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We present results of extensive computer simulations and theoretical analysis of vibrational phase
relaxation of a nitrogen moleculalong the critical isochoreand also along the gas-liquid
coexistence. The simulation includes all the different contributi@em-atom(AA), vibration-
rotation(VR), and resonant transfieaind their cross-correlations. Following Everitt and Skinner, we
have included the vibrational coordinatg) (dependence of the interatomic potential. It is found that

the latter makes an important contribution. The simulated results are in good agreement with the
experiments. Dephasing timer,) and the root mean square frequency fluctuatian in the
supercritical region are calculated. The principal important results (area crossover from a
Lorentzian-type to a Gaussian lineshape is observed as the critical point is approached along the
isochore (from above, (b) the root mean square frequency fluctuation shows nonmonotonic
dependence on the temperature along critical isocliorelong the coexistence line and the critical
isochore the temperature dependent linewidth shows a divergencedikape behavior, and) the

value of the critical exponents along the coexistence and along the isochore are obtained by fitting.
It is found that the linewidthgdirectly proportional to the rate of vibrational phase relaxation
calculated from the time integral of the normal coordinate time correlation funjoBeyt) | are in

good agreement with the known experimental results. The origin of the anomalous temperature
dependence of linewidth can be traced to simultaneous occurrence of several fagtthns,
enhancement of negative cross-correlations between AA and VR contribution@iJatite large
density fluctuations as the critical poif@P) is approached. The former makes the decay faster so
that local density fluctuations are probed on a femtosecond time scale. The reason for the negative
cross-correlation between AA and VR is explored in detail. A mode coupling th&t@) analysis

shows the slow decay of the enhanced density fluctuations near critical point. The MCT analysis
demonstrates that the large enhancement of VR coupling near CP arises from the non-Gaussian
behavior of density fluctuation and this enters through a nonzero value of the triplet direct
correlation function.

I. INTRODUCTION Not only the estimation of these contributions are nontrivial,
L . even the cross-correlations between different pure terms are
The study of vibrational phase relaxatid'PR) has aﬂon-negligible. Thus the Kubo theory of dephadingas

been an important endeavor of a physical chemist/chemic Straightforward to apply in this case and the calculations of
physicist in the attempt to understand and quantify the inter: 9 PRy

action of a chemical bond with the surrounding solventthe frequency modulation time correlation function turned

