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We present results of extensive computer simulations and theoretical analysis of vibrational phase
relaxation of a nitrogen moleculealong the critical isochoreand also along the gas-liquid
coexistence. The simulation includes all the different contributions@atom-atom~AA !, vibration-
rotation~VR!, and resonant transfer# and their cross-correlations. Following Everitt and Skinner, we
have included the vibrational coordinate (q) dependence of the interatomic potential. It is found that
the latter makes an important contribution. The simulated results are in good agreement with the
experiments. Dephasing time (tv) and the root mean square frequency fluctuation~D! in the
supercritical region are calculated. The principal important results are:~a! a crossover from a
Lorentzian-type to a Gaussian lineshape is observed as the critical point is approached along the
isochore ~from above!, ~b! the root mean square frequency fluctuation shows nonmonotonic
dependence on the temperature along critical isochore,~c! along the coexistence line and the critical
isochore the temperature dependent linewidth shows a divergence-likel-shape behavior, and~d! the
value of the critical exponents along the coexistence and along the isochore are obtained by fitting.
It is found that the linewidths~directly proportional to the rate of vibrational phase relaxation!
calculated from the time integral of the normal coordinate time correlation function@CQ(t)# are in
good agreement with the known experimental results. The origin of the anomalous temperature
dependence of linewidth can be traced to simultaneous occurrence of several factors,~i! the
enhancement of negative cross-correlations between AA and VR contributions and~ii ! the large
density fluctuations as the critical point~CP! is approached. The former makes the decay faster so
that local density fluctuations are probed on a femtosecond time scale. The reason for the negative
cross-correlation between AA and VR is explored in detail. A mode coupling theory~MCT! analysis
shows the slow decay of the enhanced density fluctuations near critical point. The MCT analysis
demonstrates that the large enhancement of VR coupling near CP arises from the non-Gaussian
behavior of density fluctuation and this enters through a nonzero value of the triplet direct
correlation function.
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I. INTRODUCTION

The study of vibrational phase relaxation~VPR! has
been an important endeavor of a physical chemist/chem
physicist in the attempt to understand and quantify the in
action of a chemical bond with the surrounding solve
molecules.1,2As the phase relaxation of a bond is sensitive
the details of intermolecular interaction, it is a useful tool
understanding various aspects of solute–solvent interacti
The study of VPR has been driven by the sensitive exp
mental measurements of the vibrational linewidth. Thus t
oretical results can be verified with experiments direc
Simple models such as the isolated binary collisions mod3

and hydrodynamic model1 were employed initially to explain
the experimental results. These models led to simple exp
sions of temperature, density, and viscosity dependenc
the rate. However, the agreement with experiments wa
most tentative. It was soon realized that a major difficu
was that dephasing derives contributions from many sou
and there may not be any unique mechanism of dephas
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Not only the estimation of these contributions are nontrivi
even the cross-correlations between different pure terms
non-negligible. Thus the Kubo theory of dephasing4 was
straightforward to apply in this case and the calculations
the frequency modulation time correlation function turn
out to be extremely difficult, even for simple diatoms lik
nitrogen (N2).

Uniqueness of vibrational dephasing near the criti
point is that the value of mean square frequency fluctua
^Dv2(0)& becomes large, leading to rapid decay
^Q(t)Q(0)&. Many factors which are responsible for th
behavior are very difficult to understand. Near high tempe
ture vibration-rotational~VR! coupling shows large enhance
ment to^Dv(t)Dv(0)& including negative cross-correlatio
between atom-atom and VR-coupling terms.

Many experimental studies have been carried out on2

using vibrational Raman spectroscopy as a probe. Exp
mental studies of Clouteret al.5,6 showed that the isotropic
Raman line shape of simple fluid-like N2 may exhibit a re-
markable additional broadening near liquid-gas critic
points (rc ,Tc). They measured the Raman spectra along
triple point to the critical point and behavior of the line sha
il:
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as the critical point is approached from above at a cons
density. Recently Mussoet al.7 calculated the importan
cross-correlations between resonant and nonresonant de
ing mechanisms in dense liquid. They observed an inter
ing temperature dependencel shaped linewidth~G! along
the coexistence and along the critical isochore.

In their pioneering study, Oxtobyet al.1,2,8 showed that
direct simulation of the vibrating molecules could be avoid
for most cases of interest. A quantum mechanical pertu
tion theory for the vibrational motion can be used to expr
the dephasing rate in terms of auto- and cross-correla
functions of bond-force terms and its derivatives. The la
ones can then be calculated by molecular dynamics~MD!
simulations. Oxtobyet al. calculated the linewidth and th
motionally narrowed line shape of nitrogen near boili
point ~77 K!.3,8 They considered several contributions fro
~i! solvent–solute interaction force in the liquid,~ii ! their
derivatives, and~iii ! resonant molecular vibrational intera
tions to the frequency fluctuation of molecules.

