the other above M, the
energy-dependence of the coupling constants suffering a sharp discontinuity at the
interface M. This is an unpalatable assumption for more than one reason. This
assumption will clearly fail if masses of gauge bosons, Higgs bosons and fermions
in the theory are distributed all over the energy region extending from the lowest to
the unification energies. Even if the existence of a desert with no particles over a
certain energy region is accepted, the assumption of a sharp discontinuity in the
energy dependence of the coupling constants remains questionable, especially in the
case of unification at accessible energies. In the latter case, even a distribution of
particle masses over a region of width about 100 GeV, centred at M, will give rise to
a significant transition region. Mass differences of the order of 100 GeV are, of course,
the minimum that are expected, this being the mass difference within the Weinberg-
Salam gauge multiplet.

Therefore, we attempt a simple generalisation of the usual analysis of renormalisa-
tion effects by replacing the sharp discontinuity by an intermediate transition region.
This generalisation is, of course, only illustrative, however it allows us to locate the
approximations involved in the Georgi-Quinn-Weinberg type of analysis, which is
relevant for unification at superhigh energies. Further, we find that for unification
at accessible energies omission of the transition region leads to inconmsistencies.
The introduction of this transition region imvolves new parameters which cannot
be determined until the mass-spectrum of the unified gauge theory is known. This
makes all the claimed unification results suspect.

We set up the equations in a sufficiently general fashion so as to cover the wide
class of unified models studied earlier (Bajaj and Rajasekaran 1979a, to be referred
to as paper I in the text). In particular, we discuss the renormalisation effects for
both the standard and the left-right symmetric models.

The paper is organised as follows. The general equations are set up in § 2. These
equations are then applied to unification at superhigh energies and at accessible ener-

gies in §§ 3 and 4, respectively. The last section is devoted to a discussion of the
results.

2. General analysis of the energy-dependence of the coupling comstants

We divide the energy or mass scale p into three regions, defined by the way in which
the gauge bosons contribute to the u-dependence of the coupling constants. In the
low-p region called region I, only the gauge bosons of the observed group G, contri-
bute. This is followed by a transition region (region II) in which the heavier gauge
bosons start contributing, but not with full strength. Then comes the unification
region of high-p, to be called region III, in which all the gauge bosons of the unified
group G contribute. For convenience we shall take p, as defining the boundary

between regions I and II, while p, defines the boundary between II and III. We
define*

*Where undefined, the notation is understood to be the same as in paper I,
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ag=ghldr; a=cMdn; ap =gifdn; ay = gyl4m;
t =In (u/10 GeV), #, = In (u,/10 GeV), i =1, 2.
In region I, (¢ < t;), the renormalisation group equations at the one-loop level

(Gross and Wilczek 1973; Politzer 1973) give the following s-dependence for the
effective coupling constants:—

1 TrTA
— f=c5+2(bs+bF) 1, : (1a)
ag(t) Tr T ;
1 TrT2
— S= 20+ b0 (1b)
ay (1) Tr T,
1 TrT2
Ceey+20y+bpt (1c)

ay () Tr T

Here cg, ¢ and cy are constants to be determined, bg and by, are contributions of
the gauge bosons of the nonabelian groups SU(3)¢ and SU(2)L, given by

2
bS == .1._1_ T I'-_TG’ (2)
dr Ty TS
1 2
bLz,l,, Tr TGE, 3)
6 Tr T7,

by =0, and bp is the contribution of the fermions and Higgs bosons. We assume

that the masses of all the fermions and all the Higgs are < py, so that these contribute
uniformly to the three coupling constants. Note bp is negative. '
In region III, (t > t,), we have the unified behaviour:

2 2 2
1 TrTg _ 1 TrTg _ 1 TrTf — cgF2bg+bp) @
ag(Tr Té %L (t)Tr IT7 ay()Tr Ty '

where b; is the universal contribution from the whole gauge multiplet of the unified
group G and c; is a constant. For a large unification group G, bg is very large com-
pared to by and b;.

The gauge-boson contribution to the t.dependence in region I is diﬁicu.lt to Pin
down. The simplest approximation is to take a linear t-dependence for this region

too, with coefficients b 55 EL and by whose values lie between their corresponding
values in regions I and III.  Then, for #; <1 <f, We can write

L TTe o abgtba) t (53)
ag (1) Tr Té
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1 TrTe ~ .~
L TTe o b +be) o | St
o) 205, +bg) (5b)
i Tr TG ~
- = o2 v+b)t. S (S
SOTET 20 y+bg) )

By matching at ¢==f, and at z=#;, we can determine all the constants, ZS, ¢ I c. ys
Cor €L, and ¢y, in terms of the universal constantc;. We thus get the complete
t-dependence equations for all the regions:

1 TrTé
ag(t) Tr T&

== ¢ 2D 120 gty 1)+ 2b g (t—1) 2Dt for 1<ty

= ¢ +2bg ty+2bg(t—tp)+2bgt, for ;<t<ty;

= ¢ +20g —l—bF)t, for t>1t,; (6a)
1 Tr TG |
= cF-2b; t,2b, (t —t )+2b (t—t )+2b t, for £ <ty;
U'L(t)TlTL e G*‘a T \l1 2 L 1 F* 1
= G +2bg ty+-2by (t—t)+2bpt, for ty, <t <1ty;
1 Tr 76 = C +2bG t2—|—2bY(tl—t2)+2by(t~t1)—l—lb Ja for <ty
“y(f) Tr TY -

= ¢ +2b Glat2by (t—t) 2051, for ty <t <ty
= cg+2Abg+bpt, fort>ta ' (60)

" By subtraction it is possible to recast these equa.tlons into the following equations
Wthh are independent of many of the unknown constants:

1 1 Tr'Té =2 ( dg —dy, A TC) (11—12)
ag (t) ap ()Tr Tf Tr T%

42 (dS — dL ;r TC) (t—ty), fort <ty

=2(dg—d, TrTC (t—t;), for t, <t <ty;
Tr TL ‘

=0, fort> ty; R (7a)

A




Renormalisation effects in unified gauge theories 415

1 1 Tr T Y_ o dY dL Tr Ty (t—1)
ay() ap () Tr T7 T

H

+2(dy—dy Tr Ty (t— tl), fort<ll,
TrTL

=2 dY—dLTrTY (t—ty), for t; < t<ty;
Tr TL

=0, for t>t,; R (7b)

where we have defined the “ reduced coefficients *’

TrTL ,
L dy =ty AL g e, ITTT @®)
S gt tPnr Y T

and exactly similar e‘qﬁations for dS, dL and d];.' We have

dS == ;1441‘" [1 s é__%_., dY: 0. . (9)

Equations (7a) and (7b) provide us only with the relative t-depcndence between the
various coupling constants, but this alone is of interest to us, for the present. *~ *
These equations, so far, are common to both the standard as well as the left-right
symmetric models. However, when they are converted into equations for sin? 6(¢)
‘and «a(t)/ag (¢), we shall get different results for the two- models.
 We call the values of sin? § and a/a < in the unification limit, given by equation (10)

of paper I, as S and R respectively. For the standard model, we have

Vay()= [felt) im0, | (10)
L (1) = [1/a(n)] [cos* 6 (]; (11)
Tr 7%/ Tr TL_(1~—S)/S Tr 7%/ Tr T} = R/S. (12)

We then get, from simple manipulation of equation (7a) and (7), .
sin20 (1) =S+ 2 at) K(t), SR @)
a(t)/ ag(t) == R+2 d(z‘) L(2), S S €7
where  K(f) = {d — S(d + dy)} (t1 —1)
B + {d; — S(dL +- dy)} (z — 1), for t < ti o
o {d, S SE VY G, rne<h T
=0, fort>t,; o (19)
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L) = {dg — Ry +dy)} (s — 1)
4 {dg — Ry, + dy)} (¢ — 1), for 1 <ty;
— {4, — R@, + dp)y (—t) forty <t <1a

=0, fort>ty. (16)

For the L-R model, we have

Yay (1) = [1/a/(t)] [sin® 6'()], an
lay @)= [1/a'(2)] [1—2 sin® 6'(1)]; | (18)
Tr T3/ Tr TE=(1— 25)/8 ; Tr T&/Tr T'? = R/S. (19)

The values of sin?6’ and o [ag in the unification limit are same as in W-§ model
and hence, are still denoted by S and R only. Using these, we now get

sin? 0°(1) =S + 20 K'O); 20)
a(t)]as(t) =R +2 a'(t) L' (), @1
hore | K'@0)={d, — S @y +dp} (=1
+{d; —§ (2d; + dy)} (t — 1) for t < ty;

L {d, — 5@+ Ay} —n)forn <t <ty
=0, fort>ty - (22)

()= {ds — R @dy + dy)} (1 — 1)
= {dg — RQd, +dp} (¢ — 1), for ty <t <1
=0, fort>ta- ' (23)

We see that the only difference between the t-dependence equations for the two
models is that d;+dy in the standard model equations is replaced by 2d;+dy for

the left-right symmetric model equations. This arises from the difference in the for-
mulae for the fine-structure constant in the two models:

1 1)a = (1/ap) + (1/ey) (standard model), (24)
1)a' = (2le}) + (1/ey) (left-right symmetric model). (25)

We shall now apply the general equations derived here to both unification,
schemes, namely unification at superhigh energies as well as unification at accessible

energies.
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3. Unification at superhigh energies