molecules-? As the phase relaxation of a bond is sensitive toofjt to be extremely difficult, even for simple diatoms like
the details of intermolecular interaction, it is a useful tool in Ntrogen (N). o . N
understanding various aspects of solute—solvent interactions. Unidueness of vibrational dephasing near the critical
The study of VPR has been driven by the sensitive experiPOINt IS that the value of mean square freque!flcy fluctuation
mental measurements of the vibrational linewidth. Thus the{A®*(0)) becomes large, leading to rapid decay of
oretical results can be verified with experiments directly.{Q(t)Q(0)). Many factors which are responsible for this
Simple models such as the isolated binary collisions nfodelPehavior are very difficult to understand. Near high tempera-
and hydrodynamic modeiere employed initially to explain ture vibration-rotationalVR) coupling shows large enhance-
the experimental results. These models led to simple expregient to(A»(t)Aw(0)) including negative cross-correlation
sions of temperature, density, and viscosity dependence dfetween atom-atom and VR-coupling terms.
the rate. However, the agreement with experiments was at Many experimental studies have been carried out gn N
most tentative. It was soon realized that a major difficultyusing vibrational Raman spectroscopy as a probe. Experi-
was that dephasing derives contributions from many sourcemental studies of Cloutegt al>® showed that the isotropic
and there may not be any unique mechanism of dephasin®aman line shape of simple fluid-like,Nmay exhibit a re-
markable additional broadening near liquid-gas critical
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as the critical point is approached from above at a constartb the critical point. Experimentall§jt has been proved that
density. Recently Mussat al.” calculated the important the line shape remains Lorentzian for the liquid near its nor-
cross-correlations between resonant and nonresonant dephasal boiling point(BP). The increase in density fluctuations
ing mechanisms in dense liquid. They observed an interestiear the critical point increases the mean square frequency
ing temperature dependenaeshaped linewidth(I') along quctuation(Awi2>, transferring the line shape from its fast
the coexistence and along the critical isochore. modulation, i.e., Lorentzian shape limit outside the critical
In their pioneering study, Oxtobgt al’?® showed that region to a slower modulated Gaussian shape. The root mean
direct simulation of the vibrating molecules could be avoidedsquare(rms) frequency fluctuation of Ncalculated along the
for most cases of interest. A quantum mechanical perturbasochore shows nonmonotonic behavior. However, the
tion theory for the vibrational motion can be used to expresslephasing time £€,) did not show any nonmonotonicity.
the dephasing rate in terms of auto- and cross-correlation
functions of bond-force terms and its derivatives. The latter
ones can then be calculated by molecu_lar d_ynar(ﬁtt@) Il. BASIC EXPRESSIONS
simulations. Oxtobyet al. calculated the linewidth and the
motionally narrowed line shape of nitrogen near boiling The theories of the vibrational dephasing are all based
point (77 K).>® They considered several contributions from on Kubo’s stochastic theory of the line shape. This gives a
(i) solvent—solute interaction force in the liquidi) their  simple expression for the isotropic Raman line shidife)]
derivatives, andiii) resonant molecular vibrational interac- in terms of Fourier transform of the normal coordinate time
tions to the frequency fluctuation of molecules. correlation functior{ Cn(t)] through the polarizability time-
Recently Gayathriet al®° calculated the vibrational correlation function as given By!
phase relaxation of the fundamental and the overtdriés B
of the N=N stretch of nitrogen in pure nitrogen by molecu- |(w):f dtexp(iwt)[(Q(1)Q(0))]. (1)
lar dynamics(MD) simulations. They reproduced the ex- 0
perimental data semlquantqatlveI@wnhm 40% N most A cumulant expansion of Eq1) followed by truncation after
cases They have also applied the mode coupling theory . : .
13-16 . . . . “second order gives the following well known expression for
(MCT) to compare with the simulation results. In their Colt) (Ref. 4:
calculations they have not included the vibrational coordi-~< e
nate () dependence of the interatomic potential and also  Cq(t)=(Q(t)Q(0))
ignored the cross-terms among the vibration-rotation cou-
pling term, the atom-atom term, and the resonance term.
More recently Everitt and Skinner studied the Raman line t
shape of nitrogen in a systematic way by including the bond XeXF{ —j dt’(t—t")(Aw(t')Aw(0))|, (2
length dependence of the dispersion and repulsive force 0
parameteré? They have also included the cross—correlationwhereAwi(t)=wi(t)_<wi> is the fluctuation of the vibra-
terms which were neglected earlier and the results for théional frequency from average vibrational frequency.
line shift and the linewidth along the liquid-gas COGXiStGhCE(Aw(t)Aw(O» is the frequency fluctuation time correlation
of N, were observed to be in very good agreement with[C(t)] function andw is the fundamental vibrational fre-
experiments. But calculations along the critical isochorequency of nitrogen.
have not been reported in their study. As mentioned earlier, The fluctuation in energy between the ground state and
there exists a profound experimental result in this region. the nth quantum level of overtone transitions is given by
In this work, we report results of extensive MD simula-
tions of vibrational Fjeph.asmg alqng critical isochore. We ﬁAwho(t):V'nn(t)_V'oo(OHz Vi (t). 3)
have calculated the linewidth, the line shape, and the dephas- i

ing time of along the critical isochoreand along the . . . . .
gt NZ 9 ; : g .V} _is the Hamiltonian matrix element of the coupling of the
coexistence line. The normal coordinate time correlation "

function[Cq(t)] is calculated from the frequency fluctuation V|brat|on§| m_ode o the solvent bath ahigV;(t) represents
) : ) . . the contribution from resonant energy transfer between two
time correlation function for different state points along the

coexistence line as well as along the isochore of N moleculesi andj.
. g th 9 The Hamiltonian for the normal mod€)] is assumed to
We have incorporated the vibrational coordinagg (le- . . )
: ) be of the following anharmonic form:
pendency of the intermolecular potential and also the cross-
terms. The Imea_r expansion of _the L_ennard_-Jones potential Hvin%MwSQz"‘ 1£Q3, (4)
parameters on vibrational coordinate is very important to get
the correct sign of line shift. The time integral of the diago-where u is the reduced mass aridis the anharmonic force
nal and cross-terms of frequency fluctuation time correlatiorconstant. The value dfis 17.8x 10* g/cm €. Note thatQ in
function [C_(t)] gives the contribution to the linewidth. Eq. (4) is not in the mass-weighted form.

These cross-terms have a large effect on the linewidth to get If V is the oscillator-medium interaction potential, then
a good agreement with experiment. one finds the following expression for the fluctuation in over-
The line shape calculated from the normal coordinateone frequency(by using perturbation theoyyAwgg(t)

time correlation function shows the Gaussian behavior closé€Ref. 2:
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mentum ofg; is p; for theith molecule of the oscillator. The
il wno(t)=(Qnn— Qoo)(§Q> (1) translational and rotational kinetic energy term of the oscil-
1 Q=0 2y lator can be written as
+ _[(Qz)nn (Q )oo]( I ) (t) ( Pz 12 )
°Q
Q=0 10
. T(@=2 TTe (10)
t)+-- - ~
Qno]#l (&Q Qj ) ® whereP; andL; are the center of mass momentum and the
ni(—f) nﬁ . angular momentum for molecule respectively, and(q)
= 2—23—> 0 (2 ) 20 =u(re+q)? is the moments of inertia. We can exprdss
K @o 0 =T(0)+U(0) as a bath Hamiltonian and the perturbation
+ 60y ) 2 F (5) HamiltonianV _is gi_ven byV=T(q)+U(q)—T(0)—U(0).
2uwg) 7 The total Hamiltonian
The first two terms in the right-hand side of E§) are the H=H,+Hp+V. (13)

atom-atom contributions and the third term is the resonance  The jntermolecular potential energy can be written as
term.