Recently Gayathriet al.9,10 calculated the vibrationa
phase relaxation of the fundamental and the overtones11,12

of the N–N stretch of nitrogen in pure nitrogen by molec
lar dynamics~MD! simulations. They reproduced the e
perimental data semiquantitatively~within 40% in most
cases!. They have also applied the mode coupling theo
~MCT!13–16 to compare with the simulation results. In the
calculations they have not included the vibrational coor
nate (q) dependence of the interatomic potential and a
ignored the cross-terms among the vibration-rotation c
pling term, the atom-atom term, and the resonance te
More recently Everitt and Skinner studied the Raman l
shape of nitrogen in a systematic way by including the bo
length dependence of the dispersion and repulsive fo
parameters.17 They have also included the cross-correlati
terms which were neglected earlier and the results for
line shift and the linewidth along the liquid-gas coexisten
of N2 were observed to be in very good agreement w
experiments. But calculations along the critical isocho
have not been reported in their study. As mentioned ear
there exists a profound experimental result in this region

In this work, we report results of extensive MD simul
tions of vibrational dephasing along critical isochore. W
have calculated the linewidth, the line shape, and the dep
ing time of N2 along the critical isochoreand along the
coexistence line. The normal coordinate time correlat
function@CQ(t)# is calculated from the frequency fluctuatio
time correlation function for different state points along t
coexistence line as well as along the isochore of N2 .

We have incorporated the vibrational coordinate (q) de-
pendency of the intermolecular potential and also the cro
terms. The linear expansion of the Lennard-Jones pote
parameters on vibrational coordinate is very important to
the correct sign of line shift. The time integral of the diag
nal and cross-terms of frequency fluctuation time correlat
function @Cv(t)# gives the contribution to the linewidth
These cross-terms have a large effect on the linewidth to
a good agreement with experiment.

The line shape calculated from the normal coordin
time correlation function shows the Gaussian behavior cl
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to the critical point. Experimentally,7 it has been proved tha
the line shape remains Lorentzian for the liquid near its n
mal boiling point~BP!. The increase in density fluctuation
near the critical point increases the mean square freque
fluctuation ^Dv i

2&, transferring the line shape from its fa
modulation, i.e., Lorentzian shape limit outside the critic
region to a slower modulated Gaussian shape. The root m
square~rms! frequency fluctuation of N2 calculated along the
isochore shows nonmonotonic behavior. However,
dephasing time (tv) did not show any nonmonotonicity.

II. BASIC EXPRESSIONS

The theories of the vibrational dephasing are all ba
on Kubo’s stochastic theory of the line shape. This give
simple expression for the isotropic Raman line shape@ I (v)#
in terms of Fourier transform of the normal coordinate tim
correlation function@CQ(t)# through the polarizability time-
correlation function as given by,4,18

I ~v!5E
0

`

dt exp~ ivt !@^Q~ t !Q~0!&#. ~1!

A cumulant expansion of Eq.~1! followed by truncation after
second order gives the following well known expression
CQ(t) ~Ref. 4!:

CQ~ t !5^Q~ t !Q~0!&

5Re exp~ iv0t1 i ^Dv&t !

3expF2E
0

t

dt8~ t2t8!^Dv~ t8!Dv~0!&G , ~2!

whereDv i(t)5v i(t)2^v i& is the fluctuation of the vibra-
tional frequency from average vibrational frequenc
^Dv(t)Dv(0)& is the frequency fluctuation time correlatio
@Cv(t)# function andv0 is the fundamental vibrational fre
quency of nitrogen.

The fluctuation in energy between the ground state
the nth quantum level of overtone transitions is given by

\Dvn0
i ~ t !5Vnn

i ~ t !2V00
i ~0!1(

j
Vi j ~ t !. ~3!

Vnn
i is the Hamiltonian matrix element of the coupling of th

vibrational mode to the solvent bath and( jVi j (t) represents
the contribution from resonant energy transfer between
moleculesi and j .

The Hamiltonian for the normal mode (Q) is assumed to
be of the following anharmonic form:

Hvib5 1
2 mv0

2Q21 1
6 f Q3, ~4!

wherem is the reduced mass andf is the anharmonic force
constant. The value off is 17.83104 g/cm s2. Note thatQ in
Eq. ~4! is not in the mass-weighted form.

If V is the oscillator-medium interaction potential, the
one finds the following expression for the fluctuation in ove
tone frequency~by using perturbation theory! Dvn0(t)
~Ref. 2!:
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\Dvn0
i ~ t !5~Qnn2Q00!S ]V

]QD
Q50

~ t !

1
1

2
@~Q2!nn2~Q2!00#S ]2V

]2QD
Q50

~ t !

1Qn0
2 (

j Þ i
S ]2V

]QiQj
D

Q50

~ t !1¯

5S n\~2 f !

2m2v0
3 DF1Q

i 1S n\

2mv0
DF2Q

i

1dn1S \

2mv0
D 1/2

(
iÞ j

F3Q
i j . ~5!

The first two terms in the right-hand side of Eq.~5! are the
atom-atom contributions and the third term is the resona
term.