For unification at superhigh energies, we may take both , and p, to be of the order
of 10" GeV, so that

f &8 fp Xty =In(M/10 GeV),

where M =~10% GeV. So, among the 3 regions which we had defined, region I
(t <) alone is of physical importance at present and we have to write down the

formulae only for this region. Further, if we ignore the terms ‘}.NS' (t;—1y), c}; (ts—1y)

and dy (t;—1,) in these equations, the analysis simplifies considerably.
- Thus, the standard-model equations (13) - (16) become

in?0 (£) = § — % « ()1 ~5) (1), 26)
s R = (1) 3—2R) (ty; — 1) , 27

where we have used the numerical values of dg, dr, and dy given by (9). Since
(27 — t) is large, the renormalisation corrections to both (26) and (27) are sizable.
It is also convenient to write down the relation between the observables at ¢ obtained
by elimination of the unknown (¢yy—t) between the two equations (26) and (27).
Then we get:

sh‘f 0(5) = 35—2R n 2(1—S) a()

3—2R  3—2R &)’ 9

For low values of ¢ where the strong coupling constant ag(t) reaches such large
values that the second term can be ignored, one has

sin? 6 0) ~ (35—2R)/(3—2R). A (29)

The 'c‘orresponding equations for the left-right symmetric model (obtained from
(20)-(23)) are:

sin? 8 (f) =8 — %1 a' (1) (1-28) (ty,—1), (30)

o' (t)] ol (1) =R—é_i o (t) 3—4R) (tyy—1), @a1)

. 35—2R | 2(1-28) o' (1)
and PO = —4R
n sin® 0" (1) 3—4R + 3'7,4R-~“:9(t),'

(32)

S0 (0) v BS—2RYG—AR. - - (39)
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Formulae of this type were first written down by Georgi et al (1974) and most of
the recent papers on grand unified models are based on such formulae. Of course,
these could have been derived much more directly, but our purpose in arriving at
them this way is to draw attention to the approximations involved in their derivation.
Basically, the approximation is to ignore the existence of the transition region. By
referring to (15) and (16), we can see that the validity of this approximation requires

{dL—S@A-dv)} (h—t) < {dL—S@+dy)} (—t);
and {ds—R(d+dy)} (r—ty) < {ds—R(dL+dy)} (—1);

and similar inequalities for the left-right symmetric model. Although (f,—1t;) may
be expected to be small as compared to (t—1y), how does one know that dg, dr,ete,
are not large as compared to ds, dr, etc.? We do not have an answer to this question.
So, it is good to keep this rather dubious approximation in mind, when assessing the
accuracy of the numerical parameters derived from the above formulae.

Now, we may remark on the physical content of the above formulae. The most
important message of the above equations is that although we start with the same
unification value of sin?0 (namely S) for the standard and left-right symmetric models,
the value of sin? 6(f) relevant at low energies are different in the two models. The
same is true of a/egalso.

We should also point out that the formulae (26)-(29) are valid for any unified
group G which reduces to Gy=SU(3)cx SUR)L X U(1) at low energies while (30)—~(33)
are valid for any G which leads to Gy =SUQ3)c X SU@)L x SU@)r x U(1). The
corresponding formulae given by Georgi et al (1974) and Chanowitz et al (1977) are
valid only if the two parameters R and S are equal. It turns out that R and § are
equal for G=SU(5) or SO(10), but, this is not true in general.

On using (29) and (33) for the sequential doublet scheme of paper 1 for which
S=R=3/8, we get

sin? 6 (0) ~ § and sin* #'(0) ~ %

These numbers are in reasonable agreement with the respective phenomenologically
determined values: sin? 8=0-23-40-01 (Musset 1979) and sin?§'=0-28 + 0-09* (Bajaj
and Rajasekaran 1979b). We may also remark that application of (29) and (33)
to the sequential triplet scheme of paper I for which S§=% and R=$% will lead to

sin? 8 (0) ~ 0 and sin* 6’ (0)~ 0.

Clearly, this scheme is not viable for unification at superhigh energies.

4. Unification at accessible energies

For definiteness, we may take -

iy =100 GeV, pzy = 1000 GeV,

*A more careful analyis leads to sin® 8’=0-25 + 0:01 (Bajaj and Ra;jasekarnn, 1980).
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O tha-t tl - 2'3, 22 == 4'6. . ) (34)

Now the analysis of the renormalisation effects is more complex since the complete

set of equations has 10 be used but the parameters d- & dL and d. y are unknown.

It has been argued by Fritzsch and Minkowski (1975) that since the strong coupling
constant «(¢) reaches the unification value rather quickly, there are no sizable re-

normalisation corrections to the algebraic relations derived from unification.. In
fact, they claim

sin? 8 (0) & S0 (o).