The vibration-rotatior{\VR) contribution to the broaden- _1 12
ing of the line shape is given b wngyr=ARno /Al ml ¢ Zﬂ aE 0(€5 .7 Fiagp): (12
- AJ% 1921 \where AJ2(t)=J2(t)—(J%(0)). However, the .
with
time correlation function of VR-coupling term is given by
, q
CoR®=(Aw(H)Aw(0))novr laip ="' 16~ Tia=Tjs+ 5T~ Tia. (13
AR\ 2
= =2 X[(9%(1)92(0) —(39)2). (6 and
Algre
J is the angular momentum arg, is the moment of inertia rip(A)=Tjp(0)+ 5T 5. (14

value at the equilibrium bond lengthy). . . L
Auto- and cross-correlations between atom-atom forced, €€z i the unit vector along thg atom of the vibrating

VR coupling, and resonance terms have been considered mOIeCUIe (th moleculg from the center of masisee Fig. 1
our model. The final expression fa*?(t) can thus be writ-

ten as Ill. SIMULATION DETAILS
| —
Co () =(Aw()Aw(0)) We have performed a microcanonicNVYE) ensemble
. : i 1,23,24 ;
—(Awpa(D)Awpn(0))+(Awyr(t) Awyr(0)) molecular-dynamic{MD) simulatiorf*** at different state
points of N, ranging from the melting poinfalso the triple
T (Awrdt) Awgrd0)) +(Awan(t) Awyg(0)) point of N,) through the boiling point and along the critical

isochore(see Fig. 2 using the leap-frog algorithd?. The
T{A0RDACR(0) +(Awrd) A0 (0))- parameters used are given in TabR A system of 256 N
The line shape is obtained from the frequency fluctuatiorfiatomic molecules were enclosed in a cubic box and peri-
correlation functlonFlQ,FzQ, and F3 in Eq. (5) and the  odic boundary conditions were used.
VR coupling from Eq.(6) are calculated separately. The The thermodynamic state of the system is expressed in
main difference from a previous calculatfdnis that all the terms of the reduced number density@f=po® (Ref. 23
terms are vibrational coordinate dependent. This dependen@nd a reduced temperature Bf =kgT/e. o is the diameter

comes through the bond length of the=r(q)] molecule. of the molecule and is the interaction parametésee Table
The Hamiltonian of homonuclear diatomic molecules!). The unit of temperature ig/kg (K), wherekg is the
can be expressed as the sum of three terms, Boltzmann constant. Cheung and Povlesad earlier stud-
ied liquid N, at different state points using MD simulations.
H=H,+T(q)+U(q), (8)  Most of the thermodynamic state points chosen for the work

presented here have been taken from their study. We have
done few simulations with a system of 512 nitrogen mol-
ecules to check the system size dependency.

Figure 2 gives a schematic view of the phase diagfam.
The arrowed line points out that along the critical isochore,
T. is approached from above. For nitrogen the triple point
p; corresponds to that given byTf ,pf)=(1.7212, 0.6964
m+u(q,)> (9 and the critical point, T ,p¥)=(3.3592, 0.35

For intermolecular potential-energy/) between two
Here X represents the sum of all anharmonic oscillators formolecules andj, the following site-site Lennard-Jones type
the vibrational modes of gas molecules. The conjugate mois employed as given below:

H, is the vibrational HamiltonianT(q) is the total transla-
tional and rotational kinetic energy.(q) is the intermolecu-
lar potential energyq represents the collection of vibration
coordinateqq;}. The vibration Hamiltonian for the isolated
(gas-phasemolecules is given by

H=2
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FIG. 1. The schematic diagram illus-
trating molecular interactions between
the nonvibrating ith molecule¢ and
vibrating (jth molecul¢ homonuclear
diatomic (N).