The vibration-rotation~VR! contribution to the broaden
ing of the line shape is given byDvn0,VR5DRn0 /\I mr e

•DJ2;19–21 where DJ2(t)5J2(t)2^J2(0)&. However, the
time correlation function of VR-coupling term is given by

Cv
VR~ t !5^Dv~ t !Dv~0!&n0,VR

5S DRn0

\I mr e
D 2

3@^J2~ t !J2~0!&2^J2&2#. ~6!

J is the angular momentum andI m is the moment of inertia
value at the equilibrium bond length (r e).

Auto- and cross-correlations between atom-atom forc
VR coupling, and resonance terms have been considere
our model. The final expression forCv

total(t) can thus be writ-
ten as

Cv
total~ t !5^Dv~ t !Dv~0!&

5^DvAA~ t !DvAA~0!&1^DvVR~ t !DvVR~0!&

1^DvRs~ t !DvRs~0!&1^DvAA~ t !DvVR~0!&

1^DvVR~ t !DvRs~0!&1^DvRs~ t !DvAA~0!&. ~7!

The line shape is obtained from the frequency fluctuat
correlation function.F1Q

i ,F2Q
i , andF3Q

i in Eq. ~5! and the
VR coupling from Eq. ~6! are calculated separately. Th
main difference from a previous calculation22 is that all the
terms are vibrational coordinate dependent. This depende
comes through the bond length of the@r5r (q)# molecule.

The Hamiltonian of homonuclear diatomic molecul
can be expressed as the sum of three terms,

H5Hv1T~q!1U~q!, ~8!

Hv is the vibrational Hamiltonian.T(q) is the total transla-
tional and rotational kinetic energy.U(q) is the intermolecu-
lar potential energy.q represents the collection of vibratio
coordinates$qi%. The vibration Hamiltonian for the isolate
~gas-phase! molecules is given by

Hv5(
i

S pi
2

2m
1u~qi ! D . ~9!

Here( represents the sum of all anharmonic oscillators
the vibrational modes of gas molecules. The conjugate
e

s,
in

n

cy

r
o-

mentum ofqi is pi for the i th molecule of the oscillator. The
translational and rotational kinetic energy term of the os
lator can be written as

T̃~q!5(
i

S P̃i
2

2M
1

L̃ i
2

2I ~qi !
D , ~10!

where P̃i and L̃ i are the center of mass momentum and
angular momentum for moleculei , respectively, andI (q)
5m(r e1q)2 is the moments of inertia. We can expressH
5T(0)1U(0) as a bath Hamiltonian and the perturbati
HamiltonianV is given byV5T(q)1U(q)2T(0)2U(0).
The total Hamiltonian

H5Hv1Hb1V. ~11!

The intermolecular potential energy can be written as

U~q!5 1
2 (

iÞ j
(
ab

v~e i j ,s i j ,r ia j b!, ~12!

with

r ia j b5r 8 j b2r ia5r j b1
q

2
r̂ j b2r ia , ~13!

and

r 8 j b~qj !5r j b~0!1
q

2
r̂ j b . ~14!

Here r̂ j b is the unit vector along theb atom of the vibrating
molecule (i th molecule! from the center of mass~see Fig. 1!.

III. SIMULATION DETAILS

We have performed a microcanonical (NVE) ensemble
molecular-dynamics~MD! simulation23,24 at different state
points of N2 ranging from the melting point~also the triple
point of N2) through the boiling point and along the critica
isochore~see Fig. 2! using the leap-frog algorithm.25 The
parameters used are given in Table I.26 A system of 256 N2
diatomic molecules were enclosed in a cubic box and p
odic boundary conditions were used.

The thermodynamic state of the system is expresse
terms of the reduced number density ofr* 5rs3 ~Ref. 23!
and a reduced temperature ofT* 5kBT/e. s is the diameter
of the molecule ande is the interaction parameter~see Table
I!. The unit of temperature ise/kB ~K!, where kB is the
Boltzmann constant. Cheung and Powles27 had earlier stud-
ied liquid N2 at different state points using MD simulation
Most of the thermodynamic state points chosen for the w
presented here have been taken from their study. We h
done few simulations with a system of 512 nitrogen m
ecules to check the system size dependency.

Figure 2 gives a schematic view of the phase diagram28

The arrowed line points out that along the critical isocho
Tc is approached from above. For nitrogen the triple po
corresponds to that given by (Tt* ,r t* )5(1.7212, 0.6964!
and the critical point, (Tc* ,rc* )5(3.3592, 0.35!.

For intermolecular potential-energy (Vi j ) between two
moleculesi and j , the following site-site Lennard-Jones typ
is employed as given below:
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FIG. 1. The schematic diagram illus
trating molecular interactions betwee
the nonvibrating (i th molecule! and
vibrating (j th molecule! homonuclear
diatomic (N2).
e

we

o

Vi j 5(
a,b

1,2

V~r ia j b!. ~15!

HereV(r ia j b) is the Lennard-Jones atom-atom potential d
fined as

V~r ia j b!54e ia j bF S s ia j b

r ia j b
D 12

2S s ia j b

r ia j b
D 6G . ~16!