It is easy to see from our formulae that this claim is unjustified. We get from (13)
and (20) ' ‘ -

; sm2 6 (0) = S+ 2a 0) {(dL——Sd) (t;—1) — (a’L—Sd) t1 13 : (35)
where d = d;+dy for Weinberg-Salam model,

= 2d;+dy for left-right symmetric model. ‘ (36)

and similarly for d. The coefficient of « (0) may not be small since dL—Sd can
be quite large. The corresponding formula for « (0)/ag (0) is, from (14) and (22)

a (0)fag (0) = R+2a (0) {(dg—Rd) (h—1) — (d5—Rd) 1}. (37

It is clear that, all the coefficients dL, dand dS cannot be taken to be small. Otherwise,
(0)/a¢(0) will not differ much from R, WhICh will be in conflict with the empirically

known result
o (0)/eg (0) ~ 5/137. (38)

In fact, equation (37) can be rewritten in the form:

2{(dg—Rd) (ty—t,) + (dg—Rd) t;}= E%ﬁ — %1@. (39)

Since all the quant1t1es in this equation are known except d. and d it can be regarded
as a constraint on d, g and d. To be specific, let us put some representative numerical
values (For R, we take the sequential-doublets result 3/8, (paper I)):

IR
ag©® " 7’ a(0) T 8/(137)"’

dg=175; Rd= X 118.
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Then, (39) becomes

s —RD U ~0) + (15— §x 119 5} =45 g

For unification at superhigh energies, the first term can be ignored if we so desire;
for, 1, is large enough. But, for unification at accessible energies, the first term can
never be ignored. Using the values of 4 and 7, given in (34) we get

dy—3%d w10 | | (41)

Thus, it is clear that region I can neither be identified with region I where this slope
differential is of the order of unity, nor with region III where it should be zero, Fur-

ther, since this slope-differential in the intermediate region, is large, the slopes d; ete.
should be individually large, thus implying that the unification group must be large.

~So. unification at accessible energies is possible only for rather large unification

groups. 3
We do not claim that sin? 8 (0) necessarily has a large deviation from S for, we
cannot prove that d; —Sd is large. We can only prove that dg—Rd has to be large.

To emphasise the uncertainty in the renormalised value of sin2 6, we plot the z-de-
pendence of the inverses of the coupling constants for two arbitrary choices of para-
meters consistent with all the constraints discussed above (see figure 1).  The first

case (case (a)), corresponds to 4. L —Sd ~ 10 ~ JS—RZ This choice leads to large

300
200
1
Q
100
Case (a)
snn26 (0)=0-21
0 1 | |
23 46 69

t

Figure 1. The r-dependence of the inverses of the coupling constants for unification
at accessible energies in the doublets scheme. Case (a): Large renormalisation cor--
rections to sin® 8, Case (b): Small renormalisation corrections to sin? 4,
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renormalisation corrections for sin? 6 and gives sin? 6(0)=0-21. In the second case
(case (b)), dy — Sd =~ 2<dg — Rd. Inthis case, the strong coupling constant suffers
large renormalisation, but sin®  does not, and we get sin?6(0) =0-35. A similar nume-
rical example could be worked out for the sequential triplets scheme also, where S=%.
Because of the possibility of sin? 8 suffering no large renormalisation effects, the
triplets scheme may be viable in unified models in which unification sets in at
accessible energies.

At the present stage of our ignorance of the actual mass-spectrum of the particles
involved in the unified gauge theory, it is clearly impossible to decide in favour of
either of the two possibilities (case (2) and (b)) discussed above. Nevertheless, one
may note from the shape of the graphs infigure 1, that the second possibility (case (b))
seems a little unnatural in yiew of the abrupt change in the slopes of 1 [a; and 1/e ¥
at the unification energy.

5. Conclusions

We have generalised the analysis of the renormalisation effects on the coupling const-
ants of unified gauge theories by including a transition region beiween the low-energy
and the unification regions. We find that even this simple correction spoils the results
discussed in most of the recent literature on unified models.

We consider both unification at superhigh energies as well as unification at acces-
sible energies. For unification at superhigh energies, one may ignore the transition
region if one so wishes. In that case, the results on renormalistion corrections are
generalised to cover a wide class of models. In particular, for the sequential doublets
scheme the renormalised value of sin? 8 is not much different for the standard and
the left-right symmetric models and for both models, the value is compatible with the
empirical value obtained from neutral-current experiments.

For unification at accessible energies, the transition region turns out to be essential,
Its omission leads to a definite inconsistency. Because of our ignorance of the para-
meters in the transition region, no definite results can be derived, but the possibility
of small renormalisation correction for sin® 8 remains. So, the sequential-triplets
scheme of paper I may be viable, for unification at accessible energies.
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