Vibrational coordinate dependence ofand o has been in-
corporated following Everitt and Skinn#f,

fined as o(q)=o[1+24q]. (17
Tiaip\? | Tiaip)® For homonuclear diatomic-like nitrogen,
V(Fiajp) =4€iajpl | 7| —| 7~ (16)
iajp iajB eiajB: \/fiafjﬁzeij y (18)
O,,t O
BB
* gj ajB: — 2 = O-ij ’ (19)
T
and
A F eij=€e(1+yq;+ yq;+29°qiq)), (20)
O'ij:0'(1+5qi+5ql'). (21)
Now the LJ potential takes the form as below:
X 2
L L
(4 _ 2
V= 4e{l+ +g)+2 iq
[3.3592] G ij oy { y(di q]) Y qlqj}
o 12 "
v X (1+8q;+ 8q;)
Fiajp
k
T; 6
o
[1.7212] S — ( (1+6q;+ 5q]-)6} } : (22
Fiaip
TABLE I|. Parameters for pl.
K
* * P Potential parameters ro/A 1.094
0 pc [035] pt [0.6964 ] elkK 37.3
(reduced density) olA 3.31
FIG. 2. Phase diagram of a typical substance, showing boundaries betwegrpectroscopic constants /M/&frlnu 28.0
solid (S), liquid (L), and vapor(G) or fluid (F) phases. This is only the Wo/CM 2358.57
projection of thep* — T* plane. The parameter3{ , T} , p¥ , andp;’) are Polarizability parameters ylA-t 0.62
given for nitrogen. We did the simulation along the critical isochore of SIAT —0.063

nitrogen which is indicated by an arrow.
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FIG. 4. The frequency fluctuation time correlation functidies,(t)] are
| | plotted against timet] at different temperaturesa) T=45.0K, (b) T
=140.0 K, and(c) T=300.0 K along the critical isochore. In all the figures
0 \ . . . . . . . . above, circles with a simple line sho@,(t) for g dependent interaction
) 0.3 04 s 0 0.7 0.8 potential, whereas the simple solid line shows gheith independent inter-
p

action potential.

FIG. 3. The Raman line shiftAv) is plotted against density{) (a) along
the coexistence line for N The critical density is indicated by the arrow.
The rms frequency fluctuatioh is plotted against reduced densiby along
the coexistence line for N Simulation results have been fitted with the
formulay=ax+b with a= —0.3624 ancb=0.3064.

The temperature dependence of the dephasing time (
calculated by integration o€ ,(t) [Eq. (7)] is comparable
with experimental resultésee Table ).

In Fig. 5, a simple line represents the normal coordinate
time correlation function without including dependency of
LJ parameters whereas the dashed line represents the same
results withq dependent LJ parameters. The former one has

. ) ) _a larger correlation time than the latter one. TGg(t)
The frequency-modulation time correlation function cjearly shows the importance gf dependence.

[C.(t)], the dephasing linewidth, and the line stiifare all Figure 6 displays the root mean square frequency fluc-

obtained for several thermodynamic state points ranging,ation A [= A w2(0) (0)] calculated from unnormalized
from triple point to critical point. C,(0) at different temperatures along the isochore. The cal-
We have calculated the line shifty=((w;)~®0)/27C  cylatedA shows a nonmonotonic behavior with temperature.
as a function of density for nitrogen. The magnitude of they injtially increases with temperature and shows a maximum
line shift increases with density as clearly seen in Fi@) 3 near critical temperature indicated by an arrow. A sharp de-
and the results are in good agreement with the experimeng,ease is observed for the temperature greater TaarThe

The vibrational coordinate dependence is important to gefycrease in density fluctuation near the critical point is re-
the correct sign of the line shift.

Along the coexistence line the root mean square fre-
quency fluctuation(A) increases as the critical point is ap-
proached. Figure (8) shows thatA decreases linearly with
density with a slope of-0.3624.

IV. SIMULATION RESULTS, COMPARISON
WITH EXPERIMENT AND DISCUSSION

A. Along the coexistence line

TABLE II. Simulated values of dephasing time at different temperatures.

7 (P9
TemperaturdK) Simulation Expt.
B. Along the critical isochore 1253 12.40 145
We have plottedC (t) against time for three different 140.0 19.06 23.3
temperatures along the critical isochore in Fig. 4. The lines i‘;g'g ggég g;'g
with open circles showC,(t) which decays faster than 186.5 26.75 26.7

C,(t) represented by the simple line.




TABLE Ill. Temperature dependendeshaped linewidth along the coexist-
ence and critical isochore.
TemperaturgK) Linewidth (GH2)
64.2 2.764
71.6 2.802
75.7 2.809
89.5 2.812
110.8 2.812
120.0 6.965
125.3 16.12
135.0 12.38
140.0 10.49
149.2 7.96
170.0 7.51
186.5 7.47
02,4 2 20 0 0 100 120 140 150 time int_egra_ls of diagon_al and cross-terms in the frequency
time (ps) fluctuation time correlation function. We shall come back to
this point a bit later.
FIG. 5. The normal coordinate time correlation functi¢@s,(t)] are plot- A crossover from Lorentzian-type line shape to Gaussian
ted against timet) at three temperatures along the critical isoch@eT line shape is found to take place when there is a |arge sepa-

=110.8K, (b) T=125.3 K, and(c) T=140.0 K. )78

ration in the time scales of decay @, (t) and Cq(t
cease to exist and the two time correlation functions begin to
. . . . overlap. We have calculated,(t) and Cq(t) at three tem-
sponsible for this nonmonotonic behavior of rms frequencyperatures near the critical poifsee Fig. 8 The decay of

fluctuations. - .