FIG. 2. Phase diagram of a typical substance, showing boundaries bet
solid ~S!, liquid ~L!, and vapor~G! or fluid ~F! phases. This is only the
projection of ther* 2T* plane. The parameters (Tc* , Tt* , rc* , andr t* ) are
given for nitrogen. We did the simulation along the critical isochore
nitrogen which is indicated by an arrow.
-

Vibrational coordinate dependence ofe and s has been in-
corporated following Everitt and Skinner,17

e~q!5e@112gq#,
~17!

s~q!5s@112dq#.

For homonuclear diatomic-like nitrogen,

e ia j b5Ae iae j b5e i j , ~18!

s ia j b5
saa1sbb

2
5s i j , ~19!

and

e i j .e~11gqi1gqj12g2qiqj !, ~20!

s i j 5s~11dqi1dqj !. ~21!

Now the LJ potential takes the form as below:

Vi j 5 (
a,b51

2 F4e$11g~qi1qj !12g2qiqj%

3H S s

r ia j b
D 12

~11dqi1dqj !
12

2S s

r ia j b
D 6

~11dqi1dqj !
6J G . ~22!

TABLE I. Parameters for N2 .

Potential parameters r o /Å 1.094
e/kK 37.3
s/Å 3.31

Spectroscopic constants M/amu 28.0
vo /cm21 2358.57

Polarizability parameters g/Å 21 0.62
d/Å 21 20.063
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IV. SIMULATION RESULTS, COMPARISON
WITH EXPERIMENT AND DISCUSSION

A. Along the coexistence line

The frequency-modulation time correlation functio
@Cv(t)#, the dephasing linewidth, and the line shift29 are all
obtained for several thermodynamic state points rang
from triple point to critical point.

We have calculated the line shiftDn5(^v i&2v0)/2pc
as a function of density for nitrogen. The magnitude of t
line shift increases with density as clearly seen in Fig. 3~a!
and the results are in good agreement with the experim
The vibrational coordinate dependence is important to
the correct sign of the line shift.

Along the coexistence line the root mean square
quency fluctuation~D! increases as the critical point is a
proached. Figure 3~b! shows thatD decreases linearly with
density with a slope of20.3624.

B. Along the critical isochore

We have plottedCv(t) against time for three differen
temperatures along the critical isochore in Fig. 4. The lin
with open circles showCv(t) which decays faster tha
Cv(t) represented by the simple line.

FIG. 3. The Raman line shift~Dn! is plotted against density (r* ) ~a! along
the coexistence line for N2 . The critical density is indicated by the arrow
The rms frequency fluctuationD is plotted against reduced density~b! along
the coexistence line for N2 . Simulation results have been fitted with th
formula y5ax1b with a520.3624 andb50.3064.
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The temperature dependence of the dephasing timetv)
calculated by integration ofCv(t) @Eq. ~7!# is comparable
with experimental results~see Table II!.

In Fig. 5, a simple line represents the normal coordin
time correlation function without includingq dependency of
LJ parameters whereas the dashed line represents the
results withq dependent LJ parameters. The former one
a larger correlation time than the latter one. TheCQ(t)
clearly shows the importance ofq dependence.

Figure 6 displays the root mean square frequency fl
tuation D @5ADv2(0)# calculated from unnormalized
Cv(0) at different temperatures along the isochore. The c
culatedD shows a nonmonotonic behavior with temperatu
D initially increases with temperature and shows a maxim
near critical temperature indicated by an arrow. A sharp
crease is observed for the temperature greater thanTc . The
increase in density fluctuation near the critical point is

FIG. 4. The frequency fluctuation time correlation functions@Cv(t)# are
plotted against time (t) at different temperatures~a! T545.0 K, ~b! T
5140.0 K, and~c! T5300.0 K along the critical isochore. In all the figure
above, circles with a simple line showCv(t) for q dependent interaction
potential, whereas the simple solid line shows theq with independent inter-
action potential.

TABLE II. Simulated values of dephasing time at different temperature

Temperature~K!

tv ~ps!

Simulation Expt.

125.3 12.40 14.5
140.0 19.06 23.3
149.3 25.13 27.8
170.0 26.62 28.6
186.5 26.75 26.7
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sponsible for this nonmonotonic behavior of rms frequen
fluctuations.

Linewidth shows an interestingl-shaped feature when
is plotted against temperature~see Table III! for the two dif-
ferent branches of calculation for N2 as shown in Fig. 7. This
figure is very similar to the one observed in experiment~see
Fig. 4 of Ref. 7!. It is interesting to note the sharp rise in th
dephasing rate as the critical point is approached. There
six main contributions,~a! density@Cv

r (t)#, ~b! VR coupling
@Cv

VR(t)#, ~c! resonance@Cv
Rs(t)#, ~d! density-VR coupling

@Cv
r2VR(t)#, ~e! density-resonance@Cv

VR2Rs(t)#, and~f! VR-
resonance@Cv

r2Rs(t)# which are responsible for the sha
rise in total linewidth near the critical point. These are t

FIG. 5. The normal coordinate time correlation functions@CQ(t)# are plot-
ted against time (t) at three temperatures along the critical isochore~a! T
5110.8 K, ~b! T5125.3 K, and~c! T5140.0 K.