. X . . . C,(t) becomes significantly faster, reducing the gap of de-
. lee;j/wdth.shows an lnterestm)gsbrllapl)le? fezsrt]ture Wr:ffn 't cay between the two correlation functions. Indeed, the com-
|fs P otts agr::unst ]Cterr}pelrat.ufs?e a eh ) or't IS' tW? Tlh-' puted line shape becomes Gaussian near the critical point but
erent branches of calculation foMs shown in Fig. 7. ThiS e ryise remains Lorentzian-type both above and below the

aguri 'Sf \éer%/ S|rr|1|lgr .to the one observeg n re]xper!nm(es!wh critical temperature. Note that the frequency modulation time
ig. 4 of Ref. 7. It is interesting to note the sharp rise in the correlation function decays fully in about 200 fs.

dephasing rate as the critical point is approached. There are To understand the origin of this critical behavior, we
sixvrQain contributions(a) dSQS“Y[Cfu(t)]' (_b) VR coupli_ng have carefully analyzed each one of the six terms which
[C;;LS,Q]' © resona.ncch (], (d\),RqeerS'ty'VR coupling  consist of three autocorrelations and three cross-terms be-
[Co (0], (elgens'ty'fe_sona”@w (_t)]' and(f) VR-  yeen density, vibration-rotation coupling, and resonance
resonancg C? "¥t)] which are responsible for the sharp terms which have been mentioned earlier.

rise in total linewidth near the critical point. These are the Figure 9 shows the time dependence of the four domi-

nating terms, the two autocorrelatiofSigs. 9a) and 9b)]
and two cross-correlationi§igs. 9c) and 9d)]. The decom-
positions of line shift, linewidth, and the temperature depen-
dent quantities are fully dependent on the contributions
which come from all six terms. As we approach the critical
point along the critical isochore, the magnitude of contribu-
tions from different terms are increased. Results for only four
different temperatures including the critical point are shown
in Fig. 9. All the remaining terms, resonance-resonance, and
density-resonance, are found to be unimportant in compari-
son with these four terms.
The time dependence relative contributioX;;(t)
=[tdt’ (t—t")C!(t") of the density [Fig. 10a] and
| vibration-rotation coupling termiFig. 10b)] are plotted for
seven state points along the critical isochore, which are
0.1 . : A 7 ; found to be dominant near the critical point. The shaspin
60 80 100 120 140 160 180 200 .
TK) the value of the integrand as the critical temperature is ap-
FIG. 6. The rms frequency fluctuatioh vs temperature T) along the proached and th'Elll _When Itis ers,sed' We have _fOl,md that
critical isochore for . We fitted all simulation points with Gaussian. POth these contributions at the critical point are distinct com-
The fitting formula is y=a[e P*~9%], where a=0.184904, Pared to the other state points. Thus the rise and fall of the
b=0.000 108 13, and=118.874. dephasing rate arise partly from the rise and fall in the den-
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FIG. 7. The lambda)\) shaped line-
width (I') of nitrogen along the coex-
istence line(closed squapeand the
critical isochore (closed circlg. The
experimental results for linewidth
along the coexistence line and the
b critical isochore(open circle reported
by Mussoet al. in Ref. 7 are also
shown. The critical point is indicated
by an arrow on the abscissa.
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sity and the vibration-rotation terms. We have calculated thelensity-density, VR-VR coupling, and density-VR terms, re-
slopes of the relative contributions by the linear fitting in thespectively. The major contribution comes from the VR-
long time at a particular temperatufe= 125.3 K. The values coupling term among the four dominating terms.

of the slope are 5410 °, 9.5x10 °, and—6.8x 10" ° for

-
O, (a)
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FIG. 8. The frequency fluctuation time correlation functi@n,(t), and the
normal coordinate time correlation functidBg(t), are plotted ata) 186.5
K and(b) 140.0 K(along critical isochorg and(c) the C,,(t) andCy(t) are

plotted along the coexistence line at temperature 75.7 K.

V. DYNAMICAL HETEROGENEITIES
NEAR THE CRITICAL POINT

We have investigated the presence of dynamical hetero-
geneities in the fluid to further explore the origin of these
anomalous critical temperature effeé?s$! This can be quan-
tified by the well-known non-Gaussian parameigt). It is
defined a¥

3\ (r4(v))
““)‘(5><r2<t>>2 b 29
where (Ar(t)?) is the mean squared displacement and
(Ar(t)*) the mean quartic displacement of the center of
mass of the nitrogen molecule. It can only approach zero

(and hence Gaussian behayiat a time scale larger than the
time scale required for individual particles to sample their
complete kinetic environments. The functier(t) is large
near the critical point at times 0.5-5 ps as observed in Fig.
11 which indicates the presence of long lived heterogeneities
nearT..

VI. NEGATIVE CROSS-CORRELATION
BETWEEN THE DENSITY AND VR-COUPLING TERM

The role of cross-termévhich can be negatiyeare ex-
tremely important for the decay & ,(t) which occurs in the
femtosecond time scale along the critical isochore. We have
calculated the cross-terms among density, VR-coupling, and
resonance term. The cross-terms of VR coupling with density
and resonance are found to be negafisee Figs. &) and
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FIG. 9. The decopositions of unnormalized frequency fluctuation time correlation functions,famtdN(a) density-density,(b) VR-VR coupling, (c)
density-VR, andd) VR-resonance at four temperatures along the critical isochore. The density-resonance and resonance-resonance terms are relatively small
and are not shown here.

9(d)]. As mentioned earlier the major contributions to the13. It is clearly seen that this distribution is negative. A de-
frequency fluctuation come from the density as well as frontailed analysis of the origin of the negative sign of the cross-
the VR-coupling term. One of the main reasons for ultrafastorrelation between AA and VR coupling terms is given in
decay ofC,, is the cancellations of negative cross-terms fromAppendix B. On the other hanflw , is directly proportional
the total contribution. to the force acting on the bond of the diatoms. If foFeés
Now the question is why are these cross-terms negativelarge, the velocity will be large and it reflects that thewill
The distribution of density dependent and the VR-couplingbe decreased whédn s increased and vice versa. This is the
dependent part of the total frequency fluctuation along therigin of anticorrelation between the density and VR-
isochore are shown in Figs. & and 12b), respectively. coupling terms inC,(t).
The peak of those distributions is near zefe,r which The distribution of correlation between the density-
proves that the homogeneity condition is satisfied along thélensity term and the VR-VR coupling term in the frequency
isochore. It is evident that the distribution &g is always  fluctuation time correlation function are shown in Figs(a4
positive while the distribution obw, showed the long nega- and 14b), respectively. Both distributions are positive and
tive tail. The distribution of the product of density and VR- the homogeneity condition of the frequency fluctuations is
coupling terms are plotted for different temperatures in Figsatisfied in both cases.
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VIl. MODE COUPLING THEORY ANALYSIS
4
. . 10
We can use mode coupling theory to obtain an expres- 4r , - .
sion for the atom-atom contribution to the frequency modu-
lation time correlation function. The main steps have already [ 1
been discussed by Gayatleti al1° and need not be repeated (b) ]
here. In brief, MCT gives the following expression for the _
density dependent frequency modulation time correlation 25t |
functior® considering that the number density is the only & 1
relevant slow variable in dephasing, 5 2r - 1
~ =
(kgT)? (= ) ) L.5f 1
(Aw,(0)Aw,(1))= 672h2p kedkF¢(k,t)c(K)F(k,t).
1. o
(24)
Wherec(K) is the Fourier transform of the two particle direct 0.5 ]
correlation function. The main contribution is derived from
the long wavelengtlithat is smallk) region near the critical -0.1 0 oL 02 0.3 0.4
point (CP). In the smallk limit the hydrodynamic expres- VR

sions for two-point correlation functions are given by

Fo(k,t)=e Dt

(253

FIG. 12. The distribution of fluctuation ife) the density term, an¢b) the
VR-coupling contribution to total fluctuation in the frequency at the tem-
perature 110.8 K.
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self-diffusion coefficientS(k) is the static structure factor,
and Dy is the thermal diffusivity. ThugAw,(0)Aw,(t))
~S(k—0)e @s*PDKt Near the CP,S(k—0) becomes
very large (as compressibility diverges at=T,.), leading
towards a Gaussian behavior for line shape.also under-
goes a slowdown neaf.. However, a limitation of the
above analysis is the absence of the VR term which contrib-
utes significantly and may mask some of the critical effects.
All these lead to a large value 6A w?(0)), which may
lead to a Levy distribution from time dependence of
(Q(0)Q(1)) as discussed earlier by Mukanelal 3* At high
temperature, the latter dominates over the density term. We
have calculated the line shape and fitted with the Fourier
transform of Levy distributiorisee Fig. 15 Clearly asT. is
approached, the low fluctuations become more important
and, if the highk contributions are sufficiently small, they
will dominate the line shape. We would like to mention that
the line shape becomes Gaussisee Fig. 1binstead of the
Fourier transform of Levy distribution near the critical point.
The smallk picture described here is quite from the usual
collisional broadening picture of dephasing. A complete
Lorentzian behavior is predicted only in the low temperature
liquid phase. Interestingly, the predicted divergence of
(Aw?(0)) very close toT, enhances the rate of dephasing
and this shifts the decay ¢Q(t)Q(0)) to short times, which

FIG. 13. The distribution of correlation between density-VR coupling at gives rise to the Gaussian behavior.
three temperature$a) 110.8 K, (b) 125.3 K, and(c) 140.0 K, respectively.