FIG. 6. The rms frequency fluctuationD vs temperature (T) along the
critical isochore for N2 . We fitted all simulation points with Gaussian

The fitting formula is y5a@e2b(x2c)2
#, where a50.184 904,

b50.000 108 13, andc5118.874.
y

re

time integrals of diagonal and cross-terms in the freque
fluctuation time correlation function. We shall come back
this point a bit later.

A crossover from Lorentzian-type line shape to Gauss
line shape is found to take place when there is a large s
ration in the time scales of decay ofCv(t) and CQ(t)7,8

cease to exist and the two time correlation functions begin
overlap. We have calculatedCv(t) andCQ(t) at three tem-
peratures near the critical point~see Fig. 8!. The decay of
Cv(t) becomes significantly faster, reducing the gap of d
cay between the two correlation functions. Indeed, the co
puted line shape becomes Gaussian near the critical poin
otherwise remains Lorentzian-type both above and below
critical temperature. Note that the frequency modulation ti
correlation function decays fully in about 200 fs.

To understand the origin of this critical behavior, w
have carefully analyzed each one of the six terms wh
consist of three autocorrelations and three cross-terms
tween density, vibration-rotation coupling, and resonan
terms which have been mentioned earlier.

Figure 9 shows the time dependence of the four do
nating terms, the two autocorrelations@Figs. 9~a! and 9~b!#
and two cross-correlations@Figs. 9~c! and 9~d!#. The decom-
positions of line shift, linewidth, and the temperature dep
dent quantities are fully dependent on the contributio
which come from all six terms. As we approach the critic
point along the critical isochore, the magnitude of contrib
tions from different terms are increased. Results for only fo
different temperatures including the critical point are sho
in Fig. 9. All the remaining terms, resonance-resonance,
density-resonance, are found to be unimportant in comp
son with these four terms.

The time dependence relative contributionXi j (t)
5*0

t dt8(t2t8)Cv
i j (t8) of the density @Fig. 10~a!# and

vibration-rotation coupling term@Fig. 10~b!# are plotted for
seven state points along the critical isochore, which
found to be dominant near the critical point. The sharprise in
the value of the integrand as the critical temperature is
proached and thefall when it is crossed. We have found th
both these contributions at the critical point are distinct co
pared to the other state points. Thus the rise and fall of
dephasing rate arise partly from the rise and fall in the d

TABLE III. Temperature dependencel shaped linewidth along the coexist
ence and critical isochore.

Temperature~K! Linewidth ~GHz!

64.2 2.764
71.6 2.802
75.7 2.809
89.5 2.812
110.8 2.812
120.0 6.965
125.3 16.12
135.0 12.38
140.0 10.49
149.2 7.96
170.0 7.51
186.5 7.47
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FIG. 7. The lambda~l! shaped line-
width ~G! of nitrogen along the coex-
istence line ~closed square! and the
critical isochore ~closed circle!. The
experimental results for linewidth
along the coexistence line and th
critical isochore~open circle! reported
by Musso et al. in Ref. 7 are also
shown. The critical point is indicated
by an arrow on the abscissa.
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sity and the vibration-rotation terms. We have calculated
slopes of the relative contributions by the linear fitting in t
long time at a particular temperatureT5125.3 K. The values
of the slope are 5.431025, 9.531025, and26.831025 for

FIG. 8. The frequency fluctuation time correlation function,Cv(t), and the
normal coordinate time correlation function,CQ(t), are plotted at~a! 186.5
K and ~b! 140.0 K~along critical isochore!, and~c! theCv(t) andCQ(t) are
plotted along the coexistence line at temperature 75.7 K.
edensity-density, VR-VR coupling, and density-VR terms, r
spectively. The major contribution comes from the VR
coupling term among the four dominating terms.

V. DYNAMICAL HETEROGENEITIES
NEAR THE CRITICAL POINT

We have investigated the presence of dynamical het
geneities in the fluid to further explore the origin of the
anomalous critical temperature effects.30,31This can be quan-
tified by the well-known non-Gaussian parametera(t). It is
defined as32

a~ t !5S 3

5D ^r 4~ t !&

^r 2~ t !&2 21, ~23!

where ^Dr (t)2& is the mean squared displacement a
^Dr (t)4& the mean quartic displacement of the center
mass of the nitrogen molecule. It can only approach z
~and hence Gaussian behavior! at a time scale larger than th
time scale required for individual particles to sample th
complete kinetic environments. The functiona(t) is large
near the critical point at times 0.5–5 ps as observed in F
11 which indicates the presence of long lived heterogene
nearTc .