Note that this figure is entirely different from Fig. 14.

F(k,t)=S(k)e BT,

(25b)

whereF¢(k,t) is the self-intermediate scattering function andbe written in terms of the two-particle correlation function
F(k,t) is the intermediate scattering function. H&gis the
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We next use MCT to analyze the cross-correlation be-
tween VR coupling and the atom-atom ) term. Accord-
ing to density functional theor{DFT) the effective potential
energy V) of the mean field forcéF= —VV4(r,t)] can

c(r) without including orientatior{Q2) as

500

400
T=110.8K

)

VR

300

2

P(50

200

100

0

0.2 04 0.6 0.8 1 1.2

VR
500

T=125.3K
300

2
P(Boy )

200

0.2 04 0.6 0.8 1 12
d?
500

T =140.0K
300

2
P(BmVR)

200

0 e
0.2 04 0.6 0.8 1 12

2
SmVR

FIG. 14. The distribution ofa) the density-density term ar{#)) the VR-VR coupling at three temperatures, 110.8, 125.3, and 140.0 K, respectively.



0.9 T T T T T T T From Eq.(B3) of Appendix B, the VR coupling can be writ-
ten as
0.8
—— lineshape
o - 32213 ] Awyr(r,Q,t)
=AJ(r,Q,1)-J(r,Q,t)
0.6l T=1253K
Fitting formula = FFT (exp[~t"]) ZA[JZ(I’,Q,O)-I- Zj dt’J(I’,Q,O) . N(I’,ﬂ,t’)
05
204 +f dt’f dt’N(r,Q,t")-N(r,Q,t")|. (28b)
03 HereA is a constanf{see Appendix Band Sp(r’,Q’,t’) is
the fluctuation in the number density.
0.2 The expression for the cross-correlation can be ex-
pressed as
0.1}
o N . . . . . — <AwVR(r,Q,t)AwP(r,0)>
"0 10 20 30 4Qk 50 60 70 80
) =—A(kBT/h)“ dr'c(r—r"){J%(r,Q,08p(r',0))

FIG. 15. The behavior of line shape at the temperature 123.5 K.

+2f dt’J dr'c(r—r"){(J(r,Q,0

Bveﬁ(r,t):—j dr'c(r—r")ép(r',t). (26) 'N(Q,t’)5p(f'y0)>+f dt’f dt"f dric(r—r")

Assuming that the density term is approximated by the iso- X(N(Q,t")-N(Q,t") 8p(r’,0))
tropic limit, we can therefore write the atom-atom terms as

. (29)

By using DFT again, the torqu@\) can expressed in terms

Awp(r,t)Z—kBT/ﬁf dric(r=r.dp(r’,). (27 of density functions as

The calculation of the VR term is a bit more complicated.

The angular momenturd(t) at timet can be expressed in N(r,gyt)zvﬂf dr'dQ'c(r—r’,Q,Q")ép(r',Q',t). (30
terms of torqueN(t’) at earlier timest(’ >t),

Combining the above equations, the final expression cross-
correlation can be written as

J(t)=J(0)+j dt'N(t"). (289

(AwVR(r,Q,t)Awp(r,0)>=—A(kBT/ﬁ)U dl"C(I‘—I")(JZ(I',Q,O)(Sp(I",0)>+2f dt’f dr’f dr’dQ’'c(r—r")Vg,
c(r—r",Q,0"){J3(r,Q,0)5p(r",Q',t")5p(r’,0))

+f dt’f dt”f dr”dﬂ’f dr”’dﬂ”f dr'c(r—r")Vg:-Vorc(r—r",Q,Q")c(r—r",Q,Q")

x(ap(r",ﬂ',t')ép(r"',n",t")ép(r',O)ﬁsl+|| +1II (31

We now analyze Eq31) term by term. Since both and c(r—r",Q,0)=c,(Q,Q")co(|r—r'|). (32)
dp are uncoupled at the same time, the contribution of
zero. The second terith in Eq. (31) consists of two density
terms with an angular momentum term. Using cumulant ex
pansion we can show that the contributionllofs also equal