VI. NEGATIVE CROSS-CORRELATION
BETWEEN THE DENSITY AND VR-COUPLING TERM

The role of cross-terms~which can be negative! are ex-
tremely important for the decay ofCv(t) which occurs in the
femtosecond time scale along the critical isochore. We h
calculated the cross-terms among density, VR-coupling,
resonance term. The cross-terms of VR coupling with den
and resonance are found to be negative@see Figs. 9~c! and



tively small

FIG. 9. The decopositions of unnormalized frequency fluctuation time correlation functions for N2 into ~a! density-density,~b! VR-VR coupling, ~c!
density-VR, and~d! VR-resonance at four temperatures along the critical isochore. The density-resonance and resonance-resonance terms are rela
and are not shown here.
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9~d!#. As mentioned earlier the major contributions to t
frequency fluctuation come from the density as well as fr
the VR-coupling term. One of the main reasons for ultraf
decay ofCv is the cancellations of negative cross-terms fro
the total contribution.

Now the question is why are these cross-terms negat
The distribution of density dependent and the VR-coupl
dependent part of the total frequency fluctuation along
isochore are shown in Figs. 12~a! and 12~b!, respectively.
The peak of those distributions is near zerodvVR which
proves that the homogeneity condition is satisfied along
isochore. It is evident that the distribution ofdvVR is always
positive while the distribution ofdvr showed the long nega
tive tail. The distribution of the product of density and VR
coupling terms are plotted for different temperatures in F
t

e?
g
e

e

.

13. It is clearly seen that this distribution is negative. A d
tailed analysis of the origin of the negative sign of the cro
correlation between AA and VR coupling terms is given
Appendix B. On the other handDvr is directly proportional
to the force acting on the bond of the diatoms. If forceF is
large, the velocity will be large and it reflects that theJ2 will
be decreased whenF is increased and vice versa. This is th
origin of anticorrelation between the density and V
coupling terms inCv(t).

The distribution of correlation between the densit
density term and the VR-VR coupling term in the frequen
fluctuation time correlation function are shown in Figs. 14~a!
and 14~b!, respectively. Both distributions are positive an
the homogeneity condition of the frequency fluctuations
satisfied in both cases.
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VII. MODE COUPLING THEORY ANALYSIS

We can use mode coupling theory to obtain an expr
sion for the atom-atom contribution to the frequency mod
lation time correlation function. The main steps have alrea
been discussed by Gayathriet al.10 and need not be repeate
here. In brief, MCT gives the following expression for th
density dependent frequency modulation time correlat
function33 considering that the number density is the on
relevant slow variable in dephasing,

^Dvr~0!Dvr~ t !&5
~kBT!2

6p2\2r E0

`

k2dkFs~k,t !c2~k!F~k,t !.

~24!

Wherec(k) is the Fourier transform of the two particle dire
correlation function. The main contribution is derived fro
the long wavelength~that is smallk) region near the critica
point ~CP!. In the smallk limit the hydrodynamic expres
sions for two-point correlation functions are given by

Fs~k,t !5e2Dsk
2t, ~25a!

FIG. 10. The time dependence of the relative contributions of the~a!
density-density,Xden(t), and ~b! VR coupling, XVR(t), terms at different
temperatures along the critical isochore.
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FIG. 11. The non-Gaussian parmetera(t) is plotted against time (t) at three
different temperatures along the critical isochore.

FIG. 12. The distribution of fluctuation in~a! the density term, and~b! the
VR-coupling contribution to total fluctuation in the frequency at the te
perature 110.8 K.
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F~k,t !5S~k!e2DTk2t, ~25b!

whereFs(k,t) is the self-intermediate scattering function a
F(k,t) is the intermediate scattering function. HereDs is the

FIG. 13. The distribution of correlation between density-VR coupling
three temperatures,~a! 110.8 K,~b! 125.3 K, and~c! 140.0 K, respectively.
Note that this figure is entirely different from Fig. 14.
self-diffusion coefficient,S(k) is the static structure factor
and DT is the thermal diffusivity. Thuŝ Dvr(0)Dvr(t)&
.S(k→0)e2(Ds1DT)k2t. Near the CP,S(k→0) becomes
very large ~as compressibility diverges atT5Tc), leading
towards a Gaussian behavior for line shape.DT also under-
goes a slowdown nearTc . However, a limitation of the
above analysis is the absence of the VR term which cont
utes significantly and may mask some of the critical effec

All these lead to a large value of^Dv2(0)&, which may
lead to a Levy distribution from time dependence
^Q(0)Q(t)& as discussed earlier by Mukamelet al.34 At high
temperature, the latter dominates over the density term.
have calculated the line shape and fitted with the Fou
transform of Levy distribution~see Fig. 15!. Clearly asTc is
approached, the lowk fluctuations become more importan
and, if the highk contributions are sufficiently small, the
will dominate the line shape. We would like to mention th
the line shape becomes Gaussian~see Fig. 15! instead of the
Fourier transform of Levy distribution near the critical poin
The smallk picture described here is quite from the usu
collisional broadening picture of dephasing. A comple
Lorentzian behavior is predicted only in the low temperatu
liquid phase. Interestingly, the predicted divergence
^Dv2(0)& very close toTc enhances the rate of dephasin
and this shifts the decay of^Q(t)Q(0)& to short times, which
gives rise to the Gaussian behavior.

We next use MCT to analyze the cross-correlation
tween VR coupling and the atom-atom (Dvr) term. Accord-
ing to density functional theory~DFT! the effective potential
energy (Veff) of the mean field force@F52¹Veff(r ,t)# can
be written in terms of the two-particle correlation functio
c(r ) without including orientation~V! as

t

ly.
FIG. 14. The distribution of~a! the density-density term and~b! the VR-VR coupling at three temperatures, 110.8, 125.3, and 140.0 K, respective
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bVeff~r ,t !52E dr 8c~r2r 8!dr~r 8,t !. ~26!

Assuming that the density term is approximated by the i
tropic limit, we can therefore write the atom-atom terms

Dvr~r ,t !52kBT/\E dr 8c~r2r 8,t !dr~r 8,t !. ~27!

The calculation of the VR term is a bit more complicate
The angular momentumJ(t) at time t can be expressed i
terms of torqueN(t8) at earlier times (t8.t),

J~ t !5J~0!1E dt8N~ t8!. ~28a!

FIG. 15. The behavior of line shape at the temperature 123.5 K.
ex

-
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From Eq.~B3! of Appendix B, the VR coupling can be writ
ten as

DvVR~r ,V,t !

5AJ~r ,V,t !•J~r ,V,t !

5AFJ2~r ,V,0!12E dt8J~r ,V,0!•N~r ,V,t8!

1E dt8E dt9N~r ,V,t8!•N~r ,V,t9!G . ~28b!

HereA is a constant~see Appendix B! anddr(r 8,V8,t8) is
the fluctuation in the number density.

The expression for the cross-correlation can be
pressed as

^DvVR~r ,V,t !Dvr~r ,0!&

52A~kBT/\!F E dr 8c~r2r 8!^J2~r ,V,0!dr~r 8,0!&

12E dt8E dr 8c~r2r 8!^J~r ,V,0!

•N~V,t8!dr~r 8,0!&1E dt8E dt9E dr 8c~r2r 8!

3^N~V,t8!•N~V,t9!dr~r 8,0!&G . ~29!

By using DFT again, the torque~N! can expressed in term
of density functions as

N~r ,V,t !5¹VE dr 8dV8c~r2r 8,V,V8!dr~r 8,V8,t !. ~30!

Combining the above equations, the final expression cro
correlation can be written as
^DvVR~r ,V,t !Dvr~r ,0!&52A~kBT/\!F E dr 8c~r2r 8!^J2~r ,V,0!dr~r 8,0!&12E dt8E dr 8E dr 9dV8c~r2r 8!¹V8

•c~r2r 9,V,V8!^J~r ,V,0!dr~r 9,V8,t8!dr~r 8,0!&

1E dt8E dt9E dr 9dV8E dr-dV9E dr 8c~r2r 8!¹V8•¹V9c~r2r 9,V,V8!c~r2r-,V,V9!

3^dr~r 9,V8,t8!dr~r-,V9,t9!dr~r 8,0!&G[I1II 1III . ~31!
-

n
ri-
We now analyze Eq.~31! term by term. Since bothJ and
dr are uncoupled at the same time, the contribution ofI is
zero. The second termII in Eq. ~31! consists of two density
terms with an angular momentum term. Using cumulant
pansion we can show that the contribution ofII is also equal
to zero.

To evaluate the third term~III !, we factorize the trans
lational and angular variables in the two-particle direct c
relation function~DCF! and we can write
-

-

c~r2r 8,V,V8!5cu~V,V8!c0~ ur2r 8u!. ~32!

Wherec0(ur2r 8u) is the isotropic part of the direct correla
tion function. When the temperatureT→Tc , c0→r0

21,
which is finite. The angular part of the direct correlatio
function cu(V,V8) can be expanded in terms of the sphe
cal harmonics,

cu~V,V8!5 (
l 1 ,l 2 ,m

al 1l 2mY l 1 ,m~V!Y l 2 ,m~V8!. ~33!
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If we assume that the density effects are included in
spatial partc0(ur2r 8u) then the final expression of the ang
lar part of the direct correlation function will be finite an
nonzero. If one assumes that thedr are Gaussian random
variables, then the value of the triplet correlation function
III is zero, by cumulant expansion. However, the distribut
of the fluctuation in number density clearly shows a no
Gaussian behavior, arising from the long lived heterogen
near critical point~see Fig. 11!. We, therefore, expect a non
zero value of the cross-correlation between VR coupling
atom-atom terms from the triplet correlation function in E
~31!. Moreover, the amplitude of the cross-correlation is p
dicted to be small at all temperatures away fromTc but it is
predicted to become significant asTc is approached, where
the density fluctuation becomes non-Gaussian.

We have calculated the termDR in Eq. ~B3! ~see Appen-
dix B! and found it to be always positive. It is obvious th
J2.0. So we can conclude thatdvVR.0 @see Fig. 12~b!#.
Figure 12~a! shows that most of the distribution of fluctua
tion in dvr are in the negative direction. On the other ha
the distribution of fluctuation indvVR is in the positive di-
rection @see Fig. 12~b!#. Here,Dvr5(n\(2 f )/2m2v0

3)F1Q
i

1(n\/2mv0)F2Q
i . So the distribution of cross-correlatio

between density and VR-coupling terms must be nega
~see Fig. 13!.