Wherecq(|r—r']|) is the isotropic part of the direct correla-
tion function. When the temperatur—T,, Co—pg

which is finite. The angular part of the direct correlation
function c,(Q,€Q’) can be expanded in terms of the spheri-

to zero. cal harmonics,

To evaluate the third terrflll ), we factorize the trans-
Iat|0r_1al and a_mgular variables in the t_wo-partlcle direct cor- c)(Q,Q)= 2 alllsz|1,m(Q)Y|2,m(Q')- (33)
relation function(DCF) and we can write I1.12,m



If we assume that the density effects are included in théMukamel et al>* have studied the broadening of spectral
spatial partcy(|r—r’|) then the final expression of the angu- lines by using mode-coupling thedy®® near a liquid-gas
lar part of the direct correlation function will be finite and critical point. They assumed Lorentzian form of the line
nonzero. If one assumes that tide are Gaussian random and found that the linewidth increases with s, where
variables, then the value of the triplet correlation function ine=|(T—T.)/T.|. They have also found that the value of
[l is zero, by cumulant expansion. However, the distributioncritical exponents) changes from 0.607 for largeto O for
of the fluctuation in number density clearly shows a non-small e. That is, the singularity becomes weaker Bsis
Gaussian behavior, arising from the long lived heterogeneitgpproached. It is likely that simulations are not sufficiently
near critical poinfsee Fig. 11 We, therefore, expect a non- close toT. because simulations are finite sized.
zero value of the cross-correlation between VR coupling and  The reason for the relative success of a small system in
atom-atom terms from the triplet correlation function in Eq. reproducing experimental behavior is that dephasing probes
(31). Moreover, the amplitude of the cross-correlation is pre-only local static fluctuations. Thus long range static and dy-
dicted to be small at all temperatures away frégbut itis  namic correlations important in specific heat, compressibil-
predicted to become significant as is approached, where ity, or light scattering are not relevant in vibrational dephas-
the density fluctuation becomes non-Gaussian. ing. Second, while our simulated system can certainly
We have calculated the ter&R in Eq. (B3) (see Appen- capture the increase in fluctuation, it can never capture the
dix B) and found it to be always positive. It is obvious that long range fluctuations. However, it captures enough to re-
J?>0. So we can conclude thaiw,z>0 [see Fig. 12)]. produce many of the features. Note that even a small system
Figure 12a) shows that most of the distribution of fluctua- is capable of exhibiting large fluctuations near the gas-liquid
tion in dw, are in the negative direction. On the other handcoexistence/critical point. Put bluntly, truly large scale criti-
the distribution of fluctuation iwyx is in the positive di- cal fluctuations are neither required nor reflected for dephas-
rection[see Fig. 1b)]. Here,Awp:(nh(—f)/2,u2w(3))F'lQ ing simply because dephasing is a local process.
+(nfil2pwo)Fyg. So the distribution of cross-correlation
between density and VR-coupling terms must be negativéX. CONCLUSION
(SeeT';Eéégve analysis MCT demonstrates that the large en- In this article extensive MD simulations of vibrational

L . . .~ ~ phase relaxation of nitrogen have been presented. The simu-
hancement of vibration-rotation coupling near the gas-liquid_,.
. : . ; . ations reported here seem to reproduce many of the anoma-
critical point arises from the non-Gaussian behavior of dens

sity fluctuation and this enters through a nonzero value of th%(;?]é)eb dser:(\elggtil\r/]ee():(gnesrgj::i?:i;tzosgbj\ﬁ? é?gsgcr)?é? ?rfoﬁ"nn-a

triplet direct correlation functiofigq. (31)} Lorentzian-type to a Gaussian line shape as the critical point

VIIl. DIVERGENCE OF RAMAN LINEWIDTH is approachec(,c_) the nonmonotonic dependen(_:g of rms fre-

NEAR THE CP quency fluctuation on temperature along the critical isochore,
(d) a lambda shaped dependence of linewidth on tempera-

Along the coexistence line and the critical isochore, wetyre, and(e) a near divergence of linewidth near the critical
have found that the temperature dependence of the linewidthoint.

(') is singular near the critical point. The divergence-like

rise nearT, is fitted to a form T—T.) “#". From the fiting ACKNOWLEDGMENTS
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consequence the line shape becorne; Gaussan. . OF LENNARD-JONES POTENTIAL
The order parameter for the liquid-gas critical point is
(pL—pg). This goes to zero asT¢—T) # where 8=1/3. The derivative of the LJ potential can be calculated as
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APPENDIX B: FREQUENCY MODULATION
FROM VIBRATION-ROTATION COUPLING

The vibration-rotation centrifugal coupling term is

Evib-ro=J%/21, wherel(=2ur?) is the moment of inertia

6
) 6(1+ 5+ 385;)(1+ 5+ 5qi+5qj)5H.
iajp

(A2)
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