The above analysis MCT demonstrates that the large
hancement of vibration-rotation coupling near the gas-liq
critical point arises from the non-Gaussian behavior of d
sity fluctuation and this enters through a nonzero value of
triplet direct correlation function@Eq. ~31!#.

VIII. DIVERGENCE OF RAMAN LINEWIDTH
NEAR THE CP

Along the coexistence line and the critical isochore,
have found that the temperature dependence of the linew
~G! is singular near the critical point. The divergence-li
rise nearTc is fitted to a form (T2Tc)

2b8. From the fitting
with both experimental and theoretical data we have fou
b850.386 along the coexistence line andb850.207 along
the critical isochore.

Above Tc , the fluctuations16 are small which cause th
resonance lines to be homogeneously broadened and the
shape is Lorentzian. On approachingTc , the fluctuations35,36

become large and their correlation time also increases,
consequence the line shape becomes Gaussian.

The order parameter for the liquid-gas critical point
(rL2rG). This goes to zero as (Tc2T)2b where b.1/3.
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Mukamel et al.34 have studied the broadening of spect
lines by using mode-coupling theory37,38 near a liquid-gas
critical point. They assumed Lorentzian form of the lin
and found that the linewidth increases withe2s, where
e5u(T2Tc)/Tcu. They have also found that the value
critical exponent~s! changes from 0.607 for largee to 0 for
small e. That is, the singularity becomes weaker asTc is
approached. It is likely that simulations are not sufficien
close toTc because simulations are finite sized.

The reason for the relative success of a small system
reproducing experimental behavior is that dephasing pro
only local static fluctuations. Thus long range static and
namic correlations important in specific heat, compressi
ity, or light scattering are not relevant in vibrational depha
ing. Second, while our simulated system can certai
capture the increase in fluctuation, it can never capture
long range fluctuations. However, it captures enough to
produce many of the features. Note that even a small sys
is capable of exhibiting large fluctuations near the gas-liq
coexistence/critical point. Put bluntly, truly large scale cri
cal fluctuations are neither required nor reflected for deph
ing simply because dephasing is a local process.

IX. CONCLUSION

In this article extensive MD simulations of vibrationa
phase relaxation of nitrogen have been presented. The s
lations reported here seem to reproduce many of the ano
lies observed in experiments. It shows~a! the origin of en-
hanced negative cross-correlations,~b! a crossover from a
Lorentzian-type to a Gaussian line shape as the critical p
is approached,~c! the nonmonotonic dependence of rms fr
quency fluctuation on temperature along the critical isocho
~d! a lambda shaped dependence of linewidth on temp
ture, and~e! a near divergence of linewidth near the critic
point.
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APPENDIX A: DERIVATIVE
OF LENNARD-JONES POTENTIAL

The derivative of the LJ potential can be calculated a
]v i j

]qi
54e (

a,b51

2 F $11g~11d i j !12g2~qj1qid i j !%H S s

r ia j b
D 12

~11dqi1dqj !
122S s

r ia j b
D 6

~11dqi1dqj !
6J

1$11g~qi1qj !12g2qiqj%H d

dria j b
S s

r ia j b
D 12]r ia j b

]qi
~11dqi1dqj !

121S s

r ia j b
D 12

~11d1dd i j !12~11dqi1dqj !
11

2
d

dria j b
S s

r ia j b
D 6 ]r ia j b

]qi
~11d1dqi1dqj !

62S s

r ia j b
D 6

6~11d1dd i j !~11d1dqi1dqj !
5J G , ~A1!
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6J

1$11g~qi1qj !12g2qiqj%H d
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APPENDIX B: FREQUENCY MODULATION
FROM VIBRATION-ROTATION COUPLING

The vibration-rotation centrifugal coupling term
Evib-rot5J2/2I , where I (52mr 2) is the moment of inertia
andm is the reduced mass of a diatomic molecule. This V
term is important only whenI depends on vibrational coor
dinate (q) through the bond length, i.e.,r (q)5r 01Dr (q).
Expanding this as a Taylor series about the equilibrium b
length r 0 , theEvib-rot can be rewritten as

Evib-rot5
J2

2m~r 01Dr !2 5
J2

2mr 0
2 S 11

Dr

r 0
D 22

5
J2

2I 0
F12

2Dr

r 0
13S Dr

r 0
D 2

2¯G .
~B1!

The contribution of VR coupling to the totalCv(t) is given
by Cv

VR as

Cv
VR~ t !5^DvVR~ t !DvVR~0!& ~B2!

where

DvVR~ t !5@E11~ t !2E00~ t !#/\5S DR

\I 0r 0
DDJ2~ t !, ~B3!

where DR5(Q112Q00)2 3(Q11
2 2Q00

2 )/2r 0 , Qnn

5^nuDr un&, andQnn
2 5^nu(Dr )2un& are the expectation val

ues of bond length displacement and its square andDJ2(t)
5J2(t)2^J2(0)&. We used̂ J2&52I 0kBT.